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Abstract
The multiplicity and phenotype of intratumoral immune infiltrate have been shown to influence the clinical 
outcome of hepatocellular carcinoma (HCC), thus providing a strong rationale to therapeutic interventions 
aimed at restoring the dysfunctional immune response against the tumor. Improving the knowledge of the 
complex interactions between transformed hepatocytes, nonparenchymal resident cells, and infiltrating immune 
cells (characterizing the HCC microenvironment) will be instrumental to increase the success rate of existing 
immunotherapeutic strategies and to identify new potential targets for intervention or biomarkers to optimize the 
selection of candidate patients.
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INTRODUCTION
The liver immune landscape fosters tolerance towards foreign antigens driven by portal blood. Liver sinu-
soidal endothelial cells (LSECs) that separate liver parenchyma from sinusoidal blood, liver resident mac-
rophages (Kupffer cells), hepatic stellate cells (HSCs), and dendritic cells (DCs) exert antigen presenting cell 
(APC) function and participate in the tolerogenic liver environment[1]. Innate immune cells such as natural 
killer (NK), NKT and γ/δ T cells are found at higher frequency in the liver, as Foxp3+ regulatory T cells 
(Tregs). The liver environment is also characterized by increased expression of immunosuppressive cyto-
kines such as interleukin (IL)-10 and transforming growth factor (TGF)-β[2]. 
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Hepatocellular carcinoma (HCC) initiation and progression are multi-step processes profoundly influenced 
by the interplay between hepatocytes and immune cells. Immunotolerance is disrupted in chronic liver 
disease where persistent infections with hepatitis B virus (HBV) or hepatitis C virus (HCV), accumulation 
of fat, exogenous toxic substances (alcohol) or iron overload (haemochromatosis) enhance inflammatory 
signals triggering a cycle of cell death/regeneration and compensatory fibrosis, leading to liver cirrhosis, that 
represents a pre-neoplastic state. Chronic inflammation induces the accumulation of reactive oxygen species, 
generating epigenetic changes and chromosomal instability that contribute to tumor initiation, with expres-
sion of neo-antigens and/or deregulation of the expression of oncofetal and cancer testis antigens such as 
alpha-fetoprotein (AFP), glypican-3 (GPC-3), melanoma-antigen gene (MAGE) family, NY-ESO.1[3]. 

IMMUNE RESPONSE AGAINST HCC
Cytotoxic T cells (CTLs) recognizing tumor-associated antigen (TAAs) have been detected in HCC patients 
and their abundance is associated with patient survival[3-5]. CD8+ and CD4+ T cells were shown to accumu-
late in early HCC with a progressive decrease in late stages, that represents a negative predictor for disease 
outcome[3,6]. TAA-specific CD8+ T cells from peripheral blood produce interferon (IFN)-γ upon stimula-
tion, but tumour-infiltrating lymphocytes fail to do so, indicating the progressive exhaustion of intratumour 
CD8+ T cells[3]. Exhausted T cells are characterized by impaired effector function and sustained expression 
of co-inhibitory receptors, and cannot mature into memory T cells. 

NK cells account for 25%-50% of the total number of liver lymphocytes and are strongly implicated in the 
anti-tumor response. Impaired effector function of NK cells was reported in HCC and related to disease out-
come[7,8]. Several mechanisms have been implicated in NK cell dysfunction: the genetic make-up of KIR NK 
cell receptors[9-11], a higher percentage of NK-cells co-expressing inhibitory NKG2A and activating NKp30-
NKp46 receptors[12,13], myeloid-derived suppressor cells (MDSCs)-mediated suppression[14-16], increased prev-
alence of a dysfunctional CD11bnegCD27neg NK-cell subset[17]. 

Among factors contributing to the immune suppressive microenvironment of HCC are cell-mediated 
mechanisms, the secretion of cytokines and chemokines by tumor, stromal, and infiltrating cells, and the 
immunoediting of TAAs[18,19]. In this context, adaptive immune response exerts a dual role with seemingly 
opposite functions, being part of the inflammatory environment that likely plays a major role in tumor pro-
motion, but hampering tumor dissemination through cytotoxic function against transformed cells[20]. 

