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Abstract
Development of new high throughput array-based techniques and, more recently, next-generation sequencing 
(NGS) technologies have revolutionized our capability to accurately characterize single nucleotide polymorphisms 
(SNPs) throughout the genome. These advances have facilitated large-scale genome-wide association studies 
(GWAS), which have served as fundamental elements in establishing links between SNPs and the susceptibility to 
several complex diseases, including those related to the immune system. Nevertheless, the molecular mechanisms 
underlying the development of most of these disorders are still poorly defined. Decoding the functionality of SNPs 
becomes increasingly challenging due to the predominant presence of these risk variants in non-coding regions of 
the genome. Among them, long non-coding RNAs (lncRNAs) are enriched in disease-associated SNPs. lncRNAs 
are involved in governing the control of gene expression both during transcription and at the post-transcriptional 
level. The existence of SNPs within the sequences of lncRNAs has the potential to alter their expression, structure, 
or function. This, in turn, can influence their regulatory roles and consequently contribute to the onset or 
progression of various diseases. In this review, we describe the implication of SNPs located in lncRNAs in the 
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development of different immune-related diseases and highlight the potential of these molecules in the 
development of emerging RNA-based therapies.

Keywords: lncRNA, SNP, immune-related diseases, RNA-based therapies

INTRODUCTION
The development of next-generation sequencing (NGS) techniques has revolutionized the study of 
biological systems, allowing researchers to sequence entire genomes at an unprecedented speed and scale. 
These technological advances have presented NGS as an essential tool both in basic and translational 
research[1], enabling a wide range of scientific applications. NGS, together with recent developments in 
annotation methods and computational programming[2], have played a critical role in the identification of 
risk alleles associated with complex diseases through genome-wide association studies (GWAS)[2]. In 
addition, several high-throughput array-based approaches, such as the Immunochip microarray, have 
facilitated the analysis of large numbers of single-nucleotide polymorphisms (SNPs) in immune-related 
loci[3,4].

This genetic mapping has yielded valuable insights into complex diseases, including the identification of 
immune disease-conferring gene variants that can help in risk prediction. More importantly, this knowledge 
has guided towards the understanding of the underlying biological mechanisms in these complex diseases[5], 
which has presented new possible strategies for prevention, diagnosis, and therapeutics. However, this 
knowledge has remained limited so far, primarily because around 90% of the SNPs identified through 
GWAS are located in non-coding regions, evenly distributed between intergenic and intronic sequences[6], 
making it challenging to establish the precise biological functions associated with these variants[7].

Recent studies have shown that disease-associated SNPs are enriched in long non-coding RNAs 
(lncRNAs)[8]. lncRNAs are a diverse group of non-coding RNAs of more than 200 nucleotides in length[9,10]; 
their expression is rather cell type-specific in comparison to that of protein-coding genes, and they appear 
to be predominantly localized in the nucleus[11]. To date, lncRNAs have been implicated in nearly all stages 
of the gene life cycle, encompassing transcription, mRNA splicing, RNA decay and translation. Given the 
broad expression of lncRNAs and their participation in fundamental cellular processes, their potential 
association with various disorders has been explored, particularly in complex diseases, where the signals of 
association frequently originate from non-coding regions of the genome[12]. Interestingly, increasing studies 
confirm that the presence of SNPs within lncRNAs can influence diverse aspects of their biogenesis[13,14], and 
these molecules have shown to be valuable disease-specific biomarkers as well as potential targets for future 
personalized therapeutic approaches[15,16].

In this review, the implication of immune disease-associated SNPs located in lncRNAs has been studied 
[Table 1], highlighting the importance of the identification and the functional characterization of these 
molecules in the context of autoimmune and immune-related disorders (AIDs) to find possible biomarkers 
and/or therapeutic targets.

GENE REGULATION BY lncRNAs
lncRNAs were initially believed to lack coding capacity and were considered transcriptional by-products or 
"junk"[17]. However, consortiums such as ENCODE (The Encyclopedia of DNA Elements) and FANTOM 
(The Functional Annotation of the Mammalian Genome)[2], together with the development of new high 
throughput sequencing technologies, revealed the presence of an extensive set of non-coding elements with 
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Table 1. AID-associated lncRNAs and their implication in disease

Autoimmune disease Associated 
lncRNA Associated SNP Cell type Function Refs.

Multiple sclerosis (MS) GAS5 rs2067079 Microglia SNP located in promoter/enhancer and predicted structure alteration 
GAS5 competes with miR-137, which releases its target Notch1, resulting in a decrease in 
neuronal survival

[47-49,51,52]

Celiac disease (CeD) Lnc13 rs917997 Macrophages SNP disrupts the structure of the lncRNA, decreasing the interaction with hnRNDP and thus 
leading to the expression of disease-related proinflammatory genes

[13,61]

Lnc13 rs917997 Pancreatic β-cells SNP promotes interaction with PCBP2 and STAT1 mRNA affecting stability [69]Type 1 diabetes (T1D)

ARGI rs9585056 Pancreatic β-cells SNP is predicted to change the secondary structure of ARGI and it exacerbates type I IFN 
response

[71]

