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Abstract
Zn-based electrochemistry is considered to be the most promising alternative to Li-ion batteries due to its 
abundant reserves and cost-effectiveness. In addition, aqueous electrolytes are more convenient to be used in 
Zn-based batteries due to their good compatibility with Zn-chemistry, thereby reducing cost and improving safety. 
Furthermore, Zn2+/Zn couples involve two-electron redox chemistry, which can provide higher theoretical energy 
capacity and energy density. Based on this, a series of Zn-based battery systems, including Zn-ion batteries, Zn-air 
batteries, and Zn-based redox flow batteries, have received more and more research attention. Here, the 
fundamentals and recent advances in Zn-based rechargeable batteries are presented, along with perspectives on 
further research directions.
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INTRODUCTION
Since the first commercial lithium-ion battery (LIBs) developed by Yoshio Nishi in 1991, LIBs have 
dominated the market for portable electronic devices and electric vehicles[1-3]. However, for LIBs, limited 
lithium resources, soaring costs and safety hazards still inevitably hinder their development. Therefore, 
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some alternative energy storage battery systems with lower cost, such as sodium-ion batteries (SIBs) and 
potassium-ion batteries (PIBs), are put on the agenda for replacing LIBs[4,5]. At the same time, some metal-
based batteries with high theoretical energy density, such as lithium-oxygen batteries and lithium-sulfur 
batteries, have also been proposed to cope with the increasing demand for high-energy-density batteries[6,7]. 
Nonetheless, the electrolytes used in those metal-based batteries are usually both water and air sensitive, 
posing safety and environmental concerns. In contrast, aqueous batteries (Zn2+, Fe2+, Mg2+, Al3+, and so 
forth) are considered promising next-generation battery systems due to their safety and environmental 
friendliness[8,9]. Among them, rechargeable Zn-based batteries are gaining increasing attention for replacing 
Li-ion batteries due to their high theoretical energy density, good stability, low cost and environmental 
friendliness[10].

Aqueous Zn-based batteries are built on reversible Zn2+/Zn dissolution/deposition reactions with a redox 
potential of 0.76 V vs. standard hydrogen electrode (SHE)[11-16]. Depending on the battery system, the 
electrolyte can be neutral, acidic or alkaline solution. According to the electrochemistry of cathode 
materials, Zn-based batteries mainly consist of the following battery systems: Zn-ion batteries, Zn-based 
redox flow batteries and Zn-air batteries. Besides, some modified batteries, such as flexible devices, have also 
been proposed [Figure 1]. Despite the rapid development of Zn-based batteries in recent years, more efforts 
are still needed to drive them toward commercialization. In this focused review, recent progress on aqueous 
Zn-based battery systems is outlined. The operating mechanisms of each battery system are briefly 
introduced, followed by their existing challenges and research directions. Perspectives are also provided for 
the future development of Zn-based battery systems.

ZN BASED BATTERIES
Zn anode
As an important part of Zn-based battery systems, Zn anodes usually exist in the form of Zn foils in the 
battery system. When discharging, Zn loses two electrons to form Zn2+ and dissolves into the electrolyte; 
when charging, it regains two electrons and is plated onto the Zn flakes[17,18]. Zn anodes undergo side 
reactions during electrochemical processes, especially the hydrogen evolution reaction (HER) due to its 
poor thermodynamic stability in aqueous electrolytes, leading to severe self-discharge reactions[19-23]. There 
are two main solutions to this problem: surface engineering and electrolyte additives. Surface engineering 
strategies usually employ a layer of artificial SEI, such as inorganic passivation layers, carbon coating layers 
or polymer membranes, to prevent the electrolyte from directly contacting the Zn metal anode[24,25]. For 
example, Li et al. adopted graphite-modified Zn anode, a mitigated corrosion reaction was obtained and a 
high Coulombic efficiency was achieved[26]. Additionally, some organic additives, such as thiourea, diethyl 
ether (Et2O), sodium dodecyl sulfate (SDS), or cetyltrimethylammonium bromide (CTAB), contribute to 
alleviating the corrosion of Zn metal anode[27].