MECHANISMS OF IMMUNE IMPAIRMENT IN HCC
The development and progression of HCC evolve through a dynamic interaction between tumor cells, non-
parenchymal resident cells such as Kupffer cells (KCs), HSCs, LSECs, infiltrating immune cells and immune 
mediators. All these elements participate in the tumor microenvironment that exerts a profound influence 
on the evolution of disease. The many factors that co-operate to the immune landscape of HCC represent 
potential targets for therapeutic intervention. 

Immunosuppressive molecules
Immune checkpoints are coinhibitory molecules that control the duration and the strength of immune re-
sponse to prevent over-activation of T cells. This class of molecules includes CTLA-4, PD-1, TIM-3, lympho-
cyte activation gene 3 protein (LAG-3) and B and T lymphocyte attenuator (BTLA). Immune checkpoints are 
exploited by tumors as mechanisms of immune evasion and may therefore become major targets of immune 
therapeutic strategies.

CTLA-4 is expressed by activated T cells and by Treg cells. It competes with the activating molecule CD28 
for binding CD80 and CD86[21] and activates Tregs[22,23].
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PD-1 is expressed by activated T and B lymphocytes, NK cells, Treg cells, MDSCs, monocytes and DCs[24,25]. 
The expression of PD-1 is induced by several cytokines including IFN-γ[26,27]. Under hypoxic conditions, 
production of hypoxia-inducible factor (HIF)-1 induces the expression of PD-L1, the PD-1 ligand, in MDSCs 
and tumor cells[22,27,28]. The interaction between PD-1 and PD-L1 inhibits T cell effector function and leads to 
T cell exhaustion[29]. The immune infiltrate of HCC is enriched in PD1+ CD8+ cells and their abundance is 
associated with disease prognosis[30]. The expression of PD-L1 in HCC has also been reported as a prognostic 
factor of shorter disease-free and overall survival[31-34]. 

TIM-3 is a transmembrane protein expressed on various immune cells and interacting with multiple ligands 
among which galectin-9, a soluble protein expressed by several tissues including liver[35] that negatively 
regulates Th1 cell function[36]. In addition, TIM-3+ Treg cells exhibit enhanced suppressor activity[37]. A 
role of the TIM-3/galectin-9 pathway in the determination of HCC-infiltrating T cell dysfunction has been 
reported[38]. 

LAG-3 binds MHC class II molecules with high affinity[25,39] thus reducing co-stimulatory function of DCs. 
LAG-3 is upregulated upon activation of T cells[40] and is a marker of exhausted T cells[41]. Its activation and, 
as a consequence, its blockade are synergistic with PD-1[42,43]. BTLA is upregulated on activated lymphocytes 
and on tumour-specific CD8+ T cells in patients with cancer[44]. High expression of the BTLA ligand HVEM 
(herpesvirus entry mediator) has been reported in patients with HCC and is associated with reduced 
lymphocyte infiltration and poorer prognosis[45].

Cytokines are membrane-bound or secreted proteins involved in the regulation of immune cell function, 
inflammation and angiogenesis. Their pleiotropic roles include pro- and anti-inflammatory functions. CD4+ 
T helper cells produce either Th1 cytokines [e.g., interleukin (IL)-1, IL-2, IL-12, IL-15, tumor necrosis factor 
(TNF)-α and IFN-γ] usually defined pro-inflammatory, or Th2 cytokines (e.g., IL-4, IL-8, IL-10 and IL-5) 
mainly exerting anti-inflammatory functions[46]. 

Increased levels of IL-10 and TGF-β and reduced levels of IFN-γ have been detected in plasma from HCC 
patients[47]. In liver tissue IL-10 is produced by DCs, KCs, HSCs, LSECs, MDSCs and T cells, inducing tol-
erance[48,49]. Tolerogenic effect of IL-10 is linked to inhibition of CD4+ T cell activation[50] and, as a conse-
quence, of cytotoxic CD8+ T-cell function[51]. In addition IL-10 further interferes with T cell activation by 
downregulating the expression of MHC-II and CD80/CD86 on APCs[52] and of NF-kB[53], a transcription 
factor strongly implicated in inflammatory responses. Despite its immunosuppressive activity in the context 
of inflammation, several studies report an immune-stimulatory role of IL-10 on CD8+ T-cell and NK-cell 
cytotoxic activity in experimental tumor models[54-56].