Psoriasis HOTAIR rs12826786 Macrophages SNP increases HOTAIR expression, which may induce NFkB activation [75-79]

LINC00305 rs2850711 Monocytes SNP increases its expression. LINC00305 modulates NF-κB and promotes monocyte 
inflammation

[80]

H19 rs217727 Atherosclerotic 
plaques

Sponges the miRNAs from the let-7 family [34,81,82]

Atherosclerosis

ANRIL rs10811656 
rs10757278 
rs10757274 rs2383206 
rs2383207 rs10757278 
rs7865618

Endothelial cells It recruits chromatin modifiers to inhibit gene expression in cis and binds to several factors to 
trans-regulate some genes

[84-86]

Inflammatory bowel 
disease (IBD)

IFNG-AS1 rs7134599 Intestinal cells Binds to a histone methylation complex and this methylation activates IFNG transcription [87-91]

Rheumatoid arthritis FAM211A-AS1 rs2882581, rs3744281 and 
rs3760235

Fibroblast-like 
synoviocytes

SNPs seem to locate in regulatory elements influencing lncRNA transcription and thus nearby 
genes

[95,99]

Systemic lupus 
erythematosus

IL21-AS1 rs62324212 T cells SNP located in enhancer regions, which may affect the expression of the lncRNA [100]

important biological functions, many of them corresponding to lncRNA family[18], which opened a new avenue of research. While protein-coding gene number 
is similar between highly disparate animal species, the amount of lncRNAs increases with evolutionary complexity. Moreover, these molecules are less 
conserved than protein-coding genes, present fewer exons, and are more cell-type specifically and less abundantly expressed than coding genes[15,19].

So far, lncRNAs have been defined as non-coding transcripts of more than 200 nt, but recent consensus statement[19] have suggested a more precise 
categorization of non-coding RNAs into: (1) small RNAs (< 50 nt); (2) Pol III transcripts (i.e., tRNAs, 5S rRNA, 7SK, 7SL, and Alu, vault and Y RNAs) and 
small Pol II transcripts such as snRNAs or intron-derived snoRNAs (~50-500 nt); and (3) lncRNAs (> 500 nt), which are mostly generated by Pol II. While 
many lncRNAs are transcribed by Pol II and are spliced and polyadenylated (similarly to mRNAs), there are many other lncRNAs that are not polyadenylated 
or 5′ capped, are expressed from other RNA polymerases or are processed from introns and repetitive elements. Moreover, regarding their location in the 
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genome, lncRNAs can be intergenic (referred to as lincRNAs), or intronic when they are transcribed from 
introns of protein-coding genes[2]. lncRNAs locate on opposite DNA strands of a protein-coding gene[2] and 
are divergently transcribed[15] or can overlap the DNA strand of a protein-coding gene, and thus, share 
exons with it[2]. Antisense lncRNAs are transcribed from the antisense strand of protein-coding genes[2], 
being the most abundant lncRNAs in mice and humans[20].

While significant progress has been made in mapping lncRNAs, elucidating their functional roles has been 
challenging. There is increasing evidence that specific secondary structure and protein binding motifs of 
lncRNAs are key for their function; however, we are far from being able to predict the function of a lncRNA 
from these characteristics[15,16,19]. lncRNAs are able to interact with DNA, multiple proteins, or other RNA 
molecules, making them good candidates for scaffolding functions and gene regulation[21]. Indeed, lncRNA 
molecules are involved in various cellular processes and the list of roles that they accomplish is continuously 
expanding[9].

Most lncRNAs are localized in the nucleus, where they can participate in chromatin regulation, 
transcription regulation, or the formation of nuclear condensates. Cis-acting and trans-acting lncRNAs can 
affect interactions with DNA to change chromatin status, both interacting with proteins as transcription 
factors or chromatin modifiers, as well as forming direct interactions with chromatin, as triplexes or 
R-loops[15]. Some lncRNAs are able to act locally, silencing genes from the chromosome from which they are 
transcribed. The most well-known example of this function is Xist, which has a vital function in X 
chromosome inactivation during female development[22]. This lncRNA is transcribed from the X 
chromosome that has to be inactivated. It acts as a guide for several repressive complexes that bind to the 
chromatin of the X chromosome, inhibiting the action of RNAPII in the transcription of genes located in 
the X chromosome[23]. lncRNA Kcnq1ot1 also generates repressive environments interacting with chromatin 
and targets repressive histone modifiers in order to silence specific genes[24,25]. Unlike the previous case, it 
has been reported that some lncRNAs are able to regulate numerous genes throughout the genome. This is 
the case of the lincRNA p21, which is regulated by p53 and is capable of repressing the transcription of 
multiple genes in trans[26] [Figure 1A]. Other lncRNAs can bind to regulatory factors, such as chromatin 
modification complexes or transcription factors, and act as indirect transcriptional repressors or 
decoys[25,27], preventing these regulatory factors from binding their target genes[2]. An additional group of 
lncRNAs have been demonstrated to possess the capacity to work as enhancer elements[28] [Figure 1A]. They 
are usually classified as enhancer-RNAs (eRNAs) and enhancer-associated lncRNAs (elncRNAs), and they 
are able to promote target gene expression by interacting with scaffold proteins or establishing contacts 
between enhancers and promoters located far from the genes of interest[15].

