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Abstract
This paper presents a comprehensive survey of federated reinforcement learning (FRL), an emerging and promising
field in reinforcement learning (RL). Starting with a tutorial of federated learning (FL) and RL, we then focus on the
introduction of FRL as a newmethodwith great potential by leveraging the basic idea of FL to improve the performance
of RL while preserving data-privacy. According to the distribution characteristics of the agents in the framework, FRL
algorithms can be divided into two categories, i.e., horizontal federated reinforcement learning and vertical federated
reinforcement learning (VFRL). We provide the detailed definitions of each category by formulas, investigate the
evolution of FRL from a technical perspective, and highlight its advantages over previous RL algorithms. In addition,
the existing works on FRL are summarized by application fields, including edge computing, communication, control
optimization, and attack detection. Finally, we describe and discuss several key research directions that are crucial to
solving the open problems within FRL.

Keywords: Federated learning, reinforcement learning, federated reinforcement learning

1. INTRODUCTION
As machine learning (ML) develops, it becomes capable of solving increasingly complex problems, such as
image recognition, speech recognition, and semantic understanding. Despite the effectiveness of traditional
machine learning algorithms in several areas, the researchers found that scenes involving many parties are still
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difficult to resolve, especially when privacy is concerned. Federated learning (FL), in these cases, has attracted
increasing interest among ML researchers. Technically, the FL is a decentralized collaborative approach that
allows multiple partners to train data respectively and build a shared model while maintaining privacy. With
its innovative learning architecture and concepts, FL provides safer experience exchange services and enhances
capabilities of ML in distributed scenarios.

InML, reinforcement learning (RL) is one of the branches that focuses on how individuals, i.e., agents, interact
with their environment and maximize some portion of the cumulative reward. The process allows agents to
learn to improve their behavior in a trial and error manner. Through a set of policies, they take actions to
explore the environment and expect to be rewarded. Research on RL has been hot in recent years, and it has
shown great potential in various applications, including games, robotics, communication, and so on.

However, there are still many problems in the implementation of RL in practical scenarios. For example,
considering that in the case of large action space and state space, the performance of agents is vulnerable to
collected samples since it is nearly impossible to explore all sampling spaces. In addition, many RL algorithms
have the problem of learning efficiency caused by low sample efficiency. Therefore, through information ex-
change between agents, learning speed can be greatly accelerated. Although distributed RL and parallel RL
algorithms [1–3] can be used to address the above problems, they usually need to collect all the data, parame-
ters, or gradients from each agent in a central server for model training. However, one of the important issues
is that some tasks need to prevent agent information leakage and protect agent privacy during the application
of RL. Agents’ distrust of the central server and the risk of eavesdropping on the transmission of raw data has
become a major bottleneck for such RL applications. FL can not only complete information exchange while
avoiding privacy disclosure, but also adapt various agents to their different environments. Another problem
of RL is how to bridge the simulation-reality gap. Many RL algorithms require pre-training in simulated en-
vironments as a prerequisite for application deployment, but one problem is that the simulated environments
cannot accurately reflect the environments of the real world. FL can aggregate information from both environ-
ments and thus bridge the gap between them. Finally, in some cases, only partial features can be observed by
each agent in RL. However, these features, no matter observations or rewards, are not enough to obtain suffi-
cient information required to make decisions. At this time, FL makes it possible to integrate this information
through aggregation.

Thus, the above challenges give rise to the idea of federated reinforcement learning (FRL). As FRL can be con-
sidered as an integration of FL and RL under privacy protection, several elements of RL can be presented in FL
frameworks to deals with sequential decision-making tasks. For example, these three dimensions of sample,
feature and label in FL can be replaced by environment, state and action respectively in FRL. Since FL can be
divided into several categories according to the distribution characteristics of data, including horizontal fed-
erated learning (HFL) and vertical federated learning (VFL), we can similarly categorize FRL algorithms into
horizontal federated reinforcement learning (HFRL) and vertical federated reinforcement learning (VFRL).

Though a few survey papers on FL [4–6] have been published, to the best of our knowledge, there are currently no
relevant survey papers focused on FRL. Due to the fact that FRL is a relatively new technique, most researchers
may be unfamiliar with it to some extent. We hope to identify achievements from current studies and serve as
a stepping stone to further research. In summary, this paper sheds light on the following aspects.

1. Systematic tutorial on FRL methodology. As a review focusing on FRL, this paper tries to explain the knowl-
edge about FRL to researchers systematically and in detail. The definition and categories of FRL are intro-
duced firstly, including system model, algorithm process, etc. In order to explain the framework of HFRL
and VFRL and the difference between them clearly, two specific cases are introduced, i.e., autonomous
driving and smart grid. Moreover, we comprehensively introduce the existing research on FRL’s algorithm
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design.
2. Comprehensive summary for FRL applications. This paper collects a large number of references in the field

of FRL, and provides a comprehensive and detailed investigation of the FRL applications in various areas,
including edge computing, communications, control optimization, attack detection, and some other appli-
cations. For each reference, we discuss the authors’ research ideas and methods, and summarize how the
researchers combine the FRL algorithm with the specific practical problems.

3. Open issues for future research. This paper identifies several open issues for FRL as a guide for further
research. The scope covers communication, privacy and security, join and exit mechanisms design, learning
convergence and some other issues. We hope that they can broaden the thinking of interested researchers
and provide help for further research on FRL.

The organization of this paper is as follows. To quickly gain a comprehensive understanding of FRL, the paper
starts with FL and RL in Section 2 and Section 3, respectively, and extends the discussion further to FRL in
Section 4. The existing applications of FRL are summarized in Section 5. In addition, a few open issues and
future research directions for FRL are highlighted in Section 6. Finally, the conclusion is given in Section 7.

2. FEDERATED LEARNING
2.1. Federated learning definition and basics
In general, FL is a ML algorithmic framework that allows multiple parties to perform ML under the require-
ments of privacy protection, data security, and regulations [7]. In FL architecture, model construction includes
two processes: model training and model inference. It is possible to exchange information about the model
between parties during training, but not the data itself, so that data privacy will not be compromised in any
way. An individual party or multiple parties can possess and maintain the trained model. In the process of
model aggregation, more data instances collected from various parties contribute to updating the model. As
the last step, a fair value-distribution mechanism should be used to share the profits obtained by the collabora-
tive model [8]. The well-designed mechanism enables the federation sustainability. Aiming to build a joint ML
model without sharing local data, FL involves technologies from different research fields such as distributed
systems, information communication, ML and cryptography [9]. FL has the following characteristics as a result
of these techniques, i.e.,

• Distribution. There are two or more parties that hope to jointly build a model to tackle similar tasks. Each
party holds independent data and would like to use it for model training.

• Data protection. The data held by each party does not need to be sent to the other during the training of
the model. The learned profits or experiences are conveyed through model parameters that do not involve
privacy.

• Secure communication. The model is able to be transmitted between parties with the support of an encryp-
tion scheme. The original data cannot be inferred even if it is eavesdropped during transmission.

• Generality. It is possible to apply FL to different data structures and institutions without regard to domains
or algorithms.

• Guaranteed performance. The performance of the resulting model is very close to that of the ideal model
established with all data transferred to one centralized party.

• Status equality. To ensure the fairness of cooperation, all participating parties are on an equal footing. The
shared model can be used by each party to improve its local models when needed.

A formal definition of FL is presented as follows. Consider that there are 𝑁 parties {F𝑖}𝑁𝑖=1 interested in es-
tablishing and training a cooperative ML model. Each party has their respective datasets D𝑖 . Traditional ML
approaches consist of collecting all data {D𝑖}𝑁𝑖=1 together to form a centralized dataset R at one data server.
The expected modelM𝑆𝑈𝑀 is trained by using the dataset R. On the other hand, FL is a reform of ML process
in which the participants F𝑖 with data D𝑖 jointly train a target modelM𝐹𝐸𝐷 without aggregating their data.
Respective data D𝑖 is stored on the owner F𝑖 and not exposed to others. In addition, the performance mea-
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sure of the federated modelM𝐹𝐸𝐷 is denoted as V𝐹𝐸𝐷 , including accuracy, recall, and F1-score, etc, which
should be a good approximation of the performance of the expected modelM𝑆𝑈𝑀 , i.e., V𝑆𝑈𝑀 . In order to
quantify differences in performance, let 𝛿 be a non-negative real number and define the federated learning
modelM𝐹𝐸𝐷 has 𝛿 performance loss if

|V𝑆𝑈𝑀 −V𝐹𝐸𝐷 | < 𝛿.

Specifically, the FL model hold by each party is basically the same as theMLmodel, and it also includes a set of
parameters 𝑤𝑖 which is learned based on the respective training dataset D𝑖 [10]. A training sample 𝑗 typically
contains both the input of FL model and the expected output. For example, in the case of image recognition,
the input is the pixel of the image, and the expected output is the correct label. The learning process is facilitated
by defining a loss function on parameter vector 𝑤 for every data sample 𝑗 . The loss function represents the
error of the model in relation to the training data. For each dataset D𝑖 at party F𝑖 , the loss function on the
collection of training samples can be defined as follow [11],

𝐹𝑖 (𝑤) =
1
|D𝑖 |

∑
𝑗∈D𝑖

𝑓 𝑗 (𝑤),

where 𝑓 𝑗 (𝑤) denotes the loss function of the sample 𝑗 with the given model parameter vector 𝑤 and | · |
represents the size of the set. In FL, it is important to define the global loss function since multiple parties are
jointly training a global statistical model without sharing a dataset. The common global loss function on all
the distributed datasets is given by,

𝐹𝑔 (𝑤) =
𝑁∑
𝑖=1

𝜂𝑖𝐹𝑖 (𝑤),

where 𝜂𝑖 indicates the relative impact of each party on the global model. In addition, 𝜂𝑖 > 0 and
∑𝑁
𝑖=1 𝜂𝑖 = 1.

This term 𝜂 can be flexibly defined to improve training efficiency. The natural setting is averaging between
parties, i.e., 𝜂 = 1/𝑁 . The goal of the learning problem is to find the optimal parameter that minimizes the
global loss function 𝐹𝑔 (𝑤). It is presented in formula form,

𝑤∗ = arg min
𝑤

𝐹𝑔 (𝑤) .

Considering that FL is designed to adapt to various scenarios, the objective function may be appropriate de-
pending on the application. However, a closed-form solution is almost impossible to find withmost FLmodels
due to their inherent complexity. A canonical federated averaging algorithm (FedAvg) based on gradient-
descent techniques is presented in the study from McMahan et al. [12], which is widely used in FL systems. In
general, the coordinator has the initial FL model and is responsible for aggregation. Distributed participants
know the optimizer settings and can upload information that does not affect privacy. The specific architecture
of FL will be discussed in the next subsection. Each participant uses their local data to perform one step (or
multiple steps) of gradient descent on the current model parameter �̄� (𝑡) according to the following formula,

∀𝑖, 𝑤𝑖 (𝑡 + 1) = �̄� (𝑡) − 𝛾∇𝐹𝑖 (�̄�𝑖 (𝑡)) ,

where 𝛾 denotes a fixed learning rate of each gradient descent. After receiving the local parameters from
participants, the central coordinator updates the global model using a weighted average, i.e.,

�̄�𝑔 (𝑡 + 1) =
𝑁∑
𝑖=1

𝑛𝑖
𝑛
𝑤𝑖 (𝑡 + 1),
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where 𝑛𝑖 indicates the number of training data samples of the 𝑖-th participant has and 𝑛 denotes the total
number of samples contained in all the datasets. Finally, the coordinator sends the aggregated model weights
�̄�𝑔 (𝑡 + 1) back to the participants. The aggregation process is performed at a predetermined interval or iter-
ation round. Additionally, FL leverages privacy-preserving techniques to prevent the leakage of gradients or
model weights. For example, the existing encryption algorithms are added on top of the original FedAvg to
provide secure FL [13,14].

2.2. Architecture of federated learning
According to the application characteristics, the architecture of FL can be divided into two types [7], i.e., client-
server model and peer-to-peer model.