Another major problem is the growth of dendrites in developing alkaline rechargeable batteries. The growth 
of dendrites will not only lead to the growth of “dead Zn” which degrades the coulombic efficiency of the 
battery, but also may pierce the separator and cause the battery to short circuit. One of the most direct 
solutions is to modify the surface of the Zn anode to form a stable solid-electrolyte interface (SEI). 
Higashi et al. used polypropylene to modify the surface of the Zn anode to ensure the stable operation of the 
Zn-Ni battery 800 times [Figure 2A and B][28]. Besides surface engineering, an epitaxial electrodeposition 
technique was also developed by Yu et al. to suppress dendrite growth[29]. Using graphene with a low lattice 
mismatch with metallic Zn as the substrate, highly reversible Zn metal reversible deposition was 
achieved[29]. In addition, salt concentration electrolytes are also employed to regulate the deposition of Zn 
metal anode. A high-concentration electrolyte containing 1 M Zn(TFSI)2 and 20 M LiTFSI was proposed by 
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Figure 1. Schematic illustration of various types of Zn-based battery configurations.

Figure 2. (A) Schematic diagram of the backside-plating configuration full-cell battery. (B) Cycling stability curves of Ni-Zn battery with 
the conventional frontside and backside battery cells[28]. Reproduced with permission from Ref.[28]. Copyright 2016 Nature Publishing 
Group.

Wang et al. Spectroscopic analysis combined with molecular simulation analysis revealed that high 
concentrations of TFSI- could effectively inhibit the formation of by-product (Zn-[H2O]6)2+, thereby 
contributing to the deposition of Zn with near 100% Coulombic efficiency[30].

Zn-ion batteries
A Zn-ion battery consists of four components, a Zn metal anode, an metal oxides cathode, a separator, and 
an electrolyte. Generally, metal oxides are used as cathode materials in Zn-ion batteries, including 
manganese-based, vanadium-based, and Prussian blue analogs and organic cathode materials[12,31]. The 
characteristics of some cathode materials are listed in Table 1 below[32-37]. The characteristics of some 
cathode materials are listed in Table 1 below. Depending on how they store Zn ions, these materials can be 
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Table 1. The characteristics of some cathode materials in the Zn-ion batteries

Cathode materials Output voltage [V] Capacity [mAh g-1]/energy 
Density [Wh kg-1]

Capacity retention/cycle 
numbers/current density Mechanism Ref.

Ni-doped Mn2O3 1.2 252 (0.1 A g-1)/327.6 85.6%/2500/1.0 A g-1 H+ and Zn2+ coinsertion [32]

MnO2 1.35 365 (0.5 A g-1)/486 93.3%/4000/4 A g-1 H+ and NH4
+ coinsertion [33]

V4+-doped V2O5 0.6 430 (0.5 A g-1)/258 86%/1000/10 A g-1 Zn2+ insertion [34]

K2MnFe(CN)6 1.6 138 (0.2 A g-1)/221 72.4%/400/0.2 A g-1 Zn2+ insertion [35]

m-TAPA 1.1 V 210.7 (0.5 A g-1)/236 87.6%/1000/6 A g-1 Cl- coordination [36]

π-PMC 0.4 122.5 (0.2 A g-1)/49 68.2%/1000/8 A g-1 Zn2+ coordination [37]

broadly divided into two categories: intercalation chemistry or conversion chemistry. For intercalation-type 
materials, Zn2+ undergoes reversible intercalation/deintercalation reactions between the electrolyte and the 
cathode material during the charge-discharge process. One of the most serious problems in those cathode 
materials is structural collapse during charge and discharge. Defect engineering (cation vacancy or oxygen 
vacancy) is widely adopted to deal with this problem. A cation-deficient ZnMn2O4 spinel structure was 
proposed as a cathode material by Cai et al., demonstrating the positive effect of defects on the structural 
stability of the material [Figure 3A and B][38]. They believed that the migration of Zn2+ in this special 
structure was not affected by the large electrostatic repulsion, thus contributing to the improvement of the 
electrode kinetics. In addition, an oxygen-deficient β-MnO2 structure was introduced as a cathode by 
Cai et al., which exhibited enhanced Zn2+ intercalation/deintercalation kinetics and achieved striking 
electrochemical stability[39].