Interaction between lncRNAs and splicing factors has been described to be essential for the splicing of 
different mRNAs, while RNA-RNA duplex formation of some lncRNAs also shows regulation in splicing 
[Figure 1B][15,29]. Additionally, lncRNAs can also act as physical platforms to enable the assembly of dynamic 
nuclear structures. For example, lncRNAs such as NEAT1, MALAT1, or PNCTR[15,30] participate in the 
recruitment of proteins to form complexes such as paraspeckles, nuclear paraspeckles or perinucleolar 
compartments [Figure 1C][31].

The above-mentioned functions occur in the nucleus, but lncRNAs can also perform their roles in the 
cytoplasm[32], as they may share processing and export pathways with mRNAs[2]. In this compartment, 
lncRNAs are able to regulate several RNA processes, typically by interacting with mRNA molecules. 
lncRNAs can stabilize mRNAs by masking the open reading frame (ORF) [Figure 1D][33] or sequester 
miRNAs due to the presence of complementary sites. This results in a reduced binding of the miRNAs to 
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Figure 1. lncRNAs participate in diverse cellular processes. (A) The ability of lncRNAs to bind DNA and protein complexes enables their 
transcription regulatory function, both inhibiting and enhancing gene transcription. (B) lncRNAs can facilitate the binding of splicing 
factors to regulate RNA splicing. (C) lncRNAs participate in the formation of nuclear paraspeckles. (D) mRNA stability can be regulated 
by diverse mechanisms involving lncRNA participation. (E) lncRNAs also bind miRNAs, avoiding the binding of miRNAs to target 
mRNAs. (F) lncRNAs are able to reduce or activate mRNA translation. (G) Some lncRNAs have small ORFs able to produce functional 
micropeptides. Created with BioRender.com.

their target mRNAs [Figure 1E][2,15,34]. LncRNAs can also affect the translation process; for example, they are 
able to bind to the 5′ and 3′ UTR sites and to coding regions, favoring the recruitment of translational 
repressors that suppress translation[35]. In contrast, some other lncRNAs have been reported to promote 
translation [Figure 1F][36].

Although lncRNAs are non-coding by definition, they are transcribed by RNAPII, spliced, capped, and 
polyadenylated[18], similar to mRNAs. According to some novel studies, lncRNAs may also contain small 
ORFs that encode micropeptides of less than 100 amino acids [Figure 1G][37]. Generally, such small ORFs 
have been ignored by a length cut-off of 100 amino acids, but computational and ribosome profiling studies 
have suggested that thousands of these non-annotated ORFs are translated in mammalian cells[38]. However, 
the biological significance of most of these micropeptides is still being explored.

Cytoplasmic lncRNAs can also be sorted into organelles, such as the mitochondria, for regulating its 
homeostasis, apoptosis, or communication with the nuclei[39]. Moreover, mitochondrial DNA-encoded 
lncRNAs have also been described, such as lncND5, lncND6, and lncCytB, which interact with several 
mRNA molecules to exert their regulatory functions on their expression and stability[15].

Considering the broadly regulated processes by lncRNA molecules, increasing efforts are being made to 
gain knowledge on how disease-associated variants can affect these regulatory molecules. Numerous studies 
have established that the presence of SNPs in lncRNAs can modify their gene expression levels [Figure 2A], 
structure, or function[13]. These variations have even been suggested to affect the splicing of lncRNAs, as the 
presence of different alleles would potentially lead to exon skipping [Figure 2B]. Consequently, different 
isoforms of a certain lncRNA would be transcribed, affecting the regulation of downstream genes[13]. 
Furthermore, most lncRNAs are known to adopt specific secondary and tertiary structures essential to 
accomplish their functions. Computational tools have predicted that the presence of SNPs can alter these 
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Figure 2. The different effects of SNPs in lncRNAs. Purple stars representing SNPs. (A) If a SNP is present in enhancer/promoter 
regions of a lncRNA, it can affect the transcription of a lncRNA, changing the transcription factor binding sites or chromatin 
accessibility. (B) Splicing of a lncRNA can be affected by a SNP enhancing exon skipping. (C) Secondary and tertiary structures of 
lncRNAs can be modulated by the SNP genotype, mainly when they are located within an exon. Created with BioRender.com.

lncRNA structures[8], and thus, their stability, expression, function, and interactions with other molecules 
[Figure 2C][40,41]. Hence, the identification of SNPs that disrupt lncRNA function, together with the 
characterization of the role of these molecules in key cellular processes, makes the study of disease-
associated SNPs within lncRNAs an intriguing area of exploration in disease pathogenesis.

IMMUNE-RELATED DISEASE ASSOCIATED SNPs IN incRNAs
The growing evidence demonstrating altered expression of lncRNAs in complex diseases suggests their 
involvement in a diverse range of disorders, highlighting their significance in preserving cellular 
homeostasis. AIDs are a diverse group of complex disorders affecting 7% to 9% of individuals worldwide. 
These diseases are caused by an inappropriate immune response against self-antigens. GWAS and 
Immunochip mapping have identified numerous AID loci, more than 90% located in non-coding regulatory 
regions, including lncRNAs[12]. This suggests that lncRNA genes are interesting disease-susceptibility 
candidate genes. However, the exact molecular mechanisms underlying these associations remain unclear in 
most cases[42]. Here, we present several disease-specific examples where the effect of an associated variant 
has been described to affect lncRNA function. Some other studies pointing to possible disease causal effects 
in interesting lncRNAs are also exposed. The results of these studies point to the potential of these 
molecules as putative biomarkers and/or therapeutic targets for several inflammatory diseases.