As shown in Figure 1, there are two major components in the client-server model, i.e., participants and coor-
dinators. The participants are the data owners and can perform local model training and updates. In different
scenarios, the participants are made up of different devices, the vehicles in the internet of vehicles (IoV), or
the smart devices in the IoT. In addition, participants usually possess at least two characteristics. Firstly, each
participant has a certain level of hardware performance, including computation power, communication and
storage. The hardware capabilities ensure that the FL algorithm operates normally. Secondly, participants are
independent of one another and located in a wide geographic area. In the client-server model, coordinator can
be considered as a central aggregation server, which can initialize a model and aggregate model updates from
participants [12]. As participants train both based on local data sets concurrently and share their experience
through the coordinator with the model aggregation mechanism, it will greatly enhance the efficiency of the
training and enhance the performance of the model. However, since participants won’t be able to communi-
cate directly, the coordinator must perform well to train the global model and maintain communication with
all participants. Therefore, the model has security challenges such as a single point of failure. If the coordinator
fails to complete the model aggregation task, the local model of participant has difficulty meeting target per-
formance. The basic workflow of the client-server model can be summarized in the following five steps. The
process continues to repeat the steps from 2 to 5 until the model converges, or until the maximum number of
iterations is reached.

• Step 1: In the process of setting up a client-server-based learning system, the coordinator creates an initial
model and sends it to each participant. Those participants who join later can access the latest global model.

• Step 2: Each participant trains a local model based on their respective dataset.
• Step 3: Updates of model parameters are sent to the central coordinator.
• Step 4: The coordinator combines the model updates using specific aggregation algorithms.
• Step 5: The combined model is sent back to the corresponding participant.

The peer-to-peer based FL architecture does not require a coordinator as illustrated in Figure 2. Participants
can directly communicate with each other without relying on a third party. Therefore, each participant in the
architecture is equal and can initiate a model exchange request with anyone else. As there is no central server,
participantsmust agree in advance on the order in whichmodel should be sent and received. Common transfer
modes are cyclic transfer and random transfer. The peer-to-peer model is suitable and important for specific
scenarios. For example, multiple banks jointly develop an ML-based attack detection model. With FL, there
is no need to establish a central authority between banks to manage and store all attack patterns. The attack
record is only held at the server of the attacked bank, but the detection experience can be shared with other
participants through model parameters. The FL procedure of the peer-to-peer model is simpler than that of
the client-server model.

• Step 1: Each participant initializes their local model depending on its needs.
• Step 2: Train the local model based on the respective dataset.
• Step 3: Create a model exchange request to other participants and send local model parameters.
• Step 4: Aggregate the model received from other participants into the local model.
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Figure 1. An example of federated learning architecture: Client-Server Model.
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Figure 2. An example of federated learning architecture: Peer-to-Peer Model.

The termination conditions of the process can be designed by participants according to their needs. This
architecture further guarantees security since there is no centralized server. However, it requires more com-
munication resources and potentially increased computation for more messages.
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Figure 3. Illustration of horizontal federated learning.

2.3. Categories of federated learning
Based on the way data is partitioned within a feature and sample space, FL may be classified as HFL, VFL, or
federated transfer learning (FTL) [8]. In Figure 3, Figure 4, and Figure 5, these three federated learning cate-
gories for a two-party scenario are illustrated. In order to define each category more clearly, some parameters
are formalized. We suppose that the 𝑖-th participant has its own dataset D𝑖 . The dataset includes three types
of data, i.e., the feature space X𝑖 , the label space Y𝑖 and the sample ID space I𝑖 . In particular, the feature space
X𝑖 is a high-dimensional abstraction of the variables within each pattern sample. Various features are used
to characterize data held by the participant. All categories of association between input and task target are
collected in the label space Y𝑖 . The sample ID space I𝑖 is added in consideration of actual application require-
ments. The identification can facilitate the discovery of possible connections among different features of the
same individual.

HFL indicates the case in which participants have their dataset with a small sample overlap, while most of
the data features are aligned. The word ”horizontal” is derived from the term ”horizontal partition”. This is
similar to the situation where data is horizontally partitioned inside the traditional tabular view of a database.
As shown in Figure 3, the training data of two participants with the aligned features is horizontally partitioned
for HFL. A cuboid with a red border represents the training data required in learning. Especially, a row corre-
sponds to complete data features collected from a sampling ID. Columns correspond to different sampling IDs.
The overlapping part means there can be more than one participant sampling the same ID. In addition, HFL is
also known as feature-aligned FL, sample-partitioned FL, or example-partitioned FL. Formally, the conditions
for HFL can be summarized as

X𝑖 = X𝑗 ,Y𝑖 = Y𝑗 ,I𝑖 ≠ I𝑗 ,∀D𝑖 ,D 𝑗 , 𝑖 ≠ 𝑗 ,

where D𝑖 and D 𝑗 denote the datasets of participant 𝑖 and participant 𝑗 respectively. In both datasets, the
feature space X and label space Y are assumed to be the same, but the sampling ID space I is assumed to
be different. The objective of HFL is to increase the amount of data with similar features, while keeping the
original data from being transmitted, thus improving the performance of the training model. Participants can
still perform feature extraction and classification if new samples appear. HFL can be applied in various fields
because it benefits from privacy protection and experience sharing [15]. For example, regional hospitals may
receive different patients, and the clinical manifestations of patients with the same disease are similar. It is
imperative to protect the patient’s privacy, so data about patients cannot be shared. HFL provides a good way
to jointly build a ML model for identifying diseases between hospitals.

VFL refers to the case where different participants with various targets usually have datasets that have different
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feature spaces, but those participants may serve a large number of common users. The heterogeneous feature
spaces of distributed datasets can be used to build more general and accurate models without releasing the
private data. The word “vertical” derives from the term “vertical partition”, which is also widely used in ref-
erence to the traditional tabular view. Different from HFL, the training data of each participant are divided
vertically. Figure 4 shows an example of VFL in a two-party scenario. The important step in VFL is to align
samples, i.e., determine which samples are common to the participants. Although the features of the data are
different, the sampled identity can be verified with the same ID. Therefore, VFL is also called sample-aligned
FL or feature-partitioned FL. Multiple features are vertically divided into one or more columns. The common
samples exposed to different participants can be marked by different labels. The formal definition of VFL’s
applicable scenario is given.

X𝑖 ≠ X𝑗 ,Y𝑖 ≠ Y𝑗 ,I𝑖 = I𝑗 ,∀D𝑖 ,D 𝑗 , 𝑖 ≠ 𝑗 ,

where D𝑖 and D𝑖 represent the dataset held by different participants, and the data feature space pair
(
X𝑖 ,X𝑗

)
and label space pair

(
Y𝑖 ,Y𝑗

)
are assumed to be different. The sample ID space I𝑖 and I𝑗 are assumed to be the

same. It is the objective of VFL to collaborate in building a sharedMLmodel by exploiting all features collected
by each participant. The fusion and analysis of existing features can even infer new features. An example of
the application of VFL is the evaluation of trust. Banks and e-commerce companies can create a ML model
for trust evaluation for users. The credit card record held at the bank and the purchasing history held at the
e-commerce company for the set of same users can be used as training data to improve the evaluation model.

FTL applies to amore general case where the datasets of participants are not aligned with each other in terms of
samples or features. FTL involves finding the invariant between a resource-rich source domain and a resource-
scarce target domain, and exploiting that invariant to transfer knowledge. In comparisonwith traditional trans-
fer learning [16], FTL focuses on privacy-preserving issues and addresses distributed challenges. An example
of FTL is shown in Figure 5. The training data required by FTL may include all data owned by multiply parties
for comprehensive information extraction. In order to predict labels for unlabeled new samples, a prediction
model is built using additional feature representations for mixed samples from participants A and B. More
formally, FTL is applicable for the following scenarios:

X𝑖 ≠ X𝑗 ,Y𝑖 ≠ Y𝑗 ,I𝑖 ≠ I𝑗 ,∀D𝑖 ,D 𝑗 , 𝑖 ≠ 𝑗 ,

In datasets D𝑖 and D 𝑗 , there is no duplication or similarity in terms of features, labels and samples. The ob-
jective of FTL is to generate as accurate a label prediction as possible for newly incoming samples or unlabeled
samples already present. Another benefit of FTL is that it is capable of overcoming the absence of data or labels.
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Figure 5. Illustration of federated transfer learning.

For example, a bank and an e-commerce company in two different countries want to build a shared MLmodel
for user risk assessment. In light of geographical restrictions, the user groups of these two organizations have
limited overlap. Due to the fact that businesses are different, only a small number of data features are the same.
It is important in this case to introduce FTL to solve the problem of small unilateral data and fewer sample
labels, and improve the model performance.

3. REINFORCEMENT LEARNING
3.1. Reinforcement learning definition and basics
Generally, the field of ML includes supervised learning, unsupervised learning, RL, etc [17]. While supervised
and unsupervised learning attempt to make the agent copy the data set, i.e., learning from the pre-provided
samples, RL is to make the agent gradually stronger in the interaction with the environment, i.e., generating
samples to learn by itself [18]. RL is a very hot research direction in the field of ML in recent years, which has
made great progress in many applications, such as IoT [19–22], autonomous driving [23,24], and game design [25].
For example, the AlphaGo program developed by DeepMind is a good example to reflect the thinking of
RL [26]. The agent gradually accumulates the intelligent judgment on the sub-environment of each move by
playing game by game with different opponents, so as to continuously improve its level.

TheRL problem can be defined as amodel of the agent-environment interaction, which is represented in Figure
6. The basic model of RL contains several important concepts, i.e.,

• Environment and agent: Agents are a part of a RLmodel that exists in an external environment, such as the
player in the environment of chess. Agents can improve their behavior by interacting with the environment.
Specifically, they take a series of actions to the environment through a set of policies and expect to get a
high payoff or achieve a certain goal.

• Time step: The whole process of RL can be discretized into different time steps. At every time step, the
environment and the agent interact accordingly.

• State: The state reflects agents’ observations of the environment. When agents take action, the state will
also change. In other words, the environment will move to the next state.

• Actions: Agents can assess the environment, make decisions and finally take certain actions. These actions
are imposed on the environment.

• Reward: After receiving the action of the agent, the environment will give the agent the state of the current
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Figure 6. The agent-environment interaction of the basic reinforcement learning model.

environment and the reward due to the previous action. Reward represents an assessment of the action
taken by agents.

More formally, we assume that there are a series of time steps 𝑡 = 0,1,2,... in a basic RL model. At a certain
time step 𝑡, the agent will receive a state signal 𝑆𝑡 of the environment. In each step, the agent will select one
of the actions allowed by the state to take an action 𝐴𝑡 . After the environment receives the action signal 𝐴𝑡 ,
the environment will feed back to the agent the corresponding status signal 𝑆𝑡+1 at the next step 𝑡 + 1 and the
immediate reward 𝑅𝑡+1. The set of all possible states, i.e., the state space, is denoted as S. Similarly, the action
space is denoted asA. Since our goal is to maximize the total reward, we can quantify this total reward, usually
referred to as return with

𝐺 𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + ... + 𝑅𝑇 ,

where 𝑇 is the last step, i.e., 𝑆𝑇 as the termination state. An episode is completed when the agent completes
the termination action.

In addition to this type of episodic task, there is another type of task that does not have a termination state,
in other words, it can in principle run forever. This type of task is called a continuing task. For continuous
tasks, since there is no termination state, the above definition of return may be divergent. Thus, another way
to calculate return is introduced, which is called discounted return, i.e.,

𝐺 𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ... =
∞∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1,

where the discount factor 𝛾 satisfies 0 ⩽ 𝛾 ⩽ 1. When 𝛾 = 1, the agent can obtain the full value of all future
steps, while when 𝛾 = 0, the agent can only see the current reward. As 𝛾 changes from 0 to 1, the agent will
gradually become forward-looking, looking not only at current interests, but also for its own future.

