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Abstract
Aim: We aimed to analyze temporal trends in mortality from intrahepatic (ICC) and extrahepatic (ECC) 
cholangiocarcinoma in selected countries worldwide.

Methods: Official death certification data for ICC and ECC and populations estimates for 29 countries worldwide 
(17 from Europe, 8 from the Americas, and 4 from Australasia) and for Hong Kong Special Administrative Region of 
the People’s Republic of China (SAR), from 1995 to 2018, were extracted from the World Health Organization and 
the Pan American Health Organization databases. Age-standardized mortality rates were computed. A joinpoint 
regression analysis was performed.

Results: In both sexes, ICC mortality rates increased in most countries considered, including the USA, the UK, and 
Australia; in some countries, including Italy and France, the increasing trends leveled off over the most recent 
years. In men, around 2016, the highest rates (1.7-2.3/100,000) were observed in Hong Kong SAR, Portugal, 
France, Spain, Australia, Austria, the UK, and Canada; Latin American countries and some eastern European 
countries had the lowest rates (0.2-0.8/100,000). A similar pattern was observed in women, but with lower rates 
(from 1.7/100,000 in Hong Kong SAR to 0.14/100,000 in Argentina). ECC mortality declined in most European 
and Australasian countries, but it tended to increase in Americas. In both sexes, rates were below 1/100,000 
around 2016, with the only exceptions being Japan (2.6/100,000 men and 1.2/100,000 women) and Hungary 
(1.5/100,000 men and 1.1/100,000 women).
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Conclusion: ICC mortality increased in most areas of the world, likely due to increased prevalence of risk factors 
and improved cancer recognition and classification. ECC mortality fell in most countries, largely due to the 
widespread use of cholecystectomy.

Keywords: Cholangiocarcinoma, mortality, epidemiology, temporal trends, intrahepatic cholangiocarcinoma, 
extrahepatic cholangiocarcinoma

INTRODUCTION 
Cholangiocarcinoma is a heterogeneous group of aggressive neoplasms of the biliary duct system, 
accounting for approximately 3%-5% of all gastrointestinal cancers[1]. The incidence of cholangiocarcinoma 
is relatively low in most high-income countries (0.3-2 cases per 100,000 people) but much higher (even 40-
fold greater) in some regions of Thailand and China[2], where infection with liver flukes - a key determinant 
of cholangiocarcinoma - is endemic. While surgery and liver transplantation are therapeutic options for a 
small fraction of patients, the prognosis of cholangiocarcinoma is dramatically poor, with 95% of patients 
dying within five years[3]; therefore, mortality parallels incidence rates.

Risk factors for the disease include infection with hepatitis C (especially in Western countries, where it is 
more prevalent) and B (particularly in Asian countries, where it is endemic) viruses, gallstones 
(cholelithiasis), heavy alcohol use, cirrhosis and alcohol-related diseases, inflammatory bowel disease, 
diabetes, obesity, smoking, and selected genetic polymorphisms[4,5]; non-alcoholic fatty liver disease 
(NAFLD) also increases the risk[6]. Aspirin use has been suggested as a protective factor for the disease[7]. 
Other established risk factors for cholangiocarcinoma are infection with liver flukes (Opisthorchis viverrini 
and Clonorchis sinensis), hepatolithiasis, biliary duct cysts (e.g., Caroli’s disease), primary sclerosing 
cholangitis (PSC), and the banned carcinogen agent Thorotrast[4,5]. Hepatolithiasis and, especially, infection 
with liver flukes account for a large proportion of cases in Southeast Asia, where these conditions are 
common; PSC is a strong, although rare, predisposing factor in the West[4].

Anatomically, cholangiocarcinoma is classified as intrahepatic cholangiocarcinoma (ICC) when arising 
from epithelial cells above the hilar junction of bile ducts or extrahepatic cholangiocarcinoma (ECC) when 
arising below the hilum. Cholangiocarcinomas arising at the liver hilum (i.e., hilar cholangiocarcinoma or 
Klatskin tumor) are a subset of ECC[8]. ICC represents 10%-15% of all primary liver tumors and is the 
second primary hepatic malignancy after hepatocellular carcinoma[9]. ICC appears to be the most common 
biliary tract cancer[10] and accounts for over two-thirds of all cholangiocarcinomas[11]; however, the literature 
on the topic is ambiguous, with some studies indicating that ECC, including hilar cholangiocarcinoma, 
accounts for the large majority of all cholangiocarcinoma cases[5].