Multiple sclerosis
Multiple sclerosis (MS) is a demyelinating autoimmune disease characterized by the destruction of myelin 
in the central nervous system (CNS), resulting in various neurological impairments[43]. Although the exact 
cause of MS remains unclear, a combination of genetic, epigenetic, immune, and environmental factors has 
been implicated in the development of axonal damage, which contributes to the onset and progression of 
the disease[44]. Moreover, lncRNA abnormal expression in immune cells and the CNS has been linked to the 
diagnosis and treatment of MS[45]. Therefore, the discovery of novel genetic and epigenetic markers is crucial 
for gaining a deeper understanding of the mechanisms driving MS[45,46].

Recently, an Iranian population study demonstrated the association between rs2067079 and susceptibility to 
MS[47]. Notably, the SNP rs2067079, located in the growth arrest-specific 5 (GAS5) gene, has been associated 
with severe myelosuppression after chemoradiotherapy. This lncRNA has recently emerged as a crucial 
candidate involved in regulating gene expression[48], and elevated GAS5 levels have been detected in 
microglia and macrophages from the brains of MS patients[49]. Increased expression of GAS5 inhibits the 
polarization of M2 microglia, which is crucial in innate immune cells from the CNS. Consequently, this 
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inhibition results in a failure of remyelination and the progression of the disease[49]. The underlying 
mechanisms by which GAS5 inhibits the polarization of M2 microglia have not been elucidated yet, but the 
authors suggest that during the course of MS, mTOR is activated in T-cells, and given that GAS5 is 
regulated by this signaling pathway[50], lncRNA expression is increased under these conditions. Another 
suggested mechanism involves GAS5 exerting a negative effect on neuronal survival by interacting with 
miR-137, a critical regulator involved in various aspects of brain function[51]. GAS5 competes endogenously 
with this miRNA and inactivates its function, resulting in the release of its target Notch1. The modulation of 
this signaling pathway has been reported to decrease neuronal survival[52].

Moreover, rs2067079 SNP is located within a region that functions as either an active promoter or enhancer 
and displays a prominent characteristic of expression quantitative trait locus (e-QTL) in multiple tissues, 
suggesting its potential influence on the expression levels of numerous target genes[53]. Furthermore, this 
SNP affects GAS5 secondary structure and stability, potentially affecting its function[53].

Interestingly, another investigation reported elevated levels of circulating GAS5 in Egyptian MS patients’ 
sera[54]; hence, serum exosomal GAS5 has been proposed as a potential novel biomarker for MS, showing a 
correlation with EDSS (expanded disability status scale) scores in most of their patients, indicating its 
involvement in disease severity[54].

While significant efforts are currently underway within this field, further investigations are required to gain 
a comprehensive understanding of the mechanism by which GAS5 is implicated in the development of this 
disease and the influence exerted by the SNP rs2067079 on its function. Nevertheless, the presence of this 
lncRNA in non-invasive samples, such as serum, and the fact that it promotes disease progression indicate 
its potential not only as a biomarker but also as a therapeutic target.

Celiac disease
Celiac disease (CeD) is a chronic immune-mediated disorder characterized by an inappropriate immune 
response in genetically susceptible individuals due to the consumption of gluten proteins from wheat, 
barley, and rye. The small intestine is the primary organ affected by this disease[55]. The major genetic factor 
involved in CeD development is the Major Histocompatibility Complex (MHC) region, which accounts for 
approximately 40% of the genetic risk associated with the disease[56]. In addition, through various GWAS 
and Immunochip projects, 39 non-HLA loci have been identified as associated with the genetic risk of CeD. 
However, only 3 of the CeD-associated SNPs are linked to protein-altering variants located in exonic 
regions[57], making it difficult to elucidate the role of the associated variants. Within the last years, some 
lncRNAs have been implicated in CeD pathogenesis[58,59]. However, the precise contribution of these 
lncRNAs to the disease development remains poorly understood.

Several association studies have linked lncRNAs and CeD risk, for example, the intronic SNP rs6962966 
located in MAGI2[60] and the SNP rs3130838 in HCG14[59], among others. However, there is only one 
functionally described lncRNA named lnc13, which harbors the CeD-associated SNP rs917997. This 
lncRNA has been observed to be downregulated in small intestinal biopsy samples from CeD patients 
compared to healthy controls[61]. In basal conditions, lnc13 interacts with the nuclear RNA binding protein 
hnRNPD (Heterogeneous Nuclear Ribonucleoprotein D) and HDAC1 (Histone Deacetylase 1) 
transcriptional repressor[61], repressing the expression of some inflammatory genes, including STAT1, 
IL1RA, TRAF2 and MYD88, described to be altered in CeD. Upon exposure to inflammatory stimuli, lnc13 
undergoes degradation, leading to the activation of these proinflammatory genes[61].
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In the particular case of rs917997 SNP, the risk allele T[13] disrupts the secondary structure of lnc13 and 
reduces the binding to hnRNDP and chromatin, leading to an increased expression of CeD-related 
proinflammatory genes[61]. This work functionally described how the associated SNP enhances the 
predisposition to develop CeD.