The value function is the agent’s prediction of future rewards, which is used to evaluate the quality of the
state and select actions. The difference between the value function and rewards is that the latter is defined as
evaluating an immediate sense for interaction while the former is defined as the average return of actions over
a long period of time. In other words, the value function of the current state 𝑆𝑡 = 𝑠 is its long-term expected
return. There are two significant value functions in the field of RL, i.e., state value function 𝑉𝜋 (𝑠) and action
value function 𝑄𝜋 (𝑠, 𝑎). The function 𝑉𝜋 (𝑠) represents the expected return obtained if the agent continues
to follow strategy 𝜋 all the time after reaching a certain state 𝑆𝑡 , while the function 𝑄𝜋 (𝑠, 𝑎) represents the
expected return obtained if action 𝐴𝑡 = 𝑎 is taken after reaching the current state 𝑆𝑡 = 𝑠 and the following
actions are taken according to the strategy 𝜋. The two functions are specifically defined as follows, i.e.,
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Figure 7. The categories and representative algorithms of reinforcement learning.

𝑉𝜋 (𝑠) = E𝜋 [𝐺 𝑡 |𝑆𝑡 = 𝑠] ,∀𝑠 ∈ S

𝑄𝜋 (𝑠, 𝑎) = E𝜋 [𝐺 𝑡 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] ,∀𝑠 ∈ S, 𝑎 ∈ A.

The results of RL are action decisions, called as the policy. The policy gives agents the action 𝑎 that should
be taken for each state 𝑠. It is noted as =𝜋 (𝐴𝑡 = 𝑎 |𝑆𝑡 = 𝑠), which represents the probability of taking action
𝐴𝑡 = 𝑎 in state 𝑆𝑡 = 𝑠. The goal of RL is to learn the optimal policy that can maximize the value function by
interacting with the environment. Our purpose is not to get the maximum reward after a single action in the
short term, but to get more reward in the long term. Therefore, the policy can be figured out as,

𝜋∗ = 𝑎𝑟𝑔max
𝜋
𝑉𝜋 (𝑠) ,∀𝑠 ∈ S.

3.2. Categories of reinforcement learning
In RL, there are several categories of algorithms. One is value-based and the other is policy-based. In addition,
there is also an actor-critic algorithm that can be obtained by combining the two, as shown in Figure 7.

3.2.1. Value-based methods
Recursively expand the formulas of the action value function, the corresponding Bellman equation is obtained,
which describes the recursive relationship between the value function of the current state and subsequent state.
The recursive expansion formula of the action value function 𝑄𝜋 (𝑠, 𝑎) is

𝑄𝜋 (𝑠, 𝑎) =
∑
𝑠′,𝑟

𝑝
(
𝑠
′
, 𝑟 |𝑠, 𝑎

) [
𝑟 + 𝛾

∑
𝑎′
𝜋
(
𝑎
′ |𝑠′

)
𝑄𝜋

(
𝑠
′
, 𝑎
′
)]
,

where the function 𝑝
(
𝑠
′
, 𝑟 |𝑠, 𝑎

)
= 𝑃𝑟 {𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟 |𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎} defines the trajectory probability to

characterize the environment’s dynamics. 𝑅𝑡 = 𝑟 indicates the reward obtained by the agent taking action
𝐴𝑡−1 = 𝑎 in state 𝑆𝑡−1 = 𝑠. Besides, 𝑆𝑡 = 𝑠′ and 𝐴𝑡 = 𝑎′ respectively represent the state and the action taken by
the agent at the next moment 𝑡.

In the value-based algorithms, the above value function 𝑄𝜋 (𝑠, 𝑎) is calculated iteratively, and the strategy is
then improved based on this value function. If the value of every action in a given state is known, the agent can
select an action to perform. In this way, if the optimal𝑄𝜋 (𝑠, 𝑎 = 𝑎∗) can be figured out, the best action 𝑎∗ will
be found. There are many classical value-based algorithms, including Q-learning [27], state–action–reward–
state–action (SARSA) [28], etc.

Q-learning is a typical widely-used value-based RL algorithm. It is also a model-free algorithm, which means
that it does not need to know the model of the environment but directly estimates the Q value of each executed
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action in each encountered state through interacting with the environment [27]. Then, the optimal strategy is
formulated by selecting the action with the highest Q value in each state. This strategy maximizes the expected
return for all subsequent actions from the current state. The most important part of Q-learning is the update
of Q value. It uses a table, i.e., Q-table, to store all Q value functions. Q-table uses state as row and action as
column. Each (𝑠, 𝑎) pair corresponds to a Q value, i.e., 𝑄(𝑠, 𝑎), in the Q-table, which is updated as follows,

𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼
[
𝑟 + 𝛾max

𝑎′
𝑄

(
𝑠
′
, 𝑎
′
)
−𝑄 (𝑠, 𝑎)

]
where 𝑟 is the reward given by taking action 𝑎 under state 𝑠 at the current time step. 𝑠′ and 𝑎′ indicate the state
and the action taken by the agent at the next time step respectively. 𝛼 is the learning rate to determine how
much error needs to be learned, and 𝛾 is the attenuation of future reward. If the agent continuously accesses
all state-action pairs, the Q-learning algorithm will converge to the optimal Q function. Q-learning is suitable
for simple problems, i.e., small state space, or a small number of actions. It has high data utilization and stable
convergence.

3.2.2. Policy-based methods
The above value-based method is an indirect approach to policy selection, and has trouble handling an infinite
number of actions. Therefore, we want to be able to model the policy directly. Different from the value-based
method, the policy-based algorithm does not need to estimate the value function, but directly fits the policy
function, updates the policy parameters through training, and directly generates the best policy. In policy-
based methods, we input a state and output the corresponding action directly, rather than the value 𝑉 (𝑠) or
Q value 𝑄 (𝑠, 𝑎) of the state. One of the most representative algorithms is strategy gradient, which is also the
most basic policy-based algorithm.

Policy gradient chooses to optimize the policy directly and update the parameters of the policy network by
calculating the gradient of expected reward [29]. Therefore, its objective function 𝐽 (𝜃) is directly designed as
expected cumulative rewards, i.e.,

𝐽 (𝜃) = E𝜏 _𝜃 (𝜏) [𝑟 (𝜏)] =
∫
𝜏 𝜋(𝜏)

𝑟 (𝜏) 𝜋𝜃 (𝜏) 𝑑𝜏 .

By taking the derivative of 𝐽 (𝜃), we get

∇𝜃𝐽 (𝜃) = E𝜏 𝜋𝜃 (𝜏)

[
𝑇∑
𝑡=1
∇𝜃 log 𝜋𝜃 (𝐴𝑡 |𝑆𝑡)

𝑇∑
𝑡=1

𝑟 (𝑆𝑡 , 𝐴𝑡)
]
.

The above formula consists of two parts. One is
∑𝑇
𝑡=1 ∇𝜃 log 𝜋𝜃 (𝐴𝑡 |𝑆𝑡) which denotes the probability of the

gradient in the current trace. The other is
∑𝑇
𝑡=1 𝑟 (𝑆𝑡 , 𝐴𝑡) which represents the return of the current trace. Since

the return is total rewards and can only be obtained after one episode, the policy gradient algorithm can only
be updated for each episode, not for each time step.

The expected value can be expressed in a variety of ways, corresponding to different ways of calculating the loss
function. The advantage of the strategy gradient algorithm is that it can be applied in the continuous action
space. In addition, the change of the action probability is smoother, and the convergence is better guaranteed.

REINFORCE algorithm is a classic policy gradient algorithm [30]. Since the expected value of the cumulative
reward cannot be calculated directly, the Monte Carlo method is applied to approximate the average value of
multiple samples. REINFORCE updates the unbiased estimate of the gradient by using Monte Carlo sampling.
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Each sampling generates a trajectory, which runs iteratively. After obtaining a large number of trajectories,
the cumulative reward can be calculated by using certain transformations and approximations as the loss func-
tion for gradient update. However, the variance of this algorithm is large since it needs to interact with the
environment until the terminate state. The reward for each interaction is a random variable, so each variance
will add up when the variance is calculated. In particular, the REINFORCE algorithm has three steps:

• Step 1: sample 𝜏𝑖 from 𝜋𝜃 (𝐴𝑡 |𝑆𝑡)
• Step 2: ∇𝜃𝐽 (𝜃) ≈

∑
𝑖

[∑𝑇
𝑡=1 ∇𝜃 log 𝜋𝜃

(
𝐴𝑖𝑡 |𝑆𝑖𝑡

) ∑𝑇
𝑡=1 𝑟

(
𝑆𝑖𝑡 , 𝐴

𝑖
𝑡

) ]
• Step 3: 𝑡ℎ𝑒𝑡𝑎 ← 𝜃 + 𝛼∇𝜃𝐽 (𝜃)

The two algorithms, value-based and policy-based methods, both have their own characteristics and disad-
vantages. Firstly, the disadvantages of the value-based methods are that the output of the action cannot be
obtained directly, and it is difficult to extend to the continuous action space. The value-based methods can
also lead to the problem of high bias, i.e., it is difficult to eliminate the error between the estimated value
function and the actual value function. For the policy-based methods, a large number of trajectories must be
sampled, and the difference between each trajectory may be huge. As a result, high variance and large gradient
noise are introduced. It leads to the instability of training and the difficulty of policy convergence.

3.2.3. Actor-critic methods
The actor-critic architecture combines the characteristics of the value-based and policy-based algorithms, and
to a certain extent solves their respective weaknesses, as well as the contradictions between high variance and
high bias. The constructed agent can not only directly output policies, but also evaluate the performance of the
current policies through the value function. Specifically, the actor-critic architecture consists of an actor which
is responsible for generating the policy and a critic to evaluate this policy. When the actor is performing, the
critic should evaluate its performance, both of which are constantly being updated [31]. This complementary
training is generally more effective than a policy-based method or value-based method.

In specific, the input of actor is state 𝑆𝑡 , and the output is action 𝐴𝑡 . The role of actor is to approximate the
policy model 𝜋𝜃 (𝐴𝑡 |𝑆𝑡). Critic uses the value function 𝑄 as the output to evaluate the value of the policy,
and this Q value 𝑄 (𝑆𝑡 , 𝐴𝑡) can be directly applied to calculate the loss function of actor. The gradient of the
expected revenue function 𝐽 (𝜃) in the action-critic framework is developed from the basic policy gradient
algorithm. The policy gradient algorithm can only implement the update of each episode, and it is difficult to
accurately feedback the reward. Therefore, it has poor training efficiency. Instead, the actor-critic algorithm
replaces

∑𝑇
𝑡=1 𝑟

(
𝑆𝑖𝑡 , 𝐴

𝑖
𝑡

)
with 𝑄 (𝑆𝑡 , 𝐴𝑡) to evaluate the expected returns of state-action tuple {𝑆𝑡 , 𝐴𝑡} in the

current time step 𝑡. The gradient of 𝐽 (𝜃) can be expressed as

∇𝜃𝐽 (𝜃) = E𝜏 𝜋𝜃 (𝜏)

[
𝑇∑
𝑡=1
∇𝜃 log 𝜋𝜃 (𝐴𝑡 |𝑆𝑡)𝑄 (𝑆𝑡 , 𝐴𝑡)

]
.

3.3. Deep reinforcement learning
With the continuous expansion of the application of deep learning, its wave also swept into the RL field, result-
ing in deep reinforcement learning (DRL), i.e., using a multi-layer deep neural network to approximate value
function or policy function in the RL algorithm [32,33]. DRLmainly solves the curse-of-dimensionality problem
in real-world RL applications with large or continuous state and/or action space, where the traditional tabular
RL algorithms cannot store and extract a large amount of feature information [17,34].

Q-learning, as a very classical algorithm in RL, is a good example to understand the purpose of DRL. The big
issue with Q-learning falls into the tabular method, which means that when state and action spaces are very
large, it cannot build a very large Q table to store a large number of Q values [35]. Besides, it counts and iterates
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Table 1. Taxonomy of representative algorithms for DRL.