Although both ICC and ECC are associated with selected biliary tract conditions, hepatitis B and C, and 
NAFLD, these associations are quantitatively different, which suggests that the two cancers have distinct 
epidemiology and biology[12].

ICC and ECC have rarely been studied comparatively due to difficulties in diagnosis, registration, and 
certification. In particular, changes in International Classification of Disease for Oncology (ICD-O) coding 
rules over time have resulted in the misclassification of Klatskin tumors as ICC[13]. However, improvements 
in diagnosis and death certification validity for these neoplasms have occurred over recent years.
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Various studies indicated that the incidence of ICC has increased over the last decades in most 
countries[14-17]. By contrast, reported trends for ECC have been inconsistent, with some studies showing a 
decrease or stabilization[15,16] and others an increase[14], possibly at a slower rate compared to ICC[17,18].

As for mortality, a study based on official death certification data showed a global increase in ICC mortality 
and a decrease or stabilization in ECC mortality over the 1995-2016 period, with wide variations in rates 
across geographic regions[19]. Recently, a mortality trends study based on American data from 2009 to 2018 
showed an increase in ICC mortality over the whole period, but a stable trend for ECC mortality until 2013, 
followed by an increase thereafter[16].

In the present study, we updated temporal trends in mortality from ICC and ECC in countries worldwide 
with reliable data from the World Health Organization (WHO) database.

METHODS
We extracted official death certification data from ICC and ECC, separately, from the WHO mortality 
database[20], from 1995 to 2018 or the last available year when the Tenth Revision of the International 
Classification of Diseases (ICD-10) was used (ICD-10 code C22.1 for ICC and C24.0 for ECC).

We selected countries according to population size and data coverage, i.e., all countries considered had over 
two million inhabitants and more than 85% death certification coverage[21]. Thus, we analyzed data from 29 
countries worldwide, including 17 countries from Europe [13 of which belonging to the European Union 
(EU)], 8 countries from the Americas, and 4 from Australasia. We also analyzed data from Hong Kong as a 
Special Administrative Region of the People’s Republic of China (SAR).

We extracted estimates of the resident populations, based on official censuses, from the same WHO 
database[20]. For American countries, since data were unavailable in the WHO database for several years, we 
extracted the populations from the Pan American Health Organization database[22].

From the matrices of certified deaths and resident populations, we computed age-specific rates for each 
five-year age group (from 0-4 to ≥ 85 years and from 0-4 to ≥ 80 years for American countries), country, sex, 
and calendar year. We then computed age-standardized mortality rates per 100,000 person-years at all ages 
and for the age group 45-64 years, using the direct method based on the 1960 world standard population[23].

For nine major countries with a population greater than 40 million (plus Australia), we performed a 
joinpoint regression analysis of ICC and ECC mortality trends over the period 1995-2018[24]. We thus 
identified the years when a significant change in the linear slope of the temporal trend (on a log scale) 
occurred by testing from zero up to a maximum of three inflection points (called “joinpoints”)[25]. The 
estimated annual percentage change (APC) was then computed for each of the identified trends by fitting a 
regression line to the natural logarithm of the rates using the calendar year as a covariate. We also estimated 
the average APC over the entire study period.

RESULTS
Table 1 gives the age-standardized mortality rates from ICC and ECC per 100,000 person-years, in 2010-
2014 (around 2012) and 2015-2018 (around 2016), the annual average deaths in the last period, and the 
percent change in rates, according to country and sex.
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Table 1. Age-standardized (world population) mortality rates per 100,000 person-years from intrahepatic and extrahepatic cholangiocarcinoma (ICC and ECC) at all ages in selected countries 
worldwide during 2010-2014 (around 2012) and 2015-2018 (around 2016) (according to data availability), annual average deaths of the latest period, and the corresponding percent change in 
rates

Men Women
ICC ECC ICC ECC

2012 2016 a Average 
deaths

% change 
(2016/12) 2012 2016a

Average 
deaths

% change 
(2016/12) 2012 2016a Average 

deaths
% change 
(2016/12) 2012 2016a Average 

deaths
% change 
(2016/12)

European Union

Austria 1.75 1.73 160 -1.1 0.66 0.76 79 15.2 1.16 0.98 114 -15.5 0.47 0.54 77 14.9

Belgium 1.35 1.63 190 20.7 0.12 0.12 16 0.0 1.05 1.03 165 -1.9 0.07 0.05 10 -28.6