Moreover, this polymorphism has also been associated with several autoimmune diseases, including 
inflammatory bowel disease[62] , rheumatoid arthritis[63], and T1D[64]. This suggests that the function of the 
lncRNA may differ depending on the cell type and the impact of this SNP may vary across different 
diseases[13].

Type 1 diabetes
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the destruction of insulin-
producing pancreatic β-cells by the immune system. The initial stages of the disease involve the infiltration 
of immune cells into pancreatic islets, resulting in the generation of a proinflammatory microenvironment 
that facilitates the destruction of β-cells[65]. The reciprocal interaction between β-cells and the infiltrating 
immune cells induces the production of proinflammatory chemokines and cytokines, resulting in increased 
inflammation of the pancreatic islets[66]. Multiple studies have implicated lncRNAs in the regulation of 
innate antiviral immune responses, chemokines associated with innate immunity[67] and other inflammatory 
genes[68]; hence, it is plausible that lncRNAs are also involved in T1D pathogenesis.

Indeed, while the T allele of rs917997 SNP in the above-mentioned lnc13 is the risk allele for CeD, the C 
allele is associated with an increased risk in T1D[69]. The study of this lncRNA in the context of T1D showed 
a totally different function in pancreatic β-cells. In particular, lnc13 was described to be a key participant in 
the activation of the proinflammatory STAT1 pathway. Upon viral infection, which is considered a potential 
environmental trigger in T1D[70], nuclear export of lnc13 occurs. Within the cytoplasm, this lncRNA 
stabilizes the STAT1 mRNA molecule by facilitating the binding of PCBP2 protein to the 3′-untranslated 
region of STAT1. This stabilization results in an activation of the STAT1 proinflammatory pathway, thereby 
increasing a proinflammatory environment and consequent β-cell destruction. This critical regulatory role 
of lnc13 in T1D-associated dysfunction and death of the pancreatic β-cells highlights its involvement in the 
disease pathogenesis[69]. Notably, pancreatic islets carrying the T1D risk genotype of rs917997 exhibit 
increased STAT1 expression levels compared to the protective genotype. It has been proposed that the 
secondary structure disruption by the risk allele promotes the formation of the lnc13, PCBP2 and STAT1 
mRNA complex[69].

Another example of a T1D-related SNP in a lncRNA that influences disease pathogenesis is illustrated by 
the SNP rs9585056 located in an exonic region of the lncRNA ARGI (Antiviral Response Gene Inducer). 
This lncRNA is highly expressed in the nuclei of pancreatic β cells after viral infections and is able to bind 
the transcription factor CCCTC-binding factor (CTCF) to interact with promoter and enhancer regions of 
the interferon beta (IFNβ) and some interferon-stimulated genes (ISGs), promoting their expression[71]. The 
risk allele of this SNP (G) has been predicted to provoke changes in the secondary structure of ARGI, 
inducing a hyperactivation of the type I IFN response in pancreatic β cells, a common characteristic in 
pancreatic tissue of T1D patients[71].

The identification of the mentioned SNPs in lncRNAs and their mechanistic association with T1D 
represents significant advances in understanding the processes in disease development, providing valuable 
insights into T1D pathogenesis, and suggesting potential therapeutic targets for future approaches.
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Psoriasis
Psoriasis is an autoimmune disease[72] in which the interaction between numerous environmental and 
genetic factors favors the inflammation of skin cells[73,74]. Interestingly, alterations in lncRNA expression 
have been identified in psoriatic patients, increasing the interest in elucidating their potential role in 
psoriasis pathogenesis[74].

In this sense, HOTAIR harbors several psoriasis-associated SNPs that can alter the expression or function of 
this lncRNA. Several studies have described an association between the SNP rs12826786 and the risk of 
developing psoriasis in independent cohorts[75,76]. This lncRNA participates in nuclear factor-kappa B 
(NF-κB) activation by facilitating the degradation of IκBα inhibitor, resulting in the induction of several of 
NF-κB downstream genes, including IL-6 and inducible nitric oxide synthases (iNOS)[77]. Interestingly, 
NF-κB is increased in psoriatic skin, showing an implication of this pathway in the pathogenesis of 
psoriasis[78]. Furthermore, HOTAIR silencing leads to reduced transcription of NF-κB target genes by 
repressing the binding of NF-κB to target promoter regions. In addition, reduction of HOTAIR in 
macrophages suppresses the induction of diverse NF-κB-related genes[77].

Specifically, the T allele in psoriasis-associated SNP causes increased HOTAIR expression and a higher risk 
of developing the disease[79]. Collectively, association studies point that upregulated HOTAIR expression in 
the presence of rs12826786 risk allele could induce the cytokines and chemokines involved in psoriasis 
development, explaining the association of this SNP with psoriasis. Nevertheless, a deeper functional study 
of the effect of the SNP genotype in HOTAIR-dependent proinflammatory response in psoriasis is still 
needed to achieve a more complete understanding of the pathogenesis process.