Types Representative algorithms

Value-based
Deep Q-Network (DQN) [37] , Double Deep Q-Network (DDQN) [39] ,
DDQN with proportional prioritization [40]

Policy-based REINFORCE [30] , Q-prop [41]

Actor-critic

Soft Actor-Critic (SAC) [42] , Asynchronous Advantage Actor Critic (A3C) [43] ,
Deep Deterministic Policy Gradient (DDPG) [44] ,
Distributed Distributional Deep Deterministic Policy Radients (D4PG) [45] ,
Twin Delayed Deep Deterministic (TD3) [46] ,
Trust Region Policy Optimization (TRPO) [47] ,
Proximal Policy Optimization (PPO) [48]

Advanced

POMDP
Deep Belief Q-Network (DBQN) [49] ,
Deep Recurrent Q-Network (DRQN) [50] ,
Recurrent Deterministic Policy Gradients (RDPG) [51]

Multi-agents

Multi-Agent Importance Sampling (MAIS) [52] ,
Coordinated Multi-agent DQN [53] ,
Multi-agent Fingerprints (MAF) [52] ,
Counterfactual Multiagent Policy Gradient (COMAPG) [54] ,
Multi-Agent DDPG (MADDPG) [55]

Q values based on past states. Therefore, on the one hand, the applicable state and action space of Q-learning
is very small. On the other hand, if a state never appears, Q-learning cannot deal with it [36]. In other words,
Q-learning has no prediction ability and generalization ability at this point.

In order to make Q-learning with prediction ability, considering that neural network can extract feature in-
formation well, deep Q network (DQN) is proposed by applying deep neural network to simulate Q value
function. In specific, DQN is the continuation of Q-learning algorithm in continuous or large state space to
approximate Q value function by replacing Q table with neural networks [37].

In addition to the value-based DRL algorithm such as DQN, we summarize a variety of classical DRL algo-
rithms according to algorithm types by referring to some DRL related surveys [38] in Table 1, including not
only the policy-based and actor-critic DRL algorithms, but also the advanced DRL algorithms of partially
observable markov decision process (POMDP) and multi-agents.

4. FEDERATED REINFORCEMENT LEARNING
In this section, the detailed background and categories of FRL will be discussed.

4.1. Federated reinforcement learning background
Despite the excellent performance that RL and DRL have achieved in many areas, they still face several im-
portant technical and non-technical challenges in solving real-world problems. The successful application
of FL in supervised learning tasks arouses interest in exploiting similar ideas in RL, i.e., FRL. On the other
hand, although FL is useful in some specific situations, it fails to deal with cooperative control and optimal
decision-making in dynamic environments [10]. FRL not only provides the experience for agents to learn to
make good decisions in an unknown environment, but also ensures that the privately collected data during
the agent’s exploration does not have to be shared with others. A forward-looking and interesting research
direction is how to conduct RL under the premise of protecting privacy. Therefore, it is proposed to use FL
framework to enhance the security of RL and define FRL as a security-enhanced distributed RL framework to
accelerate the learning process, protect agent privacy and handle not independent and identically distributed
(Non-IID) data [8]. Apart from improving the security and privacy of RL, we believe that FRL has a wider and
larger potential in helping RL to achieve better performance in various aspects, which will be elaborated in the
following subsections.
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Figure 8. Comparison of horizontal federated reinforcement learning and vertical federated reinforcement learning.

In order to facilitate understanding and maintain consistency with FL, FRL is divided into two categories
depending on environment partition [7], i.e., HFRL and VFRL. Figure 8 gives the comparison between HFRL
and VFRL. In HFRL, the environment that each agent interacts with is independent of the others, while the
state space and action space of different agents are aligned to solve similar problems. The action of each agent
only affects its own environment and results in corresponding rewards. As an agent can hardly explore all states
of its environment, multiple agents interacting with their own copy of the environment can accelerate training
and improve model performance by sharing experience. Therefore, horizontal agents use server-client model
or peer-to-peer model to transmit and exchange the gradients or parameters of their policy models (actors)
and/or value function models (critics). In VFRL, multiple agents interact with the same global environment,
but each can only observe limited state information in the scope of its view. Agents can perform different
actions depending on the observed environment and receive local reward or even no reward. Based on the
actual scenario, there may be some observation overlap between agents. In addition, all agents’ actions affect
the global environment dynamics and total rewards. As opposed to the horizontal arrangement of independent
environments in HFRL, the vertical arrangement of observations in VFRL poses a more complex problem and
is less studied in the existing literature.

4.2. Horizontal federated reinforcement learning
HFRL can be applied in scenarios in which the agents may be distributed geographically, but they face similar
decision-making tasks and have very little interaction with each other in the observed environments. Each
participating agent independently executes decision-making actions based on the current state of environment
and obtains positive or negative rewards for evaluation. Since the environment explored by one agent is limited
and each agent is unwilling to share the collected data, multiple agents try to train the policy and/or value
model together to improve model performance and increase learning efficiency. The purpose of HFRL is to
alleviate the sample-efficiency problem in RL, and help each agent quickly obtain the optimal policy which can
maximize the expected cumulative reward for specific tasks, while considering privacy protection.

In the HFRL problem, the environment, state space, and action space can replace the data set, feature space,
and label space of basic FL. More formally, we assume that 𝑁 agents {F𝑖}𝑁𝑖=1 can observe the environment
{E𝑖}𝑁𝑖=1 within their field of vision. G denotes the collection of all environments. The environment E𝑖 where
the 𝑖-th agent is located has a similar model, i.e., state transition probability and reward function compared to
other environments. Note that the environment E𝑖 is independent of the other environments, in that the state
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Figure 9. Illustration of horizontal federated reinforcement learning.

transition and reward model of E𝑖 do not depend on the states and actions of the other environments. Each
agent F𝑖 interacts with its own environment E𝑖 to learn an optimal policy. Therefore, the conditions for HFRL
are presented as follows, i.e.,

S𝑖 = S 𝑗 ,A𝑖 = A 𝑗 , E𝑖 ≠ E 𝑗 ,∀𝑖, 𝑗 ∈ {1,2,...,𝑁} , E𝑖 , E 𝑗 ∈ G, 𝑖 ≠ 𝑗 ,

where S𝑖 and S 𝑗 denote the similar state space encountered by the 𝑖-th agent and 𝑗-th agent, respectively. A𝑖

andA 𝑗 denote the similar action space of the 𝑖-th agent and 𝑗-th agent, respectivelyThe observed environment
E𝑖 andEj are two different environments that are assumed to be independent and ideally identically distributed.

Figure 9 shows theHFRL in graphic form. Each agent is represented by a cuboid. The axes of the cuboid denote
three dimensions of information, i.e., the environment, state space, and action space. We can intuitively see
that all environments are arranged horizontally, and multiple agents have aligned state and action spaces. In
other words, each agent explores independently in its respective environment, and needs to obtain optimal
strategies for similar tasks. In HFRL, agents share their experiences by exchanging masked models to enhance
sample efficiency and accelerate the learning process.

A typical example of HFRL is the autonomous driving system in IoV. As vehicles drive on roads throughout
the city and country, they can collect various environmental information and train the autonomous driving
models locally. Due to driving regulations, weather conditions, driving routes, and other factors, one vehicle
cannot be exposed to every possible situation in the environment. Moreover, the vehicles have basically the
same operations, including braking, acceleration, steering, etc. Therefore, vehicles driving on different roads,
different cities, or even different countries could share their learned experience with each other by FRLwithout
revealing their driving data according to the premise of privacy protection. In this case, even if other vehicles
have never encountered a situation, they can still perform the best action by using the shared model. The
exploration of multiple vehicles together also creates an increased chance of learning rare cases to ensure the
reliability of the model.
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Figure 10. An example of horizontal federated reinforcement learning architecture.

For a better understanding of HFRL, Figure 10 shows an example of HFRL architecture using the server-client
model. The coordinator is responsible for establishing encrypted communication with agents and implement-
ing aggregation of shared models. The multiple parallel agents may be composed of heterogeneous equipment
(e.g., IoT devices, smart phone and computers, etc.) and distributed geographically. It is worth noting that
there is no specific requirement for the number of agents, and agents are free to choose to join or leave. The
basic procedure for conducting HFRL can be summarized as follows.

• Step 1: The initialization/join process can be divided into two cases, one is when the agent has no model
locally, and the other is when the agent has amodel locally. For the first case, the agent can directly download
the shared global model from a coordinator. For the second case, the agent needs to confirm the model
type and parameters with the central coordinator.

• Step 2: Each agent independently observes the state of the environment and determines the private strategy
based on the local model. The selected action is evaluated by the next state and received reward. All agents
train respective models in state-action-reward-state (SARS) cycles.

• Step 3: Local model parameters are encrypted and transmitted to the coordinator. Agents may submit local
models at any time as long as the trigger conditions are met.

• Step 4: The coordinator conducts the specific aggregation algorithm to evolve the global federated model.
Actually, there is no need to wait for submissions from all agents, and appropriate aggregation conditions
can be formulated depending on communication resources.

• Step 5: The coordinator sends back the aggregated model to the agents.
• Step 6: The agents improve their respective models by fusing the federated model.

Following the above architecture and process, applications suitable for HFRL should meet the following char-
acteristics. First, agents have similar tasks to make decisions under dynamic environments. Different from
the FL setting, the goal of the HFRL-based application is to find the optimal strategy to maximize reward in
the future. For the agent to accomplish the task requirements, the optimal strategy directs them to perform
certain actions, such as control, scheduling, navigation, etc. Second, distributed agents maintain independent
observations. Each agent can only observe the environment within its field of view, but does not ensure that the
collected data follows the same distribution. Third, it is important to protect the data that each agent collects
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and explores. Agents are presumed to be honest but curious, i.e., they honestly follow the learning mechanism
but are curious about private information held by other agents. Due to this, the data used for training is only
stored at the owner and is not transferred to the coordinator. HFRL provides an implementation method for
sharing experiences under the constraints of privacy protection. Additionally, various reasons limit the agent’s
ability to explore the environment in a balanced manner. Participating agents may include heterogeneous
devices. The amount of data collected by each agent is unbalanced due to mobility, observation, energy and
other factors. However, all participants have sufficient computing, storage, and communication capabilities.
These capabilities assist the agent in completing model training, merging, and other basic processes. Finally,
the environment observed by a agent may change dynamically, causing differences in data distribution. The
participating agents need to update themodel in time to quickly adapt to environmental changes and construct
a personalized local model.

In existing RL studies, some applications that meet the above characteristics can be classified as HFRL. Nadiger
et al. [56] presents a typical HFRL architecture, which includes the grouping policy, the learning policy, and the
federation policy. In this work, RL is used to show the applicability of granular personalization and FL is used
to reduce training time. To demonstrate the effectiveness of the proposed architecture, a non-player character
in the Atari game Pong is implemented and evaluated. In the study from Liu et al. [57], the authors propose
the lifelong federated reinforcement learning (LFRL) for navigation in cloud robotic systems. It enables the
robot to learn efficiently in a new environment and use prior knowledge to quickly adapt to the changes in
the environment. Each robot trains a local model according to its own navigation task, and the centralized
cloud server implements a knowledge fusion algorithm for upgrading a shared model. In considering that
the local model and the shared model might have different network structures, this paper proposes to apply
transfer learning to improve the performance and efficiency of the shared model. Further, researchers also
focus on HFRL-based applications in the IoT due to the high demand for privacy protection. Ren et al. [58]
suggest deploying the FL architecture between edge nodes and IoT devices for computation offloading tasks.
IoT devices can download RL model from edge nodes and train the local model using own data, including the
remained energy resources and the workload of IoT device, etc. The edge node aggregates the updated private
model into the shared model. Although this method considers privacy protection issues, it requires further
evaluation regarding the cost of communication resources by the model exchange. In addition, the work [59]

proposes a federated deep-reinforcement-learning-based framework (FADE) for edge caching. Edge devices,
including base stations (BSs), can cooperatively learn a predictive model using the first round of training pa-
rameters for local learning, and then upload the local parameters tuned to the next round of global training.
By keeping the training on local devices, the FADE can enable fast training and decouple the learning process
between the cloud and data owner in a distributed-centralized manner. More HFRL-based applications will
be classified and summarized in the next section.