TGF-β, produced by parenchymal and non-parenchymal liver cells, is implicated in the maintenance of liver 
immune homeostasis[57] and may exert a suppressive function towards anti-tumor immune reaction. TGF-β 
inhibits the expression of the transcription factors T-bet and GATA3, essential for the conversion of naive 
CD4+ T cells into Th1 and Th2 CD4+ T cells, respectively[58,59]. Conversely, TGF-β induces the differentiation 
of naive CD4+ T-cells into Tregs, inhibits the differentiation of naive CD8+ T cells to effector cells[60,61] and 
decreases perforin and IFN-γ expression, further impairing cytotoxic CD8+ T-cell activity[62].

Cell-mediated immune suppression
Immune evasion of tumor cells may be linked to altered antigen processing and presentation, deriving from 
HLA class I downregulation or from 2 microglobulin mutation/deletion[63]. HLA class I expression is essen-
tial for antigen presentation to CTLs and for tumor cell recognition by NK cells[64]. Tumor cell elimination 
by NK cells may be also impaired by decreased expression of the NKG2D ligand ULBP1 that correlates with 
early recurrence of HCC[65]. Another mechanism of HCC immune evasion from NK cell killing has been 
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ascribed to the impaired interaction between NKG2D and its stress-induced ligands MIC-A and -B, that are 
upregulated on tumor cells. In advanced HCC, tumor cells escape from NK-mediated immunosurveillance 
through shedding of MIC-A that induces downregulation of NKG2D thus affecting NK cell effector func-
tion[66]. 

Together with shared oncofetal and cancer-testis antigens, driver and passenger mutations occurring in the 
tumor cell genome can generate tumor-specific neoantigens that can contribute to tumor immunogenicity 
and represent potential immunotherapeutic targets[67]. Like viral antigens, TAAs undergo immune selective 
pressure that triggers the selection of resistant variants with survival advantage due to lower immunogenic-
ity or immunosuppressive activity. The genetic instability of transformed cells favors this phenomenon of 
antigenic immunoediting[68]. Immune escape may also result from the secretion by HCC cells of immuno-
suppressive molecules as TGF-β, IL-10, indoleamine 2,3-dioxygenase (IDO), arginase, or from decreased co-
stimulatory/increased inhibitory checkpoint signaling[69].

MDSCs represent a heterogeneous population of immature myeloid cells[70] that share suppressive func-
tions[71,72] through different mechanisms: depletion of arginine[73] and cysteine[74] that are essential for T cell 
function, and release of reactive oxygen and nitrogen species that disrupt TCR signaling[75]. In addition, 
MDSCs promote tumor progression through neo-angiogenesis due to vascular endothelial growth factor 
(VEGF) production, and through enhanced tumor cell survival and dissemination[76]. 

In HCC MDSCs have been shown to inhibit NK cell function via NKp30 receptor[14] or through membrane-
bound TGF-β[15] and to induce Tregs by IL-10 and TGF-β production[77]. A specific CD14pos HLA-DRneg/
low MDSC subset increased in tumor tissue and peripheral blood of patients with HCC was implicated the 
induction of Tregs[77]. The multiplicity of this MDSC subset was reported as a negative prognostic factor for 
HCC recurrence after resection[78], radiation therapy[79], hepatic arterial infusion chemotherapy[80], as well as 
for tumor progression[81]. 

MDSCs are recruited by cytokines and chemokines secreted by tumor cells[72,82]. Senescent hepatocytes were 
shown to recruit immature MDSCs able to differentiate into macrophages through C-C motif chemokine 
ligand 2 (CCL2)-CCR2 signaling, thus preventing HCC initiation. However, in the presence of HCC, im-
mature MDSCs do not differentiate thus contributing to the immunotolerant environment through NK-cell 
inhibition[83]. 

Kupffer cells (KCs), the liver resident macrophages, represent about 80% of the macrophages in the body[84] 
and contribute to the maintenance of liver immune tolerance through their anti-inflammatory function[85] 
exerted by upregulation of PDL-1 expression, downregulation of costimulatory molecules[86], secretion of 
IDO[87] and IL-10[88]. In human HCC, Kupffer cells in the peritumoral margin express higher levels of PD-
L1 compared to non-tumorous liver, thus inhibiting CD8+ T cell effector function. Blockade of PD-1/PDL-1 
interaction in vitro was able to restore T cell killing in vitro[89]. 