As for the cathode materials based on the conversion reaction, they are usually based on the redox 
conversion between metal oxides and metal hydroxides, which can also be accompanied by the co-
intercalation reaction of hydrogen ions. Zhang et al. found that α-MnO2 would bind a H+ during charging, 
and would further react with ZnSO4 and H2O to form ZnSO4[Zn(OH)2]3 in order to achieve charge 
balance[38]. In addition, some researchers found that the intercalation reaction of Zn2+ also triggers the 
structural transformation of the cathode material into layered ZnxMnO2 and/or ZnMn2O4 with the depth of 
discharge[28,40,41]. Besides inorganic materials, organic materials, such as quinone, have also been proposed as 
conversion reaction-based cathode materials, which can reversibly bind and release Zn ions. Organic 
cathode materials are getting more and more attention, and some compounds are gradually being reported, 
such as poly(pyrene-4,5,9,10-tetraone) (PPTO), quinone (C4Q), and polyaniline (PANI)[30,42]. A crystalline 
3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) was introduced by Rodriguez-Perez et al. to adhere 
dimethyl metal ions in aqueous electrolytes, demonstrating an internal structural stability and superior 
electrochemical performance[43].

Neither of the above two methodes can effectively solve the inherent limitations regarding the voltage 
window and energy density of Zn-ion batteries. Obviously, the low electrochemical potential window of 
aqueous electrolytes with a redox potential of 1.23 V vs. SHE, severely limits the choice of high-voltage 
electrode materials. Therefore, widening the electrochemical cell window of aqueous electrolytes is crucial 
for high-pressure aqueous Zn-ion batteries. An effective method is to effectively prevent the water 
molecules of the electrolyte from contacting the Zn anode. For example, the NaCl/sodium alginate (SA) gel 
electrolyte exhibited an electrochemical window of 2.72 V due to the confinement of water molecules in the 
gel electrolyte through hydrogen bonding[44]. Consequently, the direct contact between the water molecules 
and the electrode material is largely alleviated. Another effective way is to form a salt concentration 
electrolyte. In the electrolyte with ultra-high salt concentration, the free water molecules will disappear due 
to the lack of water solvent, avoiding direct contact between the water molecules and electrodes. At the 
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Figure 3. (A) Schematic description of Zn2+ insertion/extraction in a three-dimensional ZMO spinel framework; (B) Zn2+ diffusion
coefficient of ZMO/C and ZMO + C electrodes by GITT technique[38]. Reproduced with permission from Ref.[38]. Copyright 2016,
American Chemical Society.

same time, the anions will enter into the solvated structure and induce the generation of anion-derived SEI,
improving the stability of the electrode interface[45-47]. Therefore, some typical salt concentration electrolytes
for high voltage batteries have been reported, including 21 m LiTFSI + 0.5 m ZnSO4

[48],
1 m Zn(CH3COO)2 + 31 m KCH3COO[49], 30 m ZnCl2

[50]. However, the cost factor brought by the high
concentration of salt prevents their practical application. The development of localized high-concentration
electrolytes with diluents may be an effective approach for practical applications[51-54].

Zn-air batteries
Generally speaking, a Zn-air battery consists of four components, a Zn metal anode, an air cathode, a
separator, and an electrolyte. Generally, a high-concentration aqueous alkaline solution (NaOH or KOH) is
used as the electrolyte, which can not only provide an alkaline environment, but also sufficient ionic
conductivity[10,11,55-58]. The membrane is usually an anion exchange membrane, which allows the free
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movement of the anion OH- and prevents the passage of the cation Zn2+. The redox reactions occurring at
the air cathode and the Zn anode are shown below[59-61]:

Air cathode reaction:

                                                             O2 + 2H2O + 4e- → 4OH-                                                                            (1)

Zn anode reaction:

                                                         Zn + 2OH- → ZnO + H2O + 2e-                                                                      (2)

Overall reaction:

                                                                 O2 + 2Zn → 2ZnO                                                                                   (3)

As the core part of the air electrode, the activity and durability of the catalyst are the most important
considerations in determining the performance of ZABs[62,63]. Although platinum (Pt) is considered to be
one of the best catalysts for ORR, its scarcity and high price hinder its commercial application. Similarly,
other noble metal catalysts such as iridium oxide (IrO2) and ruthenium oxide (RuO2) also face the same
dilemma as Pt-based catalysts[64-66]. To reduce cost, transition metal compounds have been reported as
promising ORR and OER electrocatalysts[65,67-69]. Although most of them do not perform as well as Pt-based
catalysts for ORR, their acceptable OER activity makes them better choices for ZABs.