Prior to HFRL, a variety of distributed RL algorithms have been extensively investigated, which are closely
related to HFRL. In general, distributed RL algorithms can be divided into two types: synchronized and
asynchronous. In synchronous RL algorithms, such as Sync-Opt synchronous stochastic optimization (Sync-
Opt) [60] and parallel advantage actor critic (PAAC) [3], the agents explore their own environments separately,
and after a number of samples are collected, the global parameters are updated synchronously. On the contrary,
the coordinator will update the global model immediately after receiving the gradient from an arbitrary agent
in asynchronous RL algorithms, rather than waiting for other agents. Several asynchronous RL algorithms
are presented, including A3C [61], Impala [62], Ape-X [63] and general reinforcement learning architecture (Go-
rila) [1]. From the perspective of technology development, HFRL can also be considered security-enhanced
parallel RL. In parallel RL, multiple agents interact with a stochastic environment to seek the optimal policy
for the same task [1,2]. By building a closed loop of data and knowledge in parallel systems, parallel RL helps
determine the next course of action for each agent. The state and action representations are fed into a de-
signed neural network to approximate the action value function [64]. However, parallel RL typically transfers

http://dx.doi.org/10.20517/ir.2021.02


Qi et al. Intell Robot 2021;1(1):18-57 I http://dx.doi.org/10.20517/ir.2021.02 Page 36

the experience of agent without considering privacy protection issues [7]. In the implementation of HFRL, fur-
ther restrictions accompany privacy protection and communication consumption to adapt to special scenarios,
such as IoT applications [59]. In addition, another point to consider is Non-IID data. In order to ensure con-
vergence of the RL model, it is generally assumed in parallel RL that the states transitions in the environment
follow the same distribution, i.e., the environments of different agents are IID. But in actual scenarios, the
situation faced by agents may differ slightly, so that the models of environments for different agents are not
identically distributed. Therefore, HFRL needs to improve the generalization ability of the model compared
with parallel RL to meet the challenges posed by Non-IID data.

Based on the potential issues faced by the current RL technology, the advantages of HFRL can be summarized
as follows.

• Enhancing training speed. In the case of a similar target task, multiple agents sharing training experiences
gained from different environments can expedite the learning process. The local model rapidly evolves
through aggregation and update algorithms to assess the unexplored environment. Moreover, the data ob-
tained by different agents are independent, reducing correlations between the observed data. Furthermore,
this also helps to solve the issue of unbalanced data caused by various restrictions.

• Improving the reliability of model. When the dimensions of the state of the environment are enormous or
even uncountable, it is difficult for a single agent to train an optimal strategy for situations with extremely
low occurrence probabilities. Horizontal agents are exploring independently while building a cooperative
model to improve the local model’s performance on rare states.

• Mitigating the problems of devices heterogeneity. Different devices deploying RL agents in the HFRL ar-
chitecture may have different computational and communication capabilities. Some devices may not meet
the basic requirements for training, but strategies are needed to guide actions. HFRL makes it possible for
all agents to obtain the shared model equally for the target task.

• Addressing the issue of non-identical environment. Considering the differences in the environment dy-
namics for the different agents, the assumption of IID data may be broken. Under the HFRL architecture,
agents in not identically-distributed environment models can still cooperate to learn a federated model. In
order to address the difference in environment dynamics, a personalized update algorithm of local model
could be designed to minimize the impact of this issue.

• Increasing the flexibility of the system. The agent can decide when to participate in the cooperative system
at any time, because HFRL allows asynchronous requests and aggregation of shared models. In the existing
HFRL-based application, new agents also can apply for membership and benefit from downloading the
shared model.

4.3. Vertical federated reinforcement learning
In VFL, samples of multiple data sets have different feature spaces but these samples may belong to the same
groups or common users. The training data of each participant are divided vertically according to their features.
More general and accurate models can be generated by building heterogeneous feature spaces without releas-
ing private information. VFRL applies the methodology of VFL to RL and is suitable for POMDP scenarios
where different RL agents are in the same environment but have different interactions with the environment.
Specifically, different agents could have different observations that are only part of the global state. They could
take actions from different action spaces and observe different rewards, or some agents even take no actions
or cannot observe any rewards. Since the observation range of a single agent to the environment is limited,
multiple agents cooperate to collect enough knowledge needed for decision making. The role of FL in VFRL
is to aggregate the partial features observed by various agents. Especially for those agents without rewards, the
aggregation effect of FL greatly enhances the value of such agents in their interactions with the environment,
and ultimately helps with the strategy optimization. It is worth noting that in VFRL the issue of privacy pro-
tection needs to be considered, i.e., private data collected by some agents do not have to be shared with others.
Instead, agents can transmit encrypted model parameters, gradients, or direct mid-product to each other. In
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Figure 11. Illustration of vertical federated reinforcement learning.

short, the goal of VFRL is for agents interacting with the same environment to improve the performance of
their policies and the effectiveness in learning them by sharing experiences without compromising the privacy.

More formally, we denote {F𝑖}𝑁𝑖=1 as 𝑁 agents in VFRL, which interact with a global environment E. The 𝑖-th
agent F𝑖 is located in the environment E𝑖 = E, obtains the local partial observation O𝑖 , and can perform the set
of actions A𝑖 . Different from HFRL, the state/observation and action spaces of two agents F𝑖 and F𝑗 may be
not identical, but the aggregation of the state/observation spaces and action spaces of all the agents constitutes
the global state and action spaces of the global environment E. The conditions for VFRL can be defined as i.e.,

O𝑖 ≠ O 𝑗 ,A𝑖 ≠ A 𝑗 , E𝑖 = E 𝑗 = E,
𝑁∪
𝑖=1
O𝑖 =S,

𝑁∪
𝑖=1
A𝑖 =A,∀𝑖, 𝑗 ∈ {1,2,...,𝑁} , 𝑖 ≠ 𝑗 ,

where S and A denote the global state space and action space of all participant agents respectively. It can be
seen that all the observations of the 𝑁 agents together constitute the global state space S of the environment
E. Besides, the environments E𝑖 and E 𝑗 are the same environment E. In most cases, there is a great difference
between the observations of two agents F𝑖 and F𝑗 .

Figure 11 shows the architecture of VFRL. The dataset and feature space in VFL are converted to the envi-
ronment and state space respectively. VFL divides the dataset vertically according to the features of samples,
and VFRL divides agents based on the state spaces observed from the global environment. Generally speak-
ing, every agent has its local state which can be different from that of the other agents and the aggregation of
these local partial states corresponds to the entire environment state [65]. In addition, after interacting with the
environment, agents may generate their local actions which correspond to the labels in VFL.

Two types of agents can be defined forVFRL, i.e., decision-oriented agents and support-oriented agents. Decision-
oriented agents {F𝑖}𝐾𝑖=1 can interact with the environment E based on their local state {S𝑖}𝐾𝑖=1 and action
{A𝑖}𝐾𝑖=1. Meanwhile, support-oriented agents {F𝑖}𝑁𝑖=𝐾+1 take no actions and receive no rewards but only the
observations of the environment, i.e., their local states {S𝑖}𝑁𝑖=𝐾+1. In general, the following six steps, as shown
in Figure 12, are the basic procedure for VFRL, i.e.,
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Figure 12. An example of vertical federated reinforcement learning architecture.

• Step 1: Initialization is performed for all agent models.
• Step 2: Agents obtain states from the environment. For decision-oriented agents, actions are obtained based
on the local models, and feedbacks are obtained through interactions with the environment, i.e., the states
of the next time step and rewards. The data tuple of state-action-reward-state (SARS) is used to train the
local models.

• Step 3: All agents calculate the mid-products of the local models and then transmit the encrypted mid-
products to the federated model.

• Step 4: The federatedmodel performs the aggregation calculation for mid-products and trains the federated
model based on the aggregation results.

• Step 5: Federated model encrypts model parameters such as weight and gradient and passes them back to
other agents.

• Step 6: All agents update their local models based on the received encrypted parameters.

As an example of VFRL, consider a microgrid (MG) system including household users, the power company,
and the photovoltaic (PV) management company as the agents. All the agents observe the same MG environ-
ment while their local state spaces are quite different. The global states of the MG system generally consist of
several dimensions/features, i.e., state-of-charge (SOC) of the batteries, load consumption of the household
users, power generation from PV, etc. The household agents can obtain the SOC of their own batteries and
their own load consumption, the power company can know the load consumption of all the users, and PV
management company can know the power generation of PV. As to the action, the power company needs
to make decisions on the power dispatch of the diesel generators (DG), and the household users can make
decisions to manage their electrical utilities with demand response. Finally, the power company can observe
rewards such as the cost of DG power generation, the balance between power generation and consumption,
and the household users can observe rewards such as their electricity bill that is related to their power con-
sumption. In order to learn the optimal policies, these agents need to communicate with each other to share
their observations. However, PV managers do not want to expose their data to other companies, and house-
hold users also want to keep their consumption data private. In this way, VFRL is suitable to achieve this goal
and can help improve policy decisions without exposing specific data.

Compared with HFRL, there are currently few works on VFRL. Zhuo et al. [65] present the federated deep
reinforcement learning (FedRL) framework. The purpose of this paper is to solve the challenge where the
feature space of states is small and the training data are limited. Transfer learning approaches in DRL are
also solutions for this case. However, when considering the privacy-aware applications, directly transferring
data or models should not be used. Hence, FedRL combines the advantage of FL with RL, which is suitable
for the case when agents need to consider their privacy. FedRL framework assumes agents cannot share their
partial observations of the environment and some agents are unable to receive rewards. It builds a shared value
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network, i.e., multiLayer perceptron (MLP), and takes its ownQ-network output and encryption value as input
to calculate a global Q-network output. Based on the output of global Q-network, the shared value network
and self Q-network are updated. Two agents are used in the FedRL algorithm, i.e., agent 𝛼 and 𝛽, which
interact with the same environment. However, agent 𝛽 cannot build its own policies and rewards. Finally,
FedRL is applied in two different games, i.e., Grid-World and Text2Action, and achieves better results than the
other baselines. Although the VFRL model in this paper only contains two agents, and the structure of the
aggregated neural network model is relatively simple, we believe that it is a great attempt to first implement
VFRL and verify its effectiveness.

Multi-agent RL (MARL) is very closely related to VFRL. As the name implies, MARL takes into account the
existence of multiple agents in the RL system. However, the empirical evaluation shows that applying the
simple single-agent RL algorithms directly to scenarios of multiple agents cannot converge to the optimal
solution, since the environment is no longer static from the perspective of each agent [66]. In specific, the
action of each agent will affect the next state, thus affecting all agents in the future time step [67]. Besides, the
actions performed by one certain agent will yield different rewards depending on the actions taken by other
agents. This means that agents in MARL correlate with each other, rather than being independent of each
other. This challenge, called as the non-stationarity of the environment, is the main problem to be solved in
the development of an efficient MARL algorithm [68].

MARL and VFRL both study the problem of multiple agents learning concurrently how to solve a task by
interacting with the same environment [69]. Since MARL and VFRL have a large range of similarities, the
review of MARL’s related works is a very useful guide to help researchers summarize the research focus and
better understand VFRL. There is abundant literature related to MARL. However, most MARL research [70–73]

is based on a fully observed markov decision process (MDP), where each agent is assumed to have the global
observation of the system state [68]. These MARL algorithms are not applicable to the case of POMDP where
the observations of individual agents are often only a part of the overall environment [74]. Partial observability
is a crucial consideration for the development of algorithms that can be applied to real-world problems [75].
Since VFRL is mainly oriented towards POMDP scenarios, it is more important to analyze the related works
of MARL based on POMDP as the guidance of VFRL.