Croatia 1.02 1.09 46 6.9 0.63 0.58 28 -7.9 0.72 0.72 47 0.0 0.38 0.40 33 5.3

Czech Republic 0.60 0.67 69 11.7 0.52 0.48 54 -7.7 0.42 0.50 69 19.0 0.34 0.33 49 -2.9

Denmark 0.78 1.01 61 29.5 0.13 0.10 8 -23.1 0.76 0.95 70 25.0 0.20 0.13 10 -35.0

France 1.78 1.89 1336 6.2 0.07 0.05 48 -28.6 1.04 1.14 1156 9.6 0.05 0.04 58 -20.0

Germany 1.15 1.27 1264 10.4 0.70 0.92 1008 31.4 0.82 0.92 1145 12.2 0.53 0.63 968 18.9

Hungary 0.48 0.53 48 10.4 0.69 1.48 133 114.5 0.30 0.37 48 23.3 0.56 1.06 153 89.3

Italy 1.00 1.11 837 11.0 0.21 0.19 173 -9.5 0.67 0.72 700 7.5 0.13 0.11 156 -15.4

Netherlands 0.91 1.24 232 36.3 0.40 0.33 64 -17.5 0.68 1.04 216 52.9 0.33 0.30 71 -9.1

Portugal 1.40 2.12 252 51.4 0.36 0.14 18 -61.1 0.75 0.99 170 32.0 0.25 0.07 13 -72.0

Spain 1.69 1.86 967 10.1 0.09 0.17 100 88.9 0.98 1.09 789 11.2 0.04 0.09 77 125.0

Sweden 0.68 0.81 86 19.1 0.54 0.69 82 27.8 0.66 0.61 83 -7.6 0.61 0.71 102 16.4

Other European countries

Belarus . 0.58 39 . . 0.44 28 . . 0.36 39 . . 0.22 25 .

Norway 1.06 1.36 68 28.3 0.07 0.11 5 57.1 1.00 1.01 58 1.0 0.05 0.08 5 60.0

Switzerland 1.23 1.39 125 13.0 0.32 0.36 35 12.5 1.00 0.96 103 -4.0 0.30 0.22 31 -26.7

UK 1.55 1.71 1232 10.3 0.05 0.06 44 20.0 1.46 1.64 1477 12.3 0.04 0.04 37 0.0

American 
countries

Argentina 0.23 0.19 53 -17.4 0.04 0.09 24 125.0 0.16 0.14 49 -12.5 0.02 0.07 26 250.0

Brazil 0.35 0.42 470 20.0 0.34 0.30 333 -11.8 0.36 0.40 564 11.1 0.42 0.36 521 -14.3

Canada 1.40 1.69 632 20.7 0.07 0.07 30 0.0 1.22 1.37 615 12.3 0.07 0.06 30 -14.3

Chile 0.50 0.83 107 66.0 0.09 0.12 15 33.3 0.45 0.70 113 55.6 0.09 0.06 11 -33.3

Colombia 0.55 0.58 140 5.5 0.09 0.13 32 44.4 0.69 0.71 215 2.9 0.09 0.13 39 44.4

Mexico 0.44 0.49 286 11.4 0.05 0.06 40 20.0 0.61 0.64 433 4.9 0.07 0.08 56 14.3
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Puerto Rico 0.74 0.71 21 -4.1 0.06 0.10 3 66.7 0.48 0.41 19 -14.6 0.07 0.04 2 -42.9

USA 1.04 1.16 3342 11.5 0.11 0.13 390 18.2 0.82 0.98 3311 19.5 0.08 0.10 382 25.0

Australasian countries/regions

Hong Kong 
SAR

2.50 2.33 192 -6.8 0.10 0.07 6 -30.0 1.71 1.68 171 -1.8 0.05 0.04 3 -20.0

Israel 0.97 0.87 55 -10.3 0.04 0.08 5 100.0 0.86 0.79 59 -8.1 0.05 0.07 6 40.0

Japan 1.10 1.15 2186 4.5 2.81 2.57 5932 -8.5 0.57 0.58 1579 1.8 1.37 1.19 4698 -13.1

Australia 1.52 1.75 421 15.1 0.08 0.05 13 -37.5 1.23 1.47 406 19.5 0.05 0.02 9 -60.0

New Zealand 1.06 1.30 54 22.6 0.24 0.21 9 -12.5 1.02 0.81 39 -20.6 0.14 0.16 8 14.3

SAR: Special Administrative Region of the People’s Republic of China. aYears 2015-2016 for Belgium, France, the UK, and New Zealand; Years 2015-2017 for Croatia, Italy, Spain, Canada, Colombia, Mexico, Puerto 
Rico, the USA, and Hong Kong SAR; and Year 2018 for Belarus.