Besides metal-based catalysts, carbon-based materials are also widely used as catalysts in ZABs. They
generally exhibit good chemical stability and electrical conductivity, which facilitates long-term electron
transport during electrochemical processes, while the porous structure with high specific surface area
facilitates the exposure of catalyst active sites and efficient mass transport[70-72]. Therefore, carbon-based
catalysts have gained a lot of attention for developing reversible ZABs. Unfortunately, carbon corrosion
inevitably occurs in alkaline electrolytes, and those catalysts are often prone to loss of structural stability,
leading to a widening of the voltage gap[72,73]. In contrast, metal oxide-based catalysts usually have good
durability, such as excellent durability of 600 h when using Co3O4 nanowire arrays as catalysts
[Figure 4][74-76]. Therefore, the rational design of composites of carbon materials and oxides has attracted a
lot of research attention when a pioneering work on N-doped CNT-supported LaNiO3 was developed for
ZABs[77].

Flow batteries
Zn-based redox flow batteries usually use Zn as the anode and redox pairs as electrodes, including Zn-Fe,
Zn-Ce, Zn-halogen (Cl2, Br2, and I2), and Zn-organic couples [Figure 5][78-86]. Although substantial progress
has been made in Zn-based flow batteries, more efforts are still needed to improve some important
parameters to achieve the goal of commercialization. Current efforts mainly focus on optimization of the
electrolyte, membrane and electrode[87]. This review focuses on the Zn-I2 flow battery as an example.

The typical structure of Zn-I2 is shown in Figure 5B[85]. Basically, repeated Zn2+/Zn deposition/dissolution
reactions occur on the negative side of Zn in acidic or alkaline electrolytes, while conversion reactions
between iodide anions (I-) and triiodide anions (I3

-) occur on the positive side. Despite the advantages of
I-/I3

-couples in terms of cost and water solubility, the low utilization of iodine originates from the formation
of insoluble I2 during charging and discharging severely hinders the application of Zn-I2 batteries[88].
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Figure 4. (A) Schematic illustration of the growth of 3D Co3O4 nanowires as bifunctional catalyst; (B) The Zn-air battery cycling tests 
based on Co3O4 nanowires bifunctional catalyst[74]. Reproduced with permission from Ref.[74]. Copyright 2013 John Wiley & Sons, Inc.

Furthermore, the “shuttle effect” of soluble iodine species is another factor limiting the development of 
Zn-I2 flow batteries[85]. The usual way to address the above issues is through electrode structure design, 
electrolyte formation or membrane modification. For electrode material design, one of the most effective 
methods is to prepare catalyst/carbon material composites as cathode hosts to improve the electrochemical 
reaction of Zn-I2 flow batteries. Li et al. reported two metal-organic frameworks (MOFs), MIL-125-NH2 and 
Uio-66-CH3, as catalysts to improve the utilization of iodine during electrochemical reactions and alleviate 
the “shuttle reaction” of soluble iodine[89]. For electrolyte modification, additives may be one of the most 
feasible and effective methods to improve the environment of polyanions present in electrolytes. Weng et al. 
introduced bromide ions (Br-) to form bromo-iodine complex for stabilizing iodine in the electrolyte, which 
greatly improved the utilization of iodine[90]. In addition, an alkaline anolyte was reported by Weng et al., 
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Figure 5. (A) Redox couples commonly adapted in flow batteries and corresponding standard reduction potentials; (B) schematic 
illustration of the charging and discharging mechanisms in alkaline Zn-I2 flow batteries; (C) specific capacity and energy density at 
different current densities of alkaline Zn-I2 flow batteries[85]. Reproduced with permission from Ref.[85]. Copyright 2018 Royal Society of 
Chemistry.

which broadened the potential window of the cell by 0.497 V and obtained an improved energy density of 
330.5 W h L-1[85]. For battery membranes, apart from the commercial cation-selective Nafion membranes, 
polyolefin-based membranes have also been used in the Zn-I2 flow batteries[91,92].