Agents in the above scenarios partially observe the system state and make decisions at each step to maximize
the overall rewards for all agents, which can be formalized as a decentralized partially observable markov de-
cision process (Dec-POMDP) [76]. Optimally addressing a Dec-POMDP model is well known to be a very
challenging problem. In the early works, Omidshafiei et al. [77] proposes a two-phase MT-MARL approach
that concludes the methods of cautiously-optimistic learners for action-value approximation and concurrent
experience replay trajectories (CERTs) as the experience replay targeting sample-efficient and stable MARL.
The authors also apply the recursive neural network (RNN) to estimate the non-observed state and hysteretic
Q-learning to address the problem of non-stationarity in Dec-POMDP. Han et al. [78] designs a neural net-
work architecture, IPOMDP-net, which extends QMDP-net planning algorithm [79] to MARL settings under
POMDP. Besides, Mao et al. [80] introduces the concept of information state embedding to compress agents’
histories and proposes an RNN model combining the state embedding. Their method, i.e., embed-then-learn
pipeline, is universal since the embedding can be fed into any existing partially observable MARL algorithm as
the black-box. In the study from Mao et al. [81], the proposed Attention MADDPG (ATT-MADDPG) has sev-
eral critic networks for various agents under POMDP. A centralized critic is adopted to collect the observations
and actions of the teammate agents. Specifically, the attentionmechanism is applied to enhance the centralized
critic. The final introduced work is from Lee et al. [82]. They present an augmentingMARL algorithm based on
pretraining to address the challenge in disaster response. It is interesting that they use behavioral cloning (BC),
a supervised learning method where agents learn their policy from demonstration samples, as the approach
to pretrain the neural network. BC can generate a feasible Dec-POMDP policy from demonstration samples,
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which offers advantages over plain MARL in terms of solution quality and computation time.

SomeMARL algorithms also concentrate on the communication issue of POMDP. In the study fromSukhbaatar
et al. [83], communication between the agents is performed for a number of rounds before their action is se-
lected. The communication protocol is learned concurrently with the optimal policy. Foerster et al. [84] pro-
poses a deep recursive network architecture, i.e., deep distributed recurrent Q-network (DDRQN), to address
the communication problem in a multi-agent partially-observable setting. This work makes three fundamen-
tal modifications to previous algorithms. The first one is last-action inputs, which let each agent access its
previous action as an input for the next time-step. Besides, inter-agent weight sharing allows diverse behavior
between agents, as the agents receive different observations and thus evolve in different hidden states. The
final one is disabling experience replay, which is because the non-stationarity of the environment renders old
experiences obsolete or misleading. Foerster et al. [84] considers the communication task of fully cooperative,
partially observable, sequential multi-agent decision-making problems. In their systemmodel, each agent can
receive a private observation and take actions that affect the environment. In addition, the agent can also
communicate with its fellow agents via a discrete limited-bandwidth channel. Despite the partial observability
and limited channel capacity, authors achieved the task that the two agents could discover a communication
protocol that enables them to coordinate their behavior based on the approach of deep recurrent Q-networks.

While there are some similarities between MARL and VFRL, several important differences have to be paid
attention to, i.e.,

• VFRL and some MARL algorithms are able to address similar problems, e.g., the issues of POMDP. How-
ever, there are differences between the solution ideas between two algorithms. Since VFRL is the product
of applying VFL to RL, the FL component of VFRL focuses more on the aggregation of partial features, in-
cluding states and rewards, observed by different agents since VFRL inception. Security is also an essential
issue in VFRL. On the contrary, MARL may arise as the most natural way of adding more than one agent
in a RL system [85]. In MARL, agents not only interact with the environment, but also have complex inter-
active relationships with other agents, which creates a great obstacle to the solution of policy optimization.
Therefore, the original intentions of two algorithms are different.

• Two algorithms are slightly different in terms of the structure. The agents in MARL must surely have the
reward even some of them may not have their own local actions. However, in some cases, the agents in
VFRL are not able to generate a corresponding operation policy, so in these cases, some agents have no
actions and rewards [65]. Therefore, VFRL can solve more extensive problems that MARL is not capable of
solving.

• Both two algorithms involve the communication problem between agents. In MARL, information such
as the states of other agents and model parameters can be directly and freely propagated among agents.
During communication, some MARL methods such as DDRQN in the work of Foerster et al. [84] consider
the previous action as an input for the next time-step state. Weight sharing is also allowed between agents.
However, VFRL assumes states cannot be shared among agents. Since these agents do not exchange ex-
perience and data directly, VFRL focuses more on security and privacy issues of communication between
agents, as well as how to process mid-products transferred by other agents and aggregate federated models.

In summary, as a potential and notable algorithm, VFRL has several advantages as follows, i.e.,

• Excellent privacy protection. VFRL inherits the FL algorithm’s idea of data privacy protection, so for the
task of multiple agents cooperation in the same environment, information interaction can be carried out
confidently to enhance the learning efficiency of RL model. In this process, each participant does not have
to worry about any leakage of raw real-time data.

• Wide application scenarios. With appropriate knowledge extraction methods, including algorithm design
and system modeling, VFRL can solve more real-world problems compared with MARL algorithms. This
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is because VFRL can consider some agents that cannot generate rewards into the system model, so as to
integrate their partial observation information of the environment based on FL while protecting privacy,
train a more robust RL agent, and further improve learning efficiency.

4.4. Other types of FRL
The above HFRL or VFRL algorithms borrow ideas from FL for federation between RL agents. Meanwhile,
there are also some existing works on FRL that are less affected by FL. Hence, they do not belong to either
HFRL or VFRL, but federation between agents is also implemented.

The study from Hu et al. [86] is a typical example, which proposes a reward shaping based general FRL algo-
rithm, called federated reward shaping (FRS). It uses reward shaping to share federated information to improve
policy quality and training speed. FRS adopts the server-client architecture. The server includes the federated
model, while each client completes its own tasks based on the local model. This algorithm can be combined
with different kinds of RL algorithms. However, it should be noted that FRS focuses on reward shaping, this
algorithm cannot be used when there is no reward in some agents in VFRL. In addition, FRS performs knowl-
edge aggregation by sharing high-level information such as reward shaping value or embedding between client
and server instead of sharing experience or policy directly. The convergence of FRS is also guaranteed since
onlyminor changes are made during the learning process, which is themodification of the reward in the replay
buffer.

As another example, Anwar et al. [87] achieves federation between agents by smoothing the average weight.
This work analyzes the Multi-task FRL algorithms (MT-FedRL) with adversaries. Agents only interact and
make observations in their environment, which can be featured by different MDPs. Different from HFRL, the
state and action spaces do not need to be the same in these environments. The goal of MT-FedRL is to learn
a unified policy, which is jointly optimized across all of the environments. MT-FedRL adopts policy gradient
methods for RL. In other words, policy parameter is needed to learn the optimal policy. The server-client
architecture is also applied and all agents should share their own information with a centralized server. The
role of non-negative smoothing average weights is to achieve a consensus among the agents’ parameters. As a
result, they can help to incorporate the knowledge from other agents as the process of federation.

5. APPLICATIONS OF FRL
In this section, we provide an extensive discussion of the application of FRL in a variety of tasks, such as edge
computing, communications, control optimization, attack detection, etc. This section is aimed at enabling
readers to understand the applicable scenarios and research status of FRL.

5.1. FRL for edge computing
In recent years, edge equipment, such as BSs and road side units (RSUs), has been equipped with increasingly
advanced communication, computing and storage capabilities. As a result, edge computing is proposed to
delegating more tasks to edge equipment in order to reduce the communication load and reduce the corre-
sponding delay. However, the issue of privacy protection remains challenging since it may be untrustworthy
for the data owner to hand off their private information to a third-party edge server [4]. FRL offers a poten-
tial solution for achieving privacy-protected intelligent edge computing, especially in decision-making tasks
like caching and offloading. Additionally, the multi-layer processing architecture of edge computing is also
suitable for implementing FRL through the server-client model. Therefore, many researchers have focused on
applying FRL to edge computing.

The distributed data of large-scale edge computing architecturemakes it possible for FRL to provide distributed
intelligent solutions to achieve resource optimization at the edge. For mobile edge networks, a potential FRL
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framework is presented for edge system [88], named as “In-Edge AI”, to address optimization of mobile edge
computing, caching, and communication problems. The authors also propose some ideas and paradigms for
solving these problems by using DRL and Distributed DRL. To carry out dynamic system-level optimization
and reduce the unnecessary transmission load, “In-Edge AI” framework takes advantage of the collaboration
among edge nodes to exchange learning parameters for better training and inference of models. It has been
evaluated that the framework has high performance and relatively low learning overhead, while the mobile
communication system is cognitive and adaptive to the environment. The paper provides good prospects
for the application of FRL to edge computing, but there are still many challenges to overcome, including the
adaptive improvement of the algorithm, and the training time of the model from scratch etc.

Edge caching has been considered a promising technique for edge computing to meet the growing demands
for next-generation mobile networks and beyond. Addressing the adaptability and collaboration challenges of
the dynamic network environment, Wang et al. [89] proposes a device-to-device (D2D)-assisted heterogeneous
collaborative edge caching framework. User equipment (UE) in a mobile network uses the local DQN model
to make node selection and cache replacement decisions based on network status and historical information.
In other words, UE decides where to fetch content and which content should be replaced in its cache list. The
BS calculates aggregation weights based on the training evaluation indicators from UE. To solve the long-term
mixed-integer linear programming problem, the attention-weighted federated deep reinforcement learning
(AWFDRL) is presented, which optimizes the aggregation weights to avoid the imbalance of the local model
quality and improve the learning efficiency of the DQN.The convergence of the proposed algorithm is verified
and simulation results show that the AWFDRL framework can perform well on average delay, hit rate, and
offload traffic.

A federated solution for cooperative edge caching management in fog radio access networks (F-RANs) is pro-
posed [90]. Both edge computing and fog computing involve bringing intelligence and processing to the origins
of data. The key difference between the two architectures is where the computing node is positioned. A du-
eling deep Q-network based cooperative edge caching method is proposed to overcome the dimensionality
curse of RL problem and improve caching performance. Agents are developed in fog access points (F-APs)
and allowed to build a local caching model for optimal caching decisions based on the user content request
and the popularity of content. HFRL is applied to aggregate the local models into a global model in the cloud
server. The proposed method outperforms three classical content caching methods and two RL algorithms in
terms of reducing content request delays and increasing cache hit rates.

For edge-enabled IoT, Majidi et al. [91] proposes a dynamic cooperative caching method based on hierarchical
federated deep reinforcement learning (HFDRL), which is used to determine which content should be cached
or evicted by predicting future user requests. Edge devices that have a strong relationship are grouped into
a cluster and one head is selected for this cluster. The BS trains the Q-value based local model by using BS
states, content states, and request states. The head has enough processing and caching capabilities to deal with
model aggregation in the cluster. By categorizing edge devices hierarchically, HFDRL improves the response
time delay to keeps both small and large clusters from experiencing the disadvantages they could encounter.
Storage partitioning allows content to be stored in clusters at different levels using the storage space of each
device. The simulation results show the proposed method using MovieLens datasets improves the average
content access delay and the hit rate.

Considering the low latency requirements and privacy protection issue of IoV, the study of efficient and secure
caching methods has attracted many researchers. An FRL-empowered task caching problem with IoV has
been analyzed by Zhao et al. [92]. The work proposes a novel cooperative caching algorithm (CoCaRL) for
vehicular networks with multi-level FRL to dynamically determine which contents should be replaced and
where the content requests should be served. This paper develops a two-level aggregation mechanism for
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federated learning to speed up the convergence rate and reduces communication overhead, while DRL task is
employed to optimize the cooperative caching policy between RSUs of vehicular networks. Simulation results
show that the proposed algorithm can achieve a high hit rate, good adaptability and fast convergence in a
complex environment.

Apart from caching services, FRL has demonstrated its strong ability to facilitate resource allocation in edge
computing. In the study fromZhu et al. [93], the authors specifically focus on the data offloading task formobile
edge computing (MEC) systems. To achieve joint collaboration, the heterogeneousmulti-agent actor-critic (H-
MAAC) framework is proposed, in which edge devices independently learn the interactive strategies through
their own observations. The problem is formulated as a multi-agent MDP for modeling edge devices’ data
allocation strategies, i.e., moving the data, locally executing or offloading to a cloud server. The corresponding
joint cooperation algorithm that combines the edge federatedmodel with themulti-agent actor-critic RL is also
presented. Dual lightweight neural networks are built, comprising original actor/critic networks and target
actor/critic networks.