During 2010-2014, European male mortality rates from ICC ranged between 0.48/100,000 in Hungary and 1.78/100,000 in France. The American rates ranged 
between 0.23/100,000 men in Argentina and 1.40/100,000 men in Canada. Among the Australasian countries, ICC mortality rates were around 1 death per 
100,000 men in Israel, Japan, and New Zealand, with the highest rate observed in Hong Kong SAR at 2.5/100,000 men. Between 2012 and 2016, rates increased 
in most countries, with the exceptions of Austria, Argentina, Puerto Rico, Hong Kong SAR, and Israel. The greatest rises were observed in Portugal (+51.4%) 
and the Netherlands (+36.3) among European countries, Chile (+66%), Brazil, and Canada (about +20%) among American countries, and New Zealand 
(+22.6%). Increases of about 10-11% were observed in Germany, Italy, Spain, the UK, and the USA. In the most recent considered period, the highest rates 
exceeded 2 deaths per 100,000 men in Hong Kong SAR (2.3) and Portugal (2.1), followed by France, Spain, Austria, and the UK among European countries, 
where rates were around 1.7-1.9/100,000 men [Figure 1]. The lowest rates were registered in Latin American countries and some eastern European countries 
(rates of 0.19-0.83/100,000). Rates of around 1 death per 100,000 men were observed in several countries including Germany (1.27), the USA (1.16), Japan 
(1.15), and Italy (1.11). In men, as well as in women, the differential between the highest and the lowest rates was over 10-fold, possibly attributable to 
certification bias.

Corresponding female mortality rates from ICC had similar patterns, but with lower values than those of males. Apart from a few exceptions, rates increased 
from 2010-2014 to 2015-2018 in most countries. The greatest percent changes were observed in the Netherlands (+53%) and Portugal (+32%) among European 
countries and Chile (+56%). Among countries showing a drop in rates, the largest percent changes were in Austria (-15.5%), Argentina (-12.5%), and Puerto 
Rico (-14.6%). During 2015-2018, as in men, in women the highest rates were observed in Hong Kong SAR, with a rate of 1.68/100,000, followed by some 
major European countries, including the UK, France, Spain, the Netherlands, Belgium, and Norway, but also Australia and Canada [Figure 1]. ICC rates 
reached 0.98/100,000 women in the USA, 0.92 in Germany, and 0.72 in Italy. The lowest rate was registered in Argentina, with 0.14/100,000 women, followed 
by other Latin American countries as well as some eastern European ones.
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Figure 1. Bar plot for the age-standardized (world population) death rates of intrahepatic cholangiocarcinoma (ICC) around 2016, 
ordered from the highest to the lowest rate, in men (A) and women (B).

Around 2012, ECC male mortality rates among countries of the EU varied: 0.07/100,000 in France and 
0.09/100,000 in Spain, 0.21/100,000 in Italy, 0.54/100,000 in Sweden, and 0.70/100,000 in Germany. Among 
American countries, Brazil registered the highest rate (0.34/100,000), followed by the USA (0.11). Japan had 
the highest rate, with 2.8 deaths per 100,000 men. Over the studied period, ECC mortality rates decreased in 
most European and Australasian countries. In contrast, rates tended to increase in most American 
countries, except in Brazil. Around 2016, ECC mortality rates were below 1/100,000 men in all countries, 
with the exception of Japan and Hungary (2.57/100,000 and 1.48/100,000 men, respectively) [Figure 2].
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Figure 2. Bar plot for the age-standardized (world population) death rates of extrahepatic cholangiocarcinoma (ECC) around 2016, 
ordered from the highest to the lowest rate, in men (A) and women (B).

Geographic variations in ECC mortality patterns were observed for women. The most recent highest rates 
were registered in Japan and Hungary, as for men, although with lower values (1.19/100,000 and 1.06, 
respectively) [Figure 2].