Flexible batteries
The adoption of flexible Zn-based batteries for wearable devices has gained increased attention due to their 
environmental friendliness and cost-effectiveness[18]. Flexible Zn-based batteries usually consist of flexible 
electrode materials and polymer electrolytes. Flexible cathode materials are usually integrated active 
electrode materials on flexible substrates, such as carbon cloth, nickel foam, stainless-steel mesh, etc.[93-95]. As 
shown in Figure 6, a typical fabrication process of flexible Zn-air battery cathodes was presented 
[Figure 6A][96]. A chemical vapor deposition was employed with ZnCo-Hexamine (HMT) as the gas source 
to obtain cobalt-decorated carbon arrays with a nickel foam substrate as the flexible cathode. Gel 
electrolytes, usually synthesized by polymer membranes absorbing aqueous electrolytes, have been explored 
and widely used in flexible Zn-air batteries. In general, the performance of gelled electrolytes is mainly 
determined by the properties of the chosen gelling agent. Polyvinyl alcohol (PVA) is generally considered to 
be a perfect gelling agent due to its abundant hydroxyl functional groups and good water solubility[96]. 
However, its relatively low ion conductivity severely limits its commercial application. To address this 
challenge, a modified cellulose membrane was prepared as a promising alternative[97]. Fu et al. used a 
functionalized cellulose membrane with a rich hydrogen-bonded network structure by tetraammonium salt 
treatment [Figure 6B], demonstrating excellent electrochemical performance in a flexible Zn-air battery[98].

Although the Zn-air battery has an ultra-high specific energy density, 6070 Wh L-1, it is not a suitable 
flexible battery system because its semi-open structure that ensures easy access of atmospheric oxygen to the 
battery system would lead to continuous water loss in the electrolyte and then causes the battery to fail[11]. 
Therefore, seeking a new cathode material that also has the characteristics of high specific energy density, 
but rarely suffers from the adverse effects of half-cells, may be the future direction. For example, Wang et al. 
developed a Zn-Co3O4 flexible battery with an energy density of 2807 Wh L-1[99]. In addition, Zn-ion batteries 
have also been adopted as flexible batteries due to their better rechargeability. For example, a Zn-MnO2 
battery, with α-MnO2 nanofiber as the positive electrode, Zn sheets as the negative electrode and 
ZnSO4/MnSO4 solution as the electrolyte, was successfully demonstrated. This battery exhibited excellent 
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Figure 6. (A) Schematic illustration of ordered arrays on nickel foam as self-supported for flexible Zn-air battery[96] Reproduced with 
permission from Ref.[96]. Copyright 2019 John Wiley & Sons, Inc.; (B) Schematic presentation of nanocellulose membrane 
functionalization and demonstration of flexible Zn-air battery[98]. Reproduced with permission from Ref.[98]. Copyright 2015 Royal 
Society of Chemistry.

cycling stability, maintaining a capacity retention rate of 92% after 5000 cycles at a current density of 5C[100]. 
This work opens a direction for the development of long-lived flexible Zn-MnO2.

PERSPECTIVES
This review describes the overall landscape of aqueous Zn-based batteries, including Zn-ion batteries, Zn-
air batteries, redox flow batteries, and flexible batteries. Within each classification, the basic working 
principle and recent research progress are summarized. Currently, there are still many obstacles that need to 
be removed on the road to the commercialization of Zn-based batteries. Therefore, two main perspectives 
related to battery material design and intrinsic mechanism exploration are given as follows:

(1) Material design and optimization to improve electrochemical performance is still a challenge for various 
types of Zn-based battery configurations. For Zn-ion batteries, the search for materials that can withstand 
sustained multi-electron transfer while maintaining structural stability is strongly needed for both the 
intercalation and conversion cathodes. Electrocatalysts, with sufficient active sites, high activity and 
sufficient durability, are required in Zn-air batteries. The development of highly active cathode materials 
and cost-effective, stable and ion-conducting membranes is crucial for redox flow batteries. For flexible 
batteries, the mechanical flexibility and structural stability of battery materials are prerequisites for flexible 
devices, while the hydroxyl conductivity, water-holding ability, and alkali tolerance of gel electrolytes 
determine the performance of Zn-air batteries.

(2) Apart from material design, the electrochemical behavior of electrode materials is still not well 
understood. Deeper mechanistic studies are desperately needed to further improve the electrochemical 
performance of Zn-based batteries. Taking Zn-air batteries as an example, although metal-based materials 
are widely used as bifunctional catalysts in Zn-air batteries, it was only recently revealed that their derived 
metal hydroxides are the real active sites for OER. A metal hydroxide layer was found on the 
Ba0.5Sr0.5Co0.8Fe0.2O3-δ surface during the OER reaction. This phenomenon was also found when spinel 
CoFe0.25Al1.75O4 was used as a catalyst. Therefore, further mechanistic understanding through in situ probing 
methods is strongly demanded to aid the search for better catalyst materials.
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