Blockchain technology has also attracted lot attention from researchers in edge computing fields since it is able
to provide reliable data management within the massive distributed edge nodes. In the study from Yu et al. [94],
the intelligent ultra-dense edge computing (I-UDEC) framework is proposed, integrating with blockchain and
RL technologies into 5G ultra-dense edge computing networks. In order to achieve low overhead computation
offloading decisions and resource allocation strategies, authors design a two-timescale deep reinforcement
learning (2Ts-DRL) approach, which consists of a fast-timescale and a slow-timescale learning process. The
target model can be trained in a distributed manner via FL architecture, protecting the privacy of edge devices.

Additionally, to deal with the different types of optimization tasks, variants of FRL are being studied. Zhu et
al. [95] presents a resource allocation method for edge computing systems, called concurrent federated rein-
forcement learning (CFRL). The edge node continuously receives tasks from serviced IoT devices and stores
those tasks in a queue. Depending on its own resource allocation status, the node determines the scheduling
strategy so that all tasks are completed as soon as possible. In case the edge host does not have enough available
resources for the task, the task can be offloaded to the server. Contrary to the definition of the central server
in the basic FRL, the aim of central server in CFRL is to complete the tasks that the edge nodes cannot handle
instead of aggregating local models. Therefore, the server needs to train a special resource allocation model
based on its own resource status, forwarded tasks and unique rewards. The main idea of CFRL is that edge
nodes and the server cooperatively participate in all task processing in order to reduce total computing time
and provide a degree of privacy protection.

5.2. FRL for communication networks
In parallel with the continuous evolution of communication technology, a number of heterogeneous commu-
nication systems are also being developed to adapt to different scenarios. Many researchers are also working
toward intelligent management of communication systems. The traditional ML-based management methods
are often inefficient due to their centralized data processing architecture and the risk of privacy leakage [5]. FRL
can play an important role in services slicing and access controlling to replace centralized ML methods.

In communication network services, network function virtualization (NFV) is a critical component of achiev-
ing scalability and flexibility. Huang et al. [96] proposes a novel scalable service function chains orchestration
(SSCO) scheme for NFV-enabled networks via FRL. In the work, a federated-learning-based framework for
training global learning, along with a time-variant local model exploration, is designed for scalable SFC orches-
tration. It prevents data sharing among stakeholders and enables quick convergence of the global model. To
reduce communication costs, SSCO allows the parameters of local models to be updated just at the beginning
and end of each episode through distributed clients and the cloud server. A DRL approach is used to map
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virtual network functions (VNFs) into networks with local knowledge of resources and instantiation cost. In
addition, the authors also propose a loss-weight-based mechanism for generation and exploitation of refer-
ence samples for training in replay buffers, avoiding the strong relevance of each sample. Simulation results
demonstrate that SSCO can significantly reduce placement errors and improve resource utilization ratios to
place time-variant VNFs, as well as achieving desirable scalability.

Network slicing (NS) is also a form of virtual network architecture to support divergent requirements sustain-
ably. The work from Liu et al. [97] proposes a device association scheme (such as access control and handover
management) for radio access network (RAN) slicing by exploiting a hybrid federated deep reinforcement
learning (HDRL) framework. In view of the large state-action space and variety of services, HDRL is designed
with two layers of model aggregations. Horizontal aggregation deployed on BSs is used for the same type of
service. Generally, data samples collected by different devices within the same service have similar features.
The discrete-action DRL algorithm, i.e., DDQN, is employed to train the local model on individual smart
devices. BS is able to aggregate model parameters and establish a cooperative global model. Vertical aggre-
gation developed on the third encrypted party is responsible for the services of different types. In order to
promote collaboration between devices with different tasks, authors aggregate local access features to form a
global access feature, in which the data from different flows is strongly correlated since different data flows
are competing for radio resources with each other. Furthermore, the Shapley value [98], which represents the
average marginal contribution of a specific feature across all possible feature combinations, is used to reduce
communication cost in vertical aggregation based on the global access feature. Simulation results show that
HDRL can improve network throughput and communication efficiency.

The open radio access network (O-RAN) has emerged as a paradigm for supporting multi-class wireless ser-
vices in 5G and beyond networks. To deal with the two critical issues of load balance and handover control,
Cao et al. [99] proposes a federated DRL-based scheme to train the model for user access control in the O-RAN.
Due to the mobility of UEs and the high cost of the handover between BSs, it is necessary for each UE to
access the appropriate BS to optimize its throughput performance. As independent agents, UEs make access
decisions with assistance from a global model server, which updates global DQN parameters by averaging
DQN parameters of selected UEs. Further, the scheme proposes only partially exchanging DQN parameters
to reduce communication overheads, and using the dueling structure to allow convergence for independent
agents. Simulation results demonstrate that the scheme increases long-term throughput while avoiding fre-
quent handovers of users with limited signaling overheads.

The issue of optimizing user access is important in wireless communication systems. FRL can provide inter-
esting solutions for enabling efficient and privacy-enhanced management of access control. Zhang et al. [100]
studies the problem of multi-user access in WIFI networks. In order to mitigate collision events on channel
access, an enhancedmultiple accessmechanism based on FRL is proposed for user-dense scenarios. In particu-
lar, distributed stations train their local q-learning networks through channel state, access history and feedback
from central access point (AP). AP uses the central aggregation algorithm to update the global model every
period of time and broadcast it to all stations. In addition, a monte carlo (MC) reward estimation method for
the training phase of local model is introduced, which allocates more weight to the reward of that current state
by reducing the previous cumulative reward.

FRL is also studied for intelligent cyber-physical systems (ICPS), which aims to meet the requirements of intel-
ligent applications for high-precision, low-latency analysis of big data. In light of the heterogeneity brought by
multiple agents, the central RL-based resource allocation scheme has non-stationary issues and does not con-
sider privacy issues. Therefore, the work fromXu et al. [101] proposes a multi-agent FRL (MA-FRL)mechanism
which synthesizes a good inferential global policy from encrypted local policies of agents without revealing
private information. The data resource allocation and secure communication problems are formulated as a
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Stackelberg game with multiple participants, including near devices (NDs), far devices (FDs) and relay devices
(RDs). Take into account the limited scope of the heterogeneous devices, the authors model this multi-agent
system as a POMDP. Furthermore, it is proved that MA-FRL is 𝜇-strongly convex and 𝛽-smooth and derives
its convergence speed in expectation.

Zhang et al. [102] pays attention to the challenges in cellular vehicle-to-everything (V2X) communication for
future vehicular applications. A joint optimization problem of selecting the transmission mode and allocating
the resources is presented. This paper proposes a decentralized DRL algorithm for maximizing the amount of
available vehicle-to-infrastructure capacity while meeting the latency and reliability requirements of vehicle-
to-vehicle (V2V) pairs. Considering limited local training data at vehicles, the federated learning algorithm
is conducted on a small timescale. On the other hand, the graph theory-based vehicle clustering algorithm is
conducted on a large timescale.

The development of communication technologies in extreme environments is important, including deep un-
derwater exploration. The architecture and philosophy of FRL are applied to smart ocean applications in the
study of Kwon [103]. To deal with the nonstationary environment and unreliable channels of underwater wire-
less networks, the authors propose a multi-agent DRL-based algorithm that can realize FL computation with
internet-of-underwater-things (IoUT) devices in the ocean environment. The cooperative model is trained by
MADDPG for cell association and resource allocation problems. As for downlink throughput, it is found that
the proposed MADDPG-based algorithm performed 80% and 41% better than the standard actor-critic and
DDPG algorithms, respectively.

5.3. FRL for control optimization
Reinforcement learning based control schemes are considered as one of the most effective ways to learn a
nonlinear control strategy in complex scenarios, such as robotics. Individual agent’s exploration of the envi-
ronment is limited by its own field of vision and usually needs a great deal of training to obtain the optimal
strategy. The FRL-based approach has emerged as an appealing way to realize control optimization without
exposing agent data or compromising privacy.

Automated control of robots is a typical example of control optimization problems. Liu et al. [57] discusses
robot navigation scenarios and focuses on how to make robots transfer their experience so that they can make
use of prior knowledge and quickly adapt to changing environments. As a solution, a cooperative learning
architecture, called LFRL, is proposed for navigation in cloud robotic systems. Under the FRL-based architec-
ture, the authors propose a corresponding knowledge fusion algorithm to upgrade the shared model deployed
on the cloud. In addition, the paper also discusses the problems and feasibility of applying transfer learning
algorithms to different tasks and network structures between the shared model and the local model.

FRL is combined with autonomous driving of robotic vehicles in the study of Liang et al. [104]. To reach rapid
training from a simulation environment to a real-world environment, Liang et al. [104] presents a federated
transfer reinforcement learning (FTRL) framework for knowledge extraction where all the vehicles make cor-
responding actions with the knowledge learned by others. The framework can potentially be used to trainmore
powerful tasks by pooling the resources of multiple entities without revealing raw data information in real-life
scenarios. To evaluate the feasibility of the proposed framework, authors perform real-life experiments on
steering control tasks for collision avoidance of autonomous driving robotic cars and it is demonstrated that
the framework has superior performance to the non-federated local training process. Note that the framework
can be considered an extension of HFRL, because the target tasks to be accomplished are highly-relative and
all observation data are pre-aligned.

FRL also appears as an attractive approach for enabling intelligent control of IoT devices without revealing
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private information. Lim et al. [105] proposes a FRL architecture which allows agents working on independent
IoT devices to share their learning experiences with each other, and transfer the policy model parameters to
other agents. The aim is to effectively control multiple IoT devices of the same type but with slightly different
dynamics. Whenever an agent meets the predefined criteria, its mature model will be shared by the server
with all other agents in training. The agents continue training based on the shared model until the local model
converges in the respective environment. The actor-critical proximal policy optimization (Actor-Critic PPO)
algorithm is integrated into the control of multiple rotary inverted pendulum (RIP) devices. The results show
that the proposed architecture facilitates the learning process and if more agents participate the learning speed
can be improved. In addition, Lim et al. [106] uses FRL architecture based on a multi-agent environment to
solve the problems and limitations of RL for applications to the real-world problems. The proposed federation
policy allows multiple agents to share their learning experiences to get better learning efficacy. The proposed
scheme adopts Actor-Critic PPO algorithm for four types of RL simulation environments from OpenAI Gym
as well as RIP in real control systems. Compared to a previous real-environment study, the scheme enhances
learning performance by approximately 1.2 times.

5.4. FRL for attack detection
With the heterogeneity of services and the sophistication of threats, it is challenging to detect these attacks
using traditional methods or centralized ML-based methods, which have a high false alarm rate and do not
take privacy into account. FRL offers a powerful alternative to detecting attacks and provides support for
network defense in different scenarios.

Because of various constraints, IoT applications have become a primary target for malicious adversaries that
can disrupt normal operations or steal confidential information. In order to address the security issues in flying
ad-hoc network (FANET), Mowla et al. [107] proposes an adaptive FRL-based jamming attack defense strategy
for unmanned aerial vehicles (UAVs). A model-free Q-learning mechanism is developed and deployed on
distributed UAVs to cooperatively learn detection models for jamming attacks. According to the results, the
average accuracy of the federated jamming detection mechanism, employed in the proposed defense strategy,
is 39.9% higher than the distributed mechanism when verified with the CRAWDAD standard and the ns-3
simulated FANET jamming attack dataset.

An efficient traffic monitoring framework, known as DeepMonitor, is presented in the study of Nguyen et
al. [108] to provide fine-grained traffic analysis capability at the edge of software defined network (SDN) based
IoT networks. The agents deployed in edge nodes consider the different granularity-level requirements and
their maximum flow-table capacity to achieve the optimal flow rule match-field strategy. The control optimiza-
tion problem is formulated as the MDP and a federated DDQN algorithm is developed to improve the learning
performance of agents. The results show that the proposed monitoring framework can produce reliable traffic
granularity at all levels of traffic granularity and substantially mitigate the issue of flow-table overflows. In ad-
dition, the distributed denial of service (DDoS) attack detection performance of an intrusion detection system
can be enhanced by up to 22.83% by using DeepMonitor instead of FlowStat.