The HCC immune microenvironment induces the polarization of macrophages towards the M2 phenotype 
typical of the tumour-associated macrophages (TAMs). M2 macrophages are characterized by producing 
high levels of IL-10 that induce Treg expansion and impairs NK cell activation[90]. In addition, TAM promote 
tumor angiogenesis and dissemination[91,92]. A distinct subset of monocytes expressing TIE2 with enhanced 
pro-angiogenic properties has been described in peripheral blood and in tumor infiltrate[93-95]. In human 
HCV-related HCC this monocyte subpopulation was related to neo-angiogenesis and to prognosis[96].

Tregs are CD4+ T cells expressing CD25, CTLA-4, CD62L and FoxP3. Tregs exert inhibitory functions 
through multiple mechanisms, among which IL-2 depletion by CD25 (IL-2 receptor), competition with 

Page 4 of 15                                              Missale et al. Hepatoma Res 2018;4:22  I  http://dx.doi.org/10.20517/2394-5079.2018.72



CD28 by CTLA-4, CTLA-4-mediated downregulation of CD80 and CD86[97], expression of TGF-β and IL-
10[98]. The recruitment of Tregs in HCC occurs via the CCR6-CCL20 axis[99] and CCL22 induction by tumor 
cell-secreted IL-1α[100]. In addition, FoxP3 upregulation and conversion of CD4+ T cells into Tregs may be 
fostered by poor stimulation of naive CD4+ T cells combined with TGF-b signalling by tumor cells[101].

In patients with HCC, FoxP3+ Tregs are increased both in peripheral blood[102,103] and in tumor tissue[31,103], 
and the abundance of tumour-infiltrating Tregs is associated with intra-tumoral macrophages[104]. Several 
studies support a negative correlation between Treg infiltrate and effector function of intra-tumoral CD8+ T 
cells[47,103] and a direct role of Treg infiltration over disease progression and overall survival[99,103-105]. 

HSCs play a role in HCC progression through release of hepatocyte growth factor[106] and induction of both 
MDSC[107,108] and Treg accumulation[109]. In addition, HSCs can also directly induce T cell apoptosis through 
PD-L1 expression[110]. Activated HSCs interact with monocytes inducing an immunosuppressive environ-
ment and contributing to poor prognosis in HCC[111]. 

NKT cells are a heterogeneous group of T lymphocytes sharing properties of both T cells and NK cells. NKT 
cells recognize glycolipid antigens via an invariant TCR α chain. The CD4+ iNKT-cells have been found to 
be enriched in intrahepatic malignant tumors[112]. Intra-tumoral CD4+ iNKT-cells produce Th2 cytokines 
that can inhibit expansion of tumor antigen-specific CD8+T-cells[112]. Consistent with this view, we observed 
that enrichment of iNKT cells in HCC infiltrate was predictive of shorter TTR[31]. 

Several other infiltrating or stromal cell types co-operate to the generation of immunosuppressive tumor 
microenvironment[113]. A population of PD-1-positive B cells has been identified in HCC. This cell subset was 
shown to suppress anti-tumor T cell response through PD-1-PDL-1 interaction and to promote disease pro-
gression[114]. 

LSECs express PDL-1 and contribute to the immunosuppressive environment by TGF-β-dependent induc-
tion of Tregs[115]. A subset of CD14+ DCs with suppressor function has been detected in patients with HCC. 
These DCs expressing high levels of CTLA-4 and PD-1 inhibit T-cell response through production of IL-
10 and indoleamine-2,3-dioxygenase (IDO)[116]. Th17 cells are a IL-17-producing CD4+ T cell subset that 
plays an important role in the maintenance of mucosal barriers. Increased frequency of CCR4+CCR6+, 
but not CCR4-CCR6+ Th17+ cells was reported in peripheral blood from patients with HCC. The 
CCR4+CCR6+Th17+ cell subset was shown to impair CD8+ T cell effector functions[117]. Neutrophils release 
cytokines that contribute to the tumor microenvironment either promoting or inhibiting tumor progres-
sion[118]. In HCC, neutrophils have been shown to recruit macrophages and Tregs fostering tumor progres-
sion and resistance to sorafenib[119]. Tumor-associated fibroblasts (TAFs) are essential components of the 
HCC microenvironment and support tumor progression through the secretion of various cytokines and 
growth factors. HCC-associated TAFs inhibit NK-cell function by secreting prostaglandin E2 and IDO[120]. 
In addition, TAFs have been shown to release IL-6 and SDF-1a (CXCL-12), which induce MDSC generation 
and activation thus impairing anti-tumor immune response[121]. 