Table 2 gives the age-standardized mortality rates at ages 45-64 years. Over the two considered periods, ICC 
mortality rates increased in most countries in both sexes. Around 2016, male rates from about 1.1/100,000 
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Table 2. Age-standardized (world population) mortality rates per 100,000 person-years from intrahepatic and extrahepatic cholangiocarcinoma (ICC and ECC) in the age group 45-64 in selected 
countries worldwide during 2010-2014 (around 2012) and 2015-2018 (around 2016) (according to data availability), annual average deaths of the latest period, and the corresponding percent 
change in rates.

Men Women
ICC ECC ICC ECC

2012 2016 Average 
deaths

% change 
(2016/12) 2012 2016 Average 

deaths
% change 
(2016/12) 2012 2016 Average 

deaths
% change 
(2016/12) 2012 2016 Average 

deaths
% change 
(2016/12)

European Union

Austria 3.30 3.15 39 -4.5 0.92 1.03 13 12.0 2.19 1.88 24 -14.2 0.74 0.80 10 8.1

Belgium 2.36 2.86 46 21.2 0.15 0.18 3 20.0 2.05 1.82 29 -11.2 0.09 0.03 1 -66.7

Croatia 1.56 2.06 13 32.1 0.91 0.41 3 -54.9 1.50 1.25 8 -16.7 0.57 0.42 3 -26.3

Czech 
Republic

1.18 1.37 21 16.1 0.83 0.62 10 -25.3 0.80 0.81 13 1.3 0.53 0.58 9 9.4

Denmark 1.36 1.77 15 30.1 0.17 0.19 2 11.8 1.34 1.83 15 36.6 0.37 0.16 1 -56.8

France 3.25 3.41 306 4.9 0.08 0.03 3 -62.5 1.93 1.85 178 -4.1 0.05 0.05 5 0.0

Germany 2.16 2.35 302 8.8 1.01 1.40 179 38.6 1.58 1.81 237 14.6 0.89 0.97 126 9.0

Hungary 1.28 1.14 16 -10.9 1.36 3.08 43 126.5 0.66 0.88 14 33.3 1.04 2.12 34 103.8

Italy 1.95 1.97 171 1.0 0.22 0.23 21 4.5 1.19 1.36 126 14.3 0.10 0.12 12 20.0

Netherlands 1.56 2.22 57 42.3 0.74 0.56 15 -24.3 1.30 2.18 55 67.7 0.60 0.55 14 -8.3

Portugal 2.53 3.93 57 55.3 0.52 0.18 3 -65.4 1.26 1.83 30 45.2 0.41 0.11 2 -73.2

Spain 2.93 3.25 209 10.9 0.13 0.24 15 84.6 1.53 1.94 129 26.8 0.04 0.11 8 175.0

Sweden 1.20 1.43 19 19.2 0.86 0.97 12 12.8 1.19 1.01 13 -15.1 0.81 1.04 14 28.4

Other European countries

Belarus . 1.01 13 . . 0.54 7 . . 0.65 10 . . 0.41 6 .

Norway 2.22 2.92 21 31.5 0.19 0.15 1 -21.1 1.87 2.02 14 8.0 0.07 0.07 1 0.0

Switzerland 2.29 2.20 27 -3.9 0.42 0.50 6 19.0 1.77 1.79 22 1.1 0.54 0.22 3 -59.3

UK 2.49 2.84 242 14.1 0.07 0.06 5 -14.3 2.46 2.67 236 8.5 0.06 0.04 4 -33.3

American countries

Argentina 0.51 0.41 17 -19.6 0.05 0.14 6 180.0 0.36 0.32 15 -11.1 0.04 0.16 8 300.0

Brazil 0.70 0.77 163 10.0 0.59 0.51 109 -13.6 0.71 0.86 205 21.1 0.78 0.67 160 -14.1

Canada 2.30 2.86 154 24.3 0.09 0.10 5 11.1 2.19 2.46 134 12.3 0.07 0.08 5 14.3

Chile 0.81 1.30 28 60.5 0.17 0.11 3 -35.3 0.89 1.39 33 56.2 0.14 0.13 3 -7.1

Colombia 0.88 0.92 44 4.5 0.11 0.21 10 90.9 1.01 1.24 66 22.8 0.15 0.26 14 73.3

Mexico 0.79 0.94 99 19.0 0.09 0.08 8 -11.1 1.26 1.30 149 3.2 0.13 0.14 16 7.7
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Puerto Rico 1.29 1.14 5 -11.6 0.12 0.23 1 91.7 0.85 0.34 2 -60.0 0.20 0.00 0 -100.0