Atherosclerosis
Atherosclerosis is a chronic vascular inflammatory disorder. It is not considered a disease directly caused by 
the immune system, but it has a major immune component in all disease stages. For example, the 
infiltration of leukocytes and the secretion of proinflammatory cytokines by immune cells are among the 
primary events in early pathogenesis[80].

There is an intronic SNP (rs2850711) in the lncRNA LINC00305 that shows an association with 
atherosclerosis[14,80]. LINC00305 has been demonstrated to have an increased expression in atherosclerotic 
plaques in comparison to normal arteries. Additionally, these lncRNA levels were higher in monocytes than 
in endothelial or smooth muscle cells[14,80]. In monocytes, it is in charge of promoting the expression of 
inflammatory genes[80]. Mechanistic functional analyses have demonstrated that LINC00305 modulates 
NF-κB by targeting lipocalin-1 interacting membrane receptor (LIMR) and aryl-hydrocarbon receptor 
repressor (AHRR). As a result, it is able to enhance monocyte inflammation and phenotypic switch of aortic 
muscle cells, which are signatures of atherosclerosis[80]. The exact mechanisms that underlie the association 
between the SNP and the lncRNA in the context of the disease have not been described in detail, but it is 
known that the risk allele of this SNP increases the expression of the lncRNA[14,80]. As LINC00305 function 
consists of increasing inflammation, a higher inflammation is expected in patients with atherosclerosis in 
the presence of the risk allele.

Several SNPs within the genomic locus of the lncRNA H19 have also been linked to some cardiovascular-
related conditions[14]; for example, rs217727 has been associated with an increased risk of coronary artery 
disease (CAD)[81]. H19 has been identified within adult human atherosclerotic plaques, which suggests its 
implication in this disease[82]. Regarding its mechanism of action, it is a cytoplasmatic sponge for the miRNA 
family let-7[34]. Interestingly, impaired function of let-7 miRNAs has been linked to cardiovascular 
diseases[83]. Even if the implication of lncRNA H19 in different cardiovascular diseases has been widely 
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described, the contribution of the GWAS-identified SNPs that are thought to confer disease predisposition 
in the pathogenesis process is unclear[14] and more studies are required.

Some other studies have identified SNPs within the atherosclerosis-related lncRNA antisense non-coding 
RNA in the INK4 locus (ANRIL). ANRIL is located in the gene cluster of the CDKN2A/B gene, close to the 
CAD risk region, and that is why ANRIL is known to play an important role in regulating this locus[84]. 
Mechanistically, ANRIL recruits polycomb group proteins that epigenetically modify chromatin, 
consequently inhibiting gene expression in cis. Moreover, ANRIL can also have trans-regulation functions 
by binding Alu elements, E2F transcription factor 1, or CTCF, among others[84]. It has been identified that 
the simultaneous presence of the T allele of the rs10811656 SNP and the G allele of rs10757278 increases 
ANRIL expression and disrupts its binding site with STAT1. In addition, carrying the risk allele for the SNPs 
rs10757274, rs2383206, rs2383207, rs10757278 is linked to more severe atherosclerotic plaques[85]. Another 
study demonstrated that carrying the A allele for the SNP rs7865618 is strongly associated with a higher 
expression of a certain transcript of ANRIL[86]. Altogether, it has been seen that the expression of diverse 
ANRIL transcripts can be influenced by the SNP genotype, affecting both cis- and trans-gene regulation[86].

In summary, the multiple involvement of lncRNAs in the molecular mechanisms of atherosclerosis 
pathogenesis emphasizes their promising role as novel targets for potential therapeutic strategies.

Inflammatory bowel disease
Inflammatory Bowel Disease (IBD) comprises a group of disorders characterized by chronic inflammation 
of the gastrointestinal tract. Typically, it has been classified into two subgroups: Chron’s disease (CD), 
which causes inflammation through the entire gastrointestinal tract, and ulcerative colitis (UC), which 
exclusively affects the mucosal layer of the colon[87]. The causes of IBD remain unclear, but it has been 
suggested that it may result from an inappropriate inflammatory response to intestinal microorganisms and 
foreign antigens in genetically susceptible individuals[88]. Several interleukins and cytokines have been 
reported to mediate the inflammatory process that takes place in this disorder, including interferon-gamma 
(IFN-γ). IFN-γ is mainly synthesized by T- and NK-cells and is involved in Th1 responses and bacterial 
defense[14].

Of interest, there is an intronic SNP (rs7134599) in the genomic sequence of the lncRNA interferon gamma 
antisense 1 (IFNG-AS1), and several GWAS studies have observed a correlation between this SNP and IBD 
susceptibility[14,87,88]. IFNG-AS1 overlaps with the locus of IFN-γ and is highly expressed in CD4 and CD8 T 
cells, B cells, and NK cells in the colon. Indeed, it has been demonstrated to be elevated in UC patients, even 
higher in active UC compared to non-inflamed ones[87]. This lncRNA was demonstrated to promote the 
expression of IFN-γ[87,89] in cis[90]. A mechanism that has been suggested to explain this regulation is that 
IFNG-AS may bind to the MLL/SET1 histone methylation complex and enhance transcription activating 
methylation on the histones surrounding the gene of IFN-γ[87,91].