IMMUNOTHERAPEUTIC STRATEGIES
The scenario of the immune mechanisms operative in HCC is quite complex with liver intrinsic immuno-
suppressive environment associated with several mechanisms common to solid tumors. Physiologically, with 
the exception on anecdotal cases the tumor will escape, avoid, adapt to or overcome the immune mediated 
mechanism aimed at rejection of transformed cells. From the therapeutic perspective the problem has been 
approached by several strategies focusing on potentiation of different effector immune cells, tumor antigens 
made immunogenic, block of negative costimulatory pathways or immunosuppressive cells or soluble me-
diators. 
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Adoptive cell transfer
Adoptive transfer of autologous cytokine activated killer cells (CIK) has been one of the first immunothera-
peutic approaches[122]. Anti-CD3 antibodies in the presence of IL-2, IL-1 and IFN-γ expand and activate ex 
vivo NKT-cells that are reinfused in the patient. This approach has been performed as adjuvant treatment in 
patients undergoing liver resection for HCC or percutaneous ablative treatments like percutaneous ethanol 
injection (PEI) or transarterial chemo-embolization (TACE). A systematic review of phase II and III stud-
ies conducted in patients undergoing CIK infusion either alone or associated with resection, PEI or TACE, 
showed a significant effect on overall and progression free survival[123]. More recently a randomized con-
trolled trial of adjuvant CIK was conducted in patients undergoing curative liver resection showing a signifi-
cant effect on TTR but no effect on DFS and OS[124]. Another randomized phase 3 study from Korea could 
demonstrate that patients receiving CIK post-resection, PEI or radiofrequency thermal ablation (RFA) had 
a significantly increased recurrence-free and overall survival[125]. Several other studies with similar method-
ological approach are ongoing in patients with HCC and other solid tumors.

Cancer vaccines
More than 15 years ago, discovery of TAAs raised enthusiasm on their possible use for vaccination strate-
gies. Several different approaches have been employed from tumor lysates to individual epitopes associated 
with different adjuvants by parenteral route (subcutaneous, intradermal or intravenous), or intratumoral in-
jection. Alternatively DCs pulsed with synthetic peptides or transfected with RNA vectors have been used to 
expand tumor-specific T-cell response. Target antigens for HCC have been cancer testis TAAs like MAGE, 
synovial sarcoma X breakpoint 2 (SSX-2) and NY-ESO-1, beside GPC-3, human telomerase reverse tran-
scriptase (TERT), carcinoembryonic antigen (CEA) and AFP. Clinical trials have been conducted in patients 
with advanced or non-resectable HCC or as an adjuvant treatment in patients undergoing resection or RFA 
or TACE. Efficacy in these studies has been limited. Phase II studies with antigen-pulsed DCs[126], intrader-
mal GPC-3 peptide[127], or intravenous tumor (HepG2 cell line) lysate-pulsed DCs[128] have been conducted 
showing partial response associated with antigen-specific T-cells responses in PBMCs in some patients. In 
particular, antigen-pulsed DCs vaccination[126] showed no tumor recurrence up to 24 weeks in 9 out of 12 
treated patients. Phase I GPC-3 studies achieved their aims: safety, immunogenicity and dose finding, how-
ever phase II studies with GPC-3 aimed at relapse prevention after curative treatments (surgery or RFA) 
failed to achieve clinically relevant results[129,130]. Infusion of autologous DCs pulsed with lysate of HepG2 cell 
line was performed in a phase II trial in patients with advanced HCC. Clinical response (either stable disease 
or partial response) was shown in 28% of patients performing at least three infusions. Treatment was safe 
and antigen-specific immune response could be demonstrated in some patients[128].