USA 2.08 2.31 1040 11.1 0.18 0.21 94 16.7 1.69 2.06 958 21.9 0.13 0.17 81 30.8

Australasian countries/regions

Hong Kong 
SAR

3.72 3.31 41 -11.0 0.10 0.14 2 40.0 2.49 2.55 33 2.4 0.04 0.06 1 50.0

Israel 1.67 1.31 11 -21.6 0.05 0.09 1 80.0 1.63 1.51 13 -7.4 0.02 0.14 1 600.0

Japan 1.91 1.91 335 0.0 3.12 2.66 477 -14.7 0.96 0.93 163 -3.1 1.38 1.01 180 -26.8

Australia 2.49 2.79 87 12.0 0.08 0.03 1 -62.5 2.00 2.68 86 34.0 0.06 0.01 0 -83.3

New Zealand 1.98 2.42 15 22.2 0.50 0.32 2 -36.0 1.54 1.77 11 14.9 0.13 0.14 1 7.7

SAR: Special Administrative Region of the People’s Republic of China.

in Hungary to 3.9/100,000 in Portugal were found in Europe, from 0.4/100,000 in Argentina to 2.9/100,000 in Canada in Americas, and from 1.9/100,000 in 
Japan to 3.3/100,000 in Hong Kong SAS in Australasia. Similar rates were observed in women, but with lower values than those in men. Variable patterns 
emerged for ECC mortality rates, with rates below 1/100,000 for most countries. Among those, Hungary had the worst pattern in both sexes, with the highest 
rate and the largest increase, from about 1.4/100,000 to 3.1/100,000 men and from about 1/100,000 to 2.1/100,000 women.

Figure 3 gives results from the joinpoint trends in major countries considered; joinpoint indices for separate calendar periods are given in Table 3. Considering 
the nine major countries worldwide [Figure 3], we observed steady increases in the USA, the UK, and Australia over the entire studied period (APCs of 3.6%, 
4.8%, and 4.3% in men and 4%, 5.5% and 4.8% in women, respectively). Japan showed stable trends since the early 2000s in both sexes. In contrast, increasing 
trends have been slowing down over recent years in the other considered countries, i.e., Brazil, France, Germany, Italy, and Spain.

More favorable patterns emerged for ECC mortality in most countries as compared to those observed for ICC. Of note, we observed a leveling-off trend in the 
USA in the most recent years (APC: +5.9% during 2013-2017 for men and +4.3% during 2010-2017 for women). Germany presented a decline in rates from 
1998 to 2009 (APC: -3%) followed by a rapid but short increase during 2009-2013 (APC: +14.8%), which arrested thereafter.

DISCUSSION
The present global analysis, based on countries with acceptably reliable data, showed rising trends of ICC mortality for both sexes in most of the countries 
considered, with some decelerations over the most recent years in selected countries; in the USA, the UK, and Australia, ICC mortality trends steadily 
increased over the whole period. ECC mortality declined in most European and Australasian countries, while it tended to increase in American countries, with 
the exception of Brazil.
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Table 3. Joinpoint analysis for intrahepatic and extrahepatic cholangiocarcinoma (ICC and ECC), from 1995 to 2018 (according to data availability), by country and sex

Period 1 APC 1 Period 2 APC 2 Period 3 APC 3 AAPC Period 1 APC 1 Period 2 APC 2 Period 3 APC 3 AAPC

ICC

Brazil 1996-2011 8.1* 2011-2018 3.2* 6.5* 1996-2006 10.1* 2006-2016 4.7* 2016-2018 -6.1 6.1*

USA 1999-2017 3.6* 3.6* 1999-2017 4* 4*

Japan 1995-2001 5.9* 2001-2017 0.3 1.8* 1995-2000 5.7* 2000-2017 -0.1 1.2*

France 2000-2013 5.6* 2013-2016 -0.2 4.5* 2000-2008 7.5* 2008-2016 3* 5.2*

Germany 1998-2006 14* 2006-2018 1.8* 6.5* 1998-2000 32.3 2000-2008 9.3* 2008-2018 1.8* 7.5*