However, it is unclear how rs7134599 genetically predisposes to IBD[87], nor how it alters the function of 
IFNG-AS1 to promote pathogenesis, as there are many association studies but not enough functional studies 
to clarify the current mechanistic gaps of the SNP implication. One of the strongest hypotheses is that the 
SNP could regulate the splicing of the lncRNA, which may contribute to its high levels observed in IBD 
patients[87]. In this way, the expression of IFN-γ would be enhanced, creating the characteristic inflammatory 
environment of this condition. Nevertheless, further studies are of special necessity to establish a 
mechanistic link between the SNP and the lncRNA functionality, as well as the involvement in the 
pathogenesis.
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Rheumatoid arthritis
Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease characterized by erosive and 
polyarthritis as the main clinical manifestations[92]. The presence or absence of autoantibodies like anti-
cyclic citrullinated peptide (CCP) and rheumatoid factor (RF) have been suggested to be adequate to classify 
different RA subtypes[93]. Due to its complex pathogenesis and subtle clinical features, early diagnosis of RA 
is challenging to achieve. Hence, there is still a need for early diagnosis, selection of appropriate therapeutic 
agents, and implementation of effective clinical management strategies[94].

There are various studies describing RA-associated SNPs within lncRNA genes, speculating that they act as 
genetic regulators in the development of RA. More specifically, the association between several SNPs 
located within the lncRNA FAM211A-AS1 and RF-positive RA has been described in a Chinese 
population[95]. In silico analyses have suggested that these polymorphisms are localized in regulatory 
elements (promoters, enhancers…). Hence, these SNPs could alter the binding of the transcription factors 
to these regions, potentially altering the expression of FAM211A-AS1 lncRNA and nearby genes[95]. Indeed, 
these SNPs were identified to be eQTLs for FAM211A-AS1 and its nearby genes[95].

Within the last years, many different lncRNAs, including MALAT1[96], UCA1 (urothelial carcinoma 
associated 1)[97], ENST00000456270[98], and the above-mentioned FAM211A-AS1[99], have emerged as 
potential players in the pathogenesis of RA, as they have been found to be dysregulated in RA patients[95]. 
However, to date, no studies have reported mechanistic evidence between SNPs located within these 
lncRNAs and the genetic predisposition to RA. Hence, further functional studies are required to progress 
from association and bioinformatic analyses to the clarification of the precise molecular mechanisms altered 
by these SNPs in the context of RA pathogenesis.

Systemic lupus erythematosus
Systemic lupus erythematosus (SLE) is an immune-related disorder characterized by aberrant immune 
responses that lead to a loss of self-antigen tolerance and excessive production of autoantibodies. SLE 
primarily affects females of reproductive age and nearly 50% of SLE patients experience life-threatening 
complications[100]. Although an imbalance of CD4+ T cells is known to be implicated in the pathogenesis of 
SLE[100], the exact underlying mechanisms remain unclear as the pathogenesis of SLE involves a complex 
interplay of genetic, environmental, and hormonal factors.

Dysregulation of some lncRNAs has been reported in SLE patients[101]. In particular, IL21 antisense RNA 1 
(IL21-AS1) levels are decreased and positively correlated with IL-2 gene expression in these patients. 
Moreover, IL21-AS1 expression is positively correlated with the proportion of activated T follicular 
regulatory (Tfr) cells in SLE patients[102]. Interestingly, defective IL-2 production has been observed in SLE 
patients, resulting in reduced Tfr cell numbers[103]. Additionally, IL21-AS1 expression is also negatively 
correlated with disease activity in SLE, suggesting that a reduced expression of this lncRNA may contribute 
to SLE development[102].

In the context of SLE, around 90% of the associated polymorphisms are located in non-coding regions, 
too[104]. Notably, a meta-analysis study has identified the SNP rs62324212, situated in the enhancer region of 
IL21-AS1[102], and suggests a potential association between the risk allele of rs62324212 (A) and SLE 
susceptibility[102]. However, the relationship among rs62324212, IL21-AS1, and SLE remains poorly 
understood. Consequently, more functional studies would shed light on deciphering how the presence of a 
SNP within the sequence of a lncRNA affects its functionality and how this contributes to the pathogenesis 
of the disorder.



Page 224 Bergara-Muguruza et al. J Transl Genet Genom 2023;7:213-229 https://dx.doi.org/10.20517/jtgg.2023.14

THE POTENTIAL THERAPEUTIC USE OF lncRNAs
Numerous lncRNAs affected by cancer-associated SNPs have been linked to drug resistance in cancer[14]. 
Therefore, potential future applications might be incorporating patients' non-coding genome sequence data 
to significantly improve the selection of appropriate treatment strategies. Nonetheless, a thorough 
understanding of the link between potential mutations in lncRNAs and the progression of disease or 
resistance to drugs is still needed[14].