A particular vaccination strategy has been conducted with an oncolytic, genetically modified vaccinia virus 
(JX-594) that has been injected in the tumor lesions of advanced HCC patients. The rational of this approach 
is the release of tumor antigens from oncolytic tumor cells destruction associated with local expression of 
granulocyte-macrophage colony stimulating factor (GM-CSF), an inserted gene of the genetically modi-
fied vaccinia. JX-594 has been tested in a dose finding study showing improved overall survival in patients 
receiving a higher infectious dose compared to lower dose[131]. A phase II trial failed to achieve survival ad-
vantage. In this trial however HCC patients were very advanced having progressed to sorafenib treatment. 
A phase III randomized clinical trial (NCT02562755) is now ongoing, comparing patients on sorafenib to 
patients undergoing three vaccination rounds followed by sorafenib treatment. 

Table 1 represents a summary of completed clinical trials based on adoptive cell transfer and vaccines.

Cell therapy
More efficient adoptive cell transfer immunotherapeutic approaches, are represented by the CAR T-cell ther-
apy which until now has been primarily used in hematologic malignancies. T cells are genetically engineered 
to express chimeric antigen receptors (CARs). Autologous engineered T cells are expanded ex vivo into the 
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hundreds of millions and finally are infused in the patient. Third generation CARs are constituted of an 
immunoglobulin variable heavy chain (VH), a variable light chain (VL) connected to a transmembrane 
domain by a spacer and the transmembrane domain to 2 costimulatory molecules (e.g., CD27, CD28, 4-1BB, 
OX40) and CD3. This receptor when engaged can activate the effector cytotoxic T-cell, specifically redirected 
to the tumor antigen recognized by the VH and VL chains. As far as HCC, CAR-T have been designed with 
different specificities and phase I and phase I/II clinical trials are recruiting for patients with HCC or HCC 
and other solid tumors, targeting GPC-3, CEA and Mucin 1, cell surface associated (MUC-1)[132]. 

A different approach that engages T and NK-cells in vivo to direct them against tumor cells is represented by 
bispecific antibodies (BsAb). BsAb against HCC and other solid tumors have been generated with different 
specificities. One arm of antibody binds a tumor antigen [GPC-3, epithelial cell adhesion molecule (EpCAM), 
osteopontin, VEGF] and the second can activate cytotoxic T or NK cells binding CD3 or CD16. A phase 1 
dose escalation trial with BsAb specific for GPC-3 and CD3 is ongoing (NCT02748837). 

Another approach to generate tumor-specific immune cells is cloning and TCR transfection of T and NK 
cells that are in vitro expanded and reinfused in the patients. These redirected effector cells, differently from 
CAR-T or BsAb, recognize tumor epitopes in the context of specific HLA-class I molecules, but have advan-
tage to recognize endogenously processed antigens, that is the case of many known epitopes from tumor as-
sociated antigens or neo-antigens from somatic mutations of the tumor-cell. In fact, cell therapies based on 
CARs and antibodies can only recognize conformational antigens expressed on the surface of transformed 
cancer cells. Redirect T-cells have been clinically tested in a patient that developed extra-hepatic metastasis 
after liver transplantation for HCC in HBV-related liver disease[133]. The tumor, but not the transplanted liver, 
expressed HBV antigens and autologous T-cells transfected with a TCR specific for HBsAg could expand in 
vivo and determine reduction of HBsAg serum levels. 

Immune checkpoint inhibitors
The first clinical study on immune checkpoint inhibitors (ICIs) in HCC has been a phase II clinical trial tar-
geting CTLA-4 in patients with advanced tumors in HCV chronic liver disease[134]. The study showed partial 
response in 17.6% of patients and a good safety profile. Transaminase flares were observed in some of the 
patients after the first anti-CTLA-4 administrations that however did not require any immunosuppressive 
intervention. Interestingly in this study an enhanced HCV-specific T-cell response associated with signifi-
cant drop of HCV viremia was observed. Several other studies have started. The main target has been PD-1 
and its ligand PD-L1 and recently FDA has granted accelerated approval for anti-PD-1 in patients that had 
been previously treated with sorafenib, based on the phase I/II Checkmate-040 study (that showed an overall 