Italy 2003-2007 11.5* 2007-2017 3.6* 5.8* 2003-2012 6.6* 2012-2017 0.6 4.4*

Spain 1999-2011 6.3* 2011-2017 2.1* 4.9* 1999-2010 5.5* 2010-2017 2.5* 4.4*

UK 2000-2016 4.8* 4.8* 2000-2016 5.5* 5.5*

Australia 1998-2018 4.3* 4.3* 1998-2018 4.8* 4.8*

s

Brazil 1996-2001 11.1* 2001-2018 -2.3* 0.6 1996-2000 8.7* 2000-2008 -0.8 2008-2018 -4* -0.6

USA 1999-2008 -5.4* 2008-2013 -1.1 2013-2017 5.9* -1.8* 1999-2010 -4.6* 2010-2017 4.3* -1.2*

Japan 1995-2012 -1* 2012-2017 -2.4* -1.3* 1995-1999 -0.2 1999-2013 -2.1* 2013-2017 -4.1* -2.1*

France 2000-2016 -3.4* -3.4* 2000-2016 -2.6* -2.6*

Germany 1998-2009 -3* 2009-2013 14.8* 2013-2018 3.9 2.1 1998-2009 -5.6* 2009-2012 19.5 2012-2018 2.2 0.2

Italy 2003-2017 -3.5* -3.5* 2003-2017 -4.7* -4.7*

Spain 1999-2011 -4.5* 2011-2014 58.7 2014-2017 -0.4 4.6 1999-2011 -5.3* 2011-2015 38.3* 2015-2017 -4.7 3.1

UK 2000-2016 -2.6 -2.6 2000-2016 -4.3* -4.3*

Australia 1998-2018 -9.3* -9.3* 1998-2018 -10.6* -10.6*

APC: Annual percent change; AAPC: average annual percent change; *significantly different from 0 (P < 0.05).

We documented a wide variation in ICC mortality rates among the studied countries-from 0.19/100,000 men and 0.14/100,000 women in Argentina to 
2.3/100,000 men and 1.7/100,000 women in Hong Kong SAR around 2016. As for ECC, mortality rates were below 0.5/100,000 in most countries in both sexes, 
with the highest rates observed in Japan (2.6/100,000 men and 1.2/100,000 women). Rates were higher for men compared to women. Most of the variation in 
the mortality of these cancers worldwide can be accounted for by differences in the geographical distribution of risk factors and, for ECC, the differing 
prevalence of the use of cholecystectomy. Particularly for ICC, the low rates observed in some countries may be explained by under-certification of these 
cancers.
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Figure 3. Joinpoint analysis of trends in age-standardized (world population) mortality rates from intrahepatic cholangiocarcinoma 
(ICC) and extrahepatic cholangiocarcinoma (ECC) for men (filled circles) and women (open circles) at all ages. Data for nine selected 
major countries, from 1995 to 2018 (according to data availability), are shown.

Differences in mortality trends for ICC and ECC indicate quantitatively different etiologies. Indeed, while 
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the two tumors actually share most of the risk factors, differences in the magnitude of associations have 
been observed. Although the evidence is not fully consistent, and only a few investigations directly 
compared the risk factors of the two tumors within the same study[7,26-28], cirrhosis, chronic hepatitis B and 
C, heavy alcohol use, diabetes, obesity, and NAFLD and its aggressive phenotype nonalcoholic 
steatohepatitis (NASH) are more strongly associated with ICC, suggestive of common pathogenesis of ICC 
and hepatocellular carcinoma; bile duct conditions, including gallstones, tend to be more strongly related to 
ECC[6,7,29-35]. In particular, in an American study based on 2000-2011 data from the Surveillance, 
Epidemiology and End Results -Medicare databases, similar risk factors for ICC and ECC were identified, 
but cirrhosis, HCV infection, alcohol-related disorders, and obesity were more strongly associated with ICC 
than ECC, while bile duct conditions, chronic pancreatitis, and smoking were more associated with ECC[27]. 
As for HBV infection, the association was stronger for ICC than ECC. In a meta-analysis published in 2020 
and based on case-control studies, biliary duct cysts were the strongest risk factors for both ICC and ECC, 
increasing the risks, respectively, by 27- and 35-fold[35]. The pooled odds ratios (OR) for the other biliary 
tract conditions considered were higher for ECC than ICC, being, respectively, 18.6 and 10.1 for 
choledocholithiasis, 5.9 and 3.4 for cholelithiasis, and 2.9 and 1.8 for cholecystolithiasis. As for the other 
factors analyzed, the pooled OR were 15.3 for ICC and 3.8 for ECC for cirrhosis, 4.6 for ICC and 2.1 for 
ECC for HBV infection, 4.3 for ICC and 2.0 for ECC for HCV infection, 3.2 for ICC and 1.8 for ECC for 
alcohol, and 1.7 for ICC and 1.5 for ECC for diabetes.