Studying the functional implication of SNPs within lncRNAs reveals diverse molecular mechanisms 
associated with the progression of complex diseases, opening up new possibilities for targeted therapeutic 
approaches. Lately, there has been a surge of interest in RNA-based treatments, particularly those focusing 
on mRNA molecules, such as RNA vaccines[105]. Moreover, the increasing studies relating lncRNAs in 
diverse complex diseases such as autoimmune disorders have encouraged different research groups to study 
the therapeutic use of these molecules. Recent clinical studies have opened possibilities for targeting these 
lncRNAs for therapeutic purposes, emphasizing the importance of further research in this area.

lncRNAs possess characteristics that make them promising diagnostic tools. As they are involved in diverse 
cellular processes and exhibit cell type-, tissue- and disease status-specific expression patterns, lncRNAs can 
serve as diagnostic markers for specific diseases. Disease-specific expression levels of lncRNAs have been 
described; hence, quantification of lncRNA can be used to detect disease presence even before symptoms 
appear in some patients. Other lncRNAs can be related to disease prognosis or treatment resistance[16]. 
Interestingly, some lncRNAs have been detected in body fluids such as serum, plasma, or urine, so they can 
be detected by non-invasive methods, making them attractive candidates as biomarkers for disease 
diagnosis and prognosis. Additionally, enriched exosome lncRNA expression in plasma has also been 
identified in esophageal squamous cell carcinoma patients, while circRNAs have also been enriched in 
exosomes and showed potential diagnostic use[16].

lncRNA features also make them attractive drug targets, as lower doses would potentially minimize off-
target toxic effects[105]. The most advanced attempts at therapeutic lncRNA targeting are currently based on 
the use of antisense oligonucleotides (ASOs), which can form complementary base pairs with their target 
lncRNAs[105]. ASOs binding to target nascent lncRNAs within the nucleus results in premature transcription 
termination, hence reducing lncRNA expression levels[106]. Similarly, small interfering RNAs (siRNAs) can 
trigger post-transcriptional RNA degradation, leading to the knockdown of pathogenic RNAs through a 
dicer- and argonaute (AGO)-dependent cleavage pathway[107]. Alternatively, lncRNA genes can be 
modulated through steric blockade of their promoters or by utilizing genome-editing techniques such as 
CRISPR-Cas9 and its derivatives[107].

Library screenings have already identified small molecules that are capable of specifically binding to 
lncRNAs and inhibiting their interactions with other molecules. This strategy enhances the stability of the 
target lncRNA, allowing it to carry out its functions effectively. This is the case of some of the lncRNAs 
mentioned in this review, such as GAS5[108] and MALAT1[109].

Rather than modulating their functions, the participation of lncRNAs in diverse cellular pathways 
underscores their potential as effective therapeutic agents. For example, in order to activate or silence gene 
expression, lncRNAs can be tethered to the nucleus, where they can regulate target gene expression. 
Therefore, the design and delivery of lncRNAs to target specific gene loci could enable programmable gene 
activation or silencing. However, the large size of lncRNAs can pose challenges for delivery and may trigger 
an immune response. Identification of the functional regions of lncRNAs could facilitate the engineering of 
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smaller synthetic RNA molecules that function as the lncRNA of interest, evolving as effective drugs. While 
the sequence of many lncRNAs differs across species, their structures are often conserved, suggesting that 
structural elements may be a primary determinant of function. Therefore, a comprehensive understanding 
of how lncRNA domains interact with proteins, mRNAs, or genomic loci is essential for the rational design 
of lncRNA therapies, enabling the selection of on-target sites while minimizing off-target effects[105].

Although numerous questions and challenges remain to be addressed, the increasing success rate of nucleic 
acid therapeutics presents an exciting opportunity to explore lncRNAs as viable therapeutic targets in 
various complex pathologies. Further research in this field holds promise for unlocking the therapeutic 
potential of lncRNAs[107].

CONCLUSIONS
The understanding of the contribution of genetic variants to immune-mediated diseases has significantly 
advanced in recent decades. However, the complexity of these variants and the non-coding location of most 
associated SNPs have posed challenges in deciphering their functional roles in disease development[13]. In 
this line, lncRNAs, which are enriched with SNPs and participate in the regulation of immune-related 
processes[8], have opened a new field of studying the involvement of disease-associated SNPs on lncRNA 
function. Moreover, some lncRNAs have been found to be differentially expressed in patients compared to 
controls[54,58,61,101], highlighting their potential as biomarkers.

However, the specific functions of lncRNAs themselves and their regulatory mechanisms in disease 
development remain largely unknown. Most experimental approaches have studied the expression patterns 
of lncRNAs harboring associated SNPs in disease tissues, while functional studies assessing the effect of 
associated alleles in lncRNA function and disease development have been limited[13]. Disease-associated 
SNPs can not only affect the expression of the lncRNAs, but can also influence their splicing, secondary 
structure, or their ability in transcription of target genes[8,13,40,110]. Additionally, larger-scale studies across 
diverse ethnic populations are required to validate the roles of genetic polymorphisms within lncRNAs[54,95].

To sum up, identification and functional studies of disease-associated lncRNAs can help to understand the 
underlying molecular mechanisms and may contribute to a broader image of the disease pathogenesis, 
opening new diagnostic and therapeutic strategies.
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