Table 1. Adoptive cell transfer and vaccines for HCC immunotherapy

HCC: hepatocellular carcinoma; RFS: recurrence free survival; TTR: time to recurrence; TTP: time to progression; OS: overall survival; RFA: 
radio-frequency ablation; PEI: percutaneous ethanol injection; TACE: transarterial chemo embolization: CTL: cytotoxic T lymphocytes; 
NA: not applicable
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Therapeutic approach    Target Phase   Study population   No. of patients      Results     Ref.
CIK NA II Post-resection 76 + 74 controls Improved RFS [122]

CIK NA III Post-resection 100 + 100 controls Improved TTR [124]

CIK NA III Post-resection or RFA or 
PEI

114 + 112 controls Improved RFS and OS [125]

Peptide vaccine GPC-3 I Advanced HCC 11 Improved CTL response [129]

Peptide vaccine GPC-3 II Post-resection or RFA 41 Improved RFS for patients 
with GPC-3 positive 
tumors

[130]

DC pulsed HepG2 protein lysate Tumor antigens II Advanced HCC 35 PR 4%, SD 24% [128]

DC pulsed AFP, MAGE-1 and GPC-3 Tumor antigens I/II Post-resection or RFA or 
PEI or TACE

12 Improved TTP vs.  historical 
results

[126]

Oncolytic virus JX-594 Tumor antigens II Advanced HCC 30 Dose realated improved OS [131]



response rate of 18.2% and acceptable safety profile)[135]. There was concern on possible immune mediated 
liver toxicity in patients with liver cirrhosis and chronic HBV or HCV infection. However, until now safety 
profile of ICIs has not shown to be different from what observed for melanoma and non-small cell lung can-
cer (NSCLC) and even if substantial transaminase flares have been described, patients coming off therapy 
for adverse events are in line with what observed for other cancers treated with anti-PD-1 or anti-PD-L1[136]. 

First line studies comparing ICIs to sorafenib treatment are ongoing in patients with advanced HCC: two 
studies from different companies, CheckMate-459 and NCT03412773 with anti-PD-1 and the HIMALAYA 
study testing the combined activity of an anti-PD-L1 and anti-CTLA-4. The adjuvant role of ICIs is also test-
ed with anti-PD-1 versus placebo in patients with early stage HCC undergoing surgery or ablation evaluating 
relapse free survival as primary endpoint (NCT03383458). A study combining RFA, cryablation or TACE 
and-CTLA-4 in advanced HCC has been recently published[137]. Subtotal ablative treatments were given after 
the second anti-CTLA4 infusion. The study demonstrated feasibility and no dose-limiting toxicity of this 
therapeutic approach. Moreover 5/19 evaluable patients presented partial response. Interestingly pre and 
post-treatment biopsy showed an enrichment of CD3 and CD8 positive T-cells infiltrating the tumor after 
treatment that positively correlated with clinical response. Table 2 represents a more comprehensive list of 
completed and ongoing clinical trials with ICIs.

Until now it is not possible to understand which immune checkpoint is the most promising for HCC pa-
tients. Experience from other solid malignancies suggests that combining different ICIs may improve clinical 
response, given the increased risk of severe toxicities. Vaccination protocols combined with ICIs are tested in 
clinical trials, representing an alternative treatment strategy expanding tumor-specific T-cell populations in 
vivo[138].

Another immunotherapeutic approach that cannot be strictly considered an ICI is represented by an anti-
TGFbRI (Galunisertib) that is expected to block the immunosuppressive and pro-tumorogenic effect of TGF-β. It 
has been tested in association with sorafenib in a phase II clinical trial (NCT01246986) showing a median 
overall survival of 17.9 months that represents an improved survival compared to sorafenib historical results.