The increase in mortality from ICC observed in some Western countries may be, at least in part, the result 
of a true increase in the incidence of the tumor, in turn explained by the rising prevalence of HCV in 
selected generations, alcohol drinking, and NAFLD. Indeed, in the USA-as well as in most European and 
American countries-the prevalence of obesity[36], alcohol use, diabetes, the metabolic syndrome and its 
hepatic manifestation NAFLD/NASH[37] are all rising. In addition, acute and chronic infections with HCV 
have dramatically increased over recent calendar periods in the USA[38,39], consistently with the nation’s 
opioid crisis.

Conversely, the decrease in heavy alcohol use documented in the last decades in France and Italy, with the 
consequent decreasing rates of cirrhosis and alcohol-related chronic liver diseases[40], may explain the 
leveling off ICC trends observed over the most recent years.

The increase in mortality from ICC could also be due, at least in part, to a diagnostic drift favored by the 
increased recognition of cholangiocarcinoma subtypes and an enhanced ability to recognize the tumor from 
liver cancer due to improved diagnostic techniques. In addition, in the past, ICC was frequently 
misdiagnosed as a metastatic disease from another primary site including breast, lung, pancreas, and 
gastrointestinal tract[15]. More recently, new tests and criteria have been developed to differentiate ICC from 
hepatocellular or other metastatic carcinomas[41]. In any case, differentiating intrahepatic and extrahepatic 
locations may be challenging when the cancer is diagnosed at advanced stages.

In addition, hilar tumors were classified as ICC instead of ECC under prior versions of the ICD-O coding 
systems. This caused an overestimation of ICC and an underestimation of ECC. However, the ICD-O-3 
version, published in 2000 but adopted by different countries at different times, partially rectified the coding 
allowing the classification of Klatskin tumors as both ICC and ECC. Klatskin tumors are relatively rare and 
such misclassification should not have a major impact on our findings, especially in consideration that our 
analysis focused on more recent data. Some studies reported increasing mortality from ICC in recent 
calendar periods after correctly classifying hilar cholangiocarcinomas as ECC[13,42]. In any case, a certain role 
of coding misclassification in the observed rates cannot be ruled out.
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ICC mortality rates somewhat reflect the trends observed for hepatocellular carcinoma, with steady 
increases in the USA, the UK, Australia, and Germany[43]. However, hepatocellular carcinoma mortality 
rates have been declining in France, Italy, and Spain over the last two decades[43], but these are not reflected 
in ICC death rates. This may reflect the quantitatively different role of major risk factors, in particular HBV 
and HCV, on hepatocellular carcinoma versus ICC, or improved diagnosis of ICC over recent years.

The favorable trends observed for ECC mortality in several countries worldwide are likely the result of 
increasing rates of cholecystectomy, with the use of safer procedures such as laparoscopic cholecystectomy 
for gallstone disease, a major risk factor for biliary tract cancers including ECC and gallbladder cancers[44,45]. 
Advances in the management of PSC, strongly related to cholangiocarcinoma, especially ECC, in the West 
may also account for some of the favorable mortality trends.

Among the limitations of the present analysis, misclassification with hepatocellular carcinomas, other liver 
cancers, gallbladder cancers, and between ICC and ECC may affect the validity of death certification. 
Notably, hilar tumors (“Klatskin” tumors) tend to invade the liver and are possibly misclassified as ICC, 
even though they account for a small proportion of ECC[46]. In our analysis, however, we only considered 
countries with reasonably valid data in terms of coverage of deaths and population size. However, in 
cirrhotic patients without biopsy, ICC and hepatocellular carcinoma can be misclassified. In addition, 
problems in tumor registry reporting still make it difficult to accurately estimate the true incidence and 
mortality of these tumors.

In conclusion, the present analysis confirmed a global increase in ICC mortality and showed more favorable 
trends for ECC, with, however, some differences across countries. How much of the observed increased 
mortality from ICC is attributable to a real increase in incidence, rather than improved cancer recognition, 
and better classification by recent coding systems needs clarification. The widespread fall in ECC mortality 
largely reflects the wider adoption of (laparoscopic) cholecystectomy for the treatment of gallstones and 
related bile duct conditions.
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