PREDICTIVE BIOMARKERS
Although promising, the results of immunotherapy for HCC are far from optimal. Recent trials suggest that 
combined regimens with different ICIs would lead to higher rates of clinical response, but with increased 

Table 2. Immuno check points inhibitors for HCC immunotherapy

HCC: hepatocellular carcinoma; SR: surgical resecton; TACE: transarterial chemoembolization; NA: not available; PR: partial response; CR: 
complete response
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Target Number of 
patients Trial First line/Second line     Status      Results Ref or study 

number
CTLA-4 20 Phase II Adjuvant TACE and ablation Completed PR 17.6 % 134

CTLA-4 32 Pilot Second Completed PR 15.6 % 137

PD-1 576 Phase I/II FIirst and Second Completed PR 20 % (expansion) 
15% (dose excalating)

135

PD-1 723 Phase III First vs.  sorafenib Not recruiting active NA NCT02576509

PD-1 660 Phase III First vs.  sorafenib Recruiting NA NCT03412773

PD-1 104 Phase II Second Not recruiting active PR 15.4 %, CR 1%  NCT02702414

PD-1 408 Phase III Second Not recruiting active NA NCT02702401

PD-1 530 Phase III Adjuvant SR and ablation Recruiting active NA NCT03383458
PD-L1 114 Phase I Second Recruiting active NA NCT02519348
PD-L1 ± CTLA-4 440 Phase II Second Recruiting active NA NCT02519348

PD-L1 ± CTLA-4 1200 Phase III First Recruiting active NA NCT03298451



risk of immune-related adverse events. The development of biomarkers with acceptable predictive value will 
be instrumental to maximize the benefit of immunotherapy. 

As previously described, the anti-cancer immune response is the results of multiple factors deriving from 
the antigenic characteristics of the tumor, the multiplicity and the phenotype of TAA-specific immune cells, 
the latter mainly dictated by the tumor microenvironment. From this perspective the use of a single analyte 
biomarker might not be sufficient to recapitulate the complex interplay between tumor biology and immune 
response. Immunostaining with anti-PD-L1 antibodies has been the first approach evaluated to predict the 
response to anti-PD-1 treatments. However, this marker was shown to be unreliable especially for its poor 
negative predictive value[139,140]. In addition, the intrinsic variability of immunohistochemistry together with 
the heterogeneity and dynamic nature of PD-L1 expression in tumor and immune cells raise concern about 
its adequacy to clinical standards[141].

Multianalyte profiles may represent promising tools for the accurate prediction of immunotherapy outcome. 
The response to PD-1 blockade has been related to the presence of immunogenic neoantigens arising from 
the active expression of viral genes or from increased tumor mutational burden[140,142]. According to this 
view, pembrolizumab (anti-PD-1) was approved by FDA in 2017 for the treatment of unresectable or meta-
static solid tumors with mutations in genes for DNA mismatch repair (dMMR) or microsatellite instability 
(MSI), independently from the tissue of origin. However, dMMR or MSI are infrequent in HCC[143].

The multiplicity, composition, activity and location of tumor-infiltrating immune cells have been shown 
to represent prognostic markers in HCC[4-6,104]. A subset of HCCs characterized by an inflammatory gene 
signature has been detected in several studies[144-148]. A recent study identified in about 25% of patients an 
immune-specific molecular class of HCC including two distinct subtypes, characterized by a prevalent adap-
tive T-cell response and an exhausted immune response, respectively[146]. Interestingly, immune gene profiles 
suggesting active anti-tumoral response have been associated with longer time to recurrence[149,150]. 

Gene signatures may provide a global picture of the complex tumor immune landscape. This approach rep-
resents a tool for the discrimination of tumors with pre-existing immune infiltrate, more likely to respond to 
interventions aimed at overcoming inhibitory factors. In a recent paper a so-called “T cell-inflamed gene ex-
pression profile”, containing IFN-γ-responsive genes related to antigen presentation, chemokine expression, 
cytotoxic activity, and adaptive immune resistance, was shown to be necessary, but not always sufficient, for 
clinical response to pembrolizumab in 10 tumor types[151]. 

The lack or low abundance of cellular infiltrate may indicate a defect in innate immunity or in immune cell 
trafficking and suggest alternative therapeutic approaches. Consistent with observations made in other tu-
mors[152], a molecular profile of “immune exclusion” is associated with activated Wnt/β-catenin pathway sig-
naling in HCC[149]. This suggests the potential of Wnt/β-catenin activation as a biomarker predictive of resis-
tance to checkpoint inhibitors. As a future perspective, gene signatures integrating information about tumor 
cell mutational burden, presence and nature of the immune infiltrate, possibly at different investigational 
levels (genetic, genomic, epigenetic) would provide information for a comprehensive therapeutic stratifica-
tion of HCC patients.
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