In order to reduce manufacturing costs and improve production efficiency, the industrial internet of things
(IIoT) is proposed as a potentially promising research direction. It is a challenge to implement anomaly de-
tection mechanisms in IIoT applications with data privacy protection. Wang et al. [109] proposes a reliable
anomaly detection strategy for IIoT using FRL techniques. In the system framework, there are four entities
involved in establishing the detection model, i.e., the Global Anomaly Detection Center (GADC), the Local
Anomaly Detection Center (LADC), the Regional Anomaly Detection Center (RADC), and the users. The
anomaly detection is suggested to be implemented in two phases, including anomaly detection for RADC and
users. Especially, the GADC can build global RADC anomaly detection models based on local models trained
by LADCs. Different from RADC anomaly detection based on action deviations, user anomaly detection is
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mainly concerned with privacy leakage and is employed by RADC and GADC. Note that the DDPG algorithm
is applied for local anomaly detection model training.

5.5. FRL for other applications
Due to the outstanding performance of training efficiency and privacy protection, many researchers are ex-
ploring the possible applications of FRL.

FL has been applied to realize distributed energy management in IoT applications. In the revolution of smart
home, smart meters are deployed in the advanced metering infrastructure (AMI) to monitor and analyze the
energy consumption of users in real-time. As an example [110], the FRL-based approach is proposed for the
energy management of multiple smart homes with solar PVs, home appliances, and energy storage. Multiple
local home energy management systems (LHEMSs) and a global server (GS) make up FRL architecture of
the smart home. DRL agents for LHEMSs construct and upload local models to the GS by using energy
consumption data. The GS updates the global model based on local models of LHEMSs using the federated
stochastic gradient descent (FedSGD) algorithm. Under heterogeneous home environments, simulation results
indicate that the proposed approach outperforms others when it comes to convergence speed, appliance energy
consumption, and the number of agents.

Moreover, FRL offers an alternative to share information with low latency and privacy preservation. The col-
laborative perception of vehicles provided by IoV can greatly enhance the ability to sense things beyond their
line of sight, which is important for autonomous driving. Region quadtrees have been proposed as a storage
and communication resource-saving solution for sharing perception information [111]. It is challenging to tai-
lor the number and resolution of transmitted quadtree blocks to bandwidth availability. In the framework of
FRL, Mohamed et al. [112] presents a quadtree-based point cloud compression mechanism to select coopera-
tive perception messages. Specifically, over a period of time, each vehicle covered by an RSU transfers its latest
network weights with the RSU, which then averages all of the received model parameters and broadcasts the
result back to the vehicles. Optimal sensory information transmission (i.e., quadtree blocks) and appropri-
ate resolution levels for a given vehicle pair are the main objectives of a vehicle. The dueling and branching
concepts are also applied to overcome the vast action space inherent in the formulation of the RL problem.
Simulation results show that the learned policies achieve higher vehicular satisfaction and the training process
is enhanced by FRL.

5.6. Lessons Learned
In the following, we summarize themajor lessons learned from this survey in order to provide a comprehensive
understanding of current research on FRL applications.

5.6.1. Lessons learned from the aggregation algorithms
The existing FRL literature usually uses classical DRL algorithms, such as DQN and DDPG, at the participants,
while the gradients or parameters of the critic and/or actor networks are periodically reported synchronously
or asynchronously by the participants to the coordinator. The coordinator then aggregates the parameters
or gradients and sends the updated values to the participants. In order to meet the challenges presented by
different scenarios, the aggregation algorithms have been designed as a key feature of FRL. In the original
FedAvg algorithm [12], the number of samples in a participant’s dataset determines its influence on the global
model. In accordance with this idea, several papers propose different methods to calculate the weights in the
aggregation algorithms according to the requirement of application. In the study from Lim et al. [106], the aggre-
gation weight is derived from the average of the cumulative rewards of the last ten episodes. Greater weights
are placed on the models of those participants with higher rewards. In contrast to the positive correlation
of reward, Huang et al. [96] takes the error rate of action as an essential factor to assign weights for participat-
ing in the global model training. In D2D -assisted edge caching, Wang et al. [89] uses the reward and some
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device-related indicators as the measurement to evaluate the local model’s contribution to the global model.
Moreover, the existing FRL methods based on offline DRL algorithms, such DQN and DDPG, usually use ex-
perience replay. Sampling random batch from replay memory can break correlations of continuous transition
tuples and accelerate the training process. To arrive at an accurate evaluation of the participants, the paper [102]

calculates the aggregation weight based on the size of the training batch in each iteration.

The above aggregation methods can effectively deal with the issue of data imbalance and performance dis-
crepancy between participants, but it is hard for participants to cope with subtle environmental differences.
According to the paper [105], as soon as a participant reaches the predefined criteria in its own environment, it
should stop learning and send its model parameters as a reference to the remaining individuals. Exchanging
mature network models (satisfying terminal conditions) can help other participants complete their training
quickly. Participants in other similar environments can continue to use FRL for further updating their param-
eters to achieve the desired model performance according to their individual environments. Liu et al. [57] also
suggests that the sharing global model in the cloud is not the final policy model for local participants. An
effective transfer learning should be applied to resolve the structural difference between the shared network
and private network.

5.6.2. Lessons learned from the relationship between FL and RL
Inmost of the literature on FRL, FL is used to improve the performance of RL.With FL, the learning experience
can be shared among decentralized multiple parties while ensuring privacy and scalability without requiring
direct data offloading to servers or third parties. Therefore, FL can expand the scope and enhance the security
of RL. Among the applications of FRL,most researchers focus on the communication network system due to its
robust security requirements, advanced distributed architecture, and a variety of decision-making tasks. Data
offloading [93] and caching [89] solutions powered by distributed AI are available from FRL. In addition, with
the ability to detect a wide range of attacks and support defense solutions, FRL has emerged as a strong alter-
native for performing distributed learning for security-sensitive scenarios. Enabled by the privacy-enhancing
and cooperative features, detection and defense solutions can be learned quickly where multiple participants
join to build a federated model [107,109]. FRL can also provide viable solutions to realize intelligence for control
systems with many applied domains such as robotics [57] and autonomous driving [104] without data exchange
and privacy leakage. The data owners (robot or vehicle) may not trust the third-party server and therefore hes-
itate to upload their private information to potentially insecure learning systems. Each participant of FRL runs
a separate RLmodel for determining its own control policy and gains experience by sharing model parameters,
gradients or losses.

Meanwhile, RL may have the potential to optimize FL schemes and improve the efficiency of training. Due
to the unstable network connectivity, it is not practical for FL to update and aggregate models simultaneously
across all participants. Therefore, Wang et al. [113] proposes a RL-based control framework that intelligently
chooses the participants to participate in each round of FL with the aim to speed up convergence. Similarly,
Zhang et al. [114] applies RL to pre-select a set of candidate edge participants, and then determine reliable edge
participants through social attribute perception. In IoT or IoV scenarios, due to the heterogeneous nature
of participating devices, different computing and communication resources are available to them. RL can
speed up training by coordinating the allocation of resources between participants. Zhan et al. [115] defines
the L4L (Learning for Learning) concept, i.e., use RL to improve FL. Using the heterogeneity of participants
and dynamic network connections, this paper investigates a computational resource control problem for FL
that simultaneously considers learning time and energy efficiency. An experience-driven resource control
approach based on RL is presented to derive the near-optimal strategy with only the participants’ bandwidth
information in the previous training rounds. In addition, as with any other ML algorithm, FL algorithms are
vulnerable to malicious attacks. RL has been studied to defend against attacks in various scenarios, and it
can also enhance the security of FL. The paper [116] proposes a reputation-aware RL (RA-RL) based selection
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method to ensure that FL is not disrupted. The participating devices’ attributes, including computing resources
and trust values, etc, are used as part of the environment in RL. In the aggregation of the global model, devices
with high reputation levels will have a greater chance of being considered to reduce the effects of malicious
devices mixed into FL.

5.6.3. Lessons learned from categories of FRL
As discussed above, FRL can be divided into two main categories, i.e., HFRL and VFRL. Currently, most of
the existing research is focused on HFRL, while little attention is devoted to VFRL. The reason for this is
that HFRL has obvious application scenarios, where multiple participants have similar decision-making tasks
with individual environments, such as caching allocation [59], offloading optimization [58], and attack monitor-
ing [108]. The participants and coordinator only need to train a similar model with the same state and action
spaces. Consequently, the algorithm design can be implemented and the training convergence can be veri-
fied relatively easily. On the other hand, even though VFRL has a higher degree of technical difficulty at the
algorithm design level, it also has a wide range of possible applications. In a multi-agent scenario, for exam-
ple, a single agent is limited by its ability to observe only part of the environment, whereas the transition of
the environment is determined by the behavior of all the agents. Zhuo et al. [65] assumes agents cannot share
their partial observations of the environment and some agents are unable to receive rewards. The federated
Q-network aggregation algorithm between two agents is proposed for VFRL.The paper [97] specifically applies
both HFRL and VFRL for radio access network slicing. For the same type of services, similar data samples
are trained locally at participating devices, and BSs perform horizontal aggregation to integrate a cooperative
access model by adopting an iterative approach. The terminal device also can optimize the selection of base
stations and network slices based on the global model of VFRL, which aggregates access features generated
by different types of services on the third encrypted party. The method improves the device’s ability to select
the appropriate access points when initiating different types of service requests under restrictions regarding
privacy protection. The feasible implementation of VFRL also provides guidance for future research.

6. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS
As we presented in the previous section, FRL serves an increasingly important role as an enabler of various
applications. While the FRL-based approach possesses many advantages, there are a number of critical open
issues to consider for future implementation. Therefore, this section focuses on several key challenges, in-
cluding those inherited from FL such as security and communication issues, as well as those unique to FRL.
Research on tackling these issues offers interesting directions for the future.

6.1. Learning convergence in HFRL
In realistic HFRL scenarios, while the agents perform similar tasks, the inherent dynamics for the different
environments in which the agents reside are usually not exactly identically distributed. The slight difference in
the stochastic properties of the transitionmodels formultiple agents could cause the learning convergence issue.
One possible method to address this problem is by adjusting the frequency of global aggregation, i.e., after each
global aggregation, a period of time is left for each agent to fine-tune its local parameters according to its own
environment. Apart from the non-identical environment problem, another interesting and important problem
is how to leverage FL to make RL algorithms converge better and faster. It is well-known that DRL algorithms
could be unstable and diverge, especially when off-policy training is combined with function approximation
and bootstrapping. In FRL, the training curves of some agents could diverge while others converge although
the agents are trained in the exact replicas of the same environment. By leveraging FL, it is envisioned that we
could expedite the training process as well as increase the stability. For example, we could selectively aggregate
the parameters of a subset of agents with a larger potential for convergence, and later transfer the converged
parameters to all the agents. To tackle the above problems, several possible solutions proposed for FL algorithm
contains certain reference significance. For example, server operators could account for heterogeneity inherent
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in partial information by adding a proximal term [117]. The local updates submitted by agents are constrained by
the tunable term and have a different effect on the global parameters. In addition, a probabilistic agent selection
scheme can be implemented to select the agents whose local FL models have significant effects on the global
model to minimize the FL convergence time and the FL training loss [118]. Another problem is theoretical
analysis of the convergence bounds. Although some existing studies have been directed at this problem [119],
the convergence can be guaranteed since the loss function is convex. How to analyze and evaluate the non-
convex loss functions in HFRL is also an important research topic in the future.

6.2. Agents without rewards in VFRL
In most existing works, all the RL agents have the ability to take part in full interaction with the environment
and can generate their own actions and rewards. Even though some MARL agents may not participate in the
policy decision, they still generate their own reward for evaluation. In some scenarios, special agents in VFRL
take the role of providing assistance to other agents. They can only observe the environment and pass on the
knowledge of their observation, so as to help other agentsmakemore effective decisions. Therefore, such agents
do not have their own actions and rewards. The traditional RL models cannot effectively deal with this thorny
problem. Many algorithms either directly use the states of such agents as public knowledge in the systemmodel
or design corresponding action and reward for such agents, which may be only for convenience of calculation
and have no practical significance. These approaches cannot fundamentally overcome the challenge, especially
when privacy protection is also an essential objective to be complied with. Although the FedRL algorithm [65]

is proposed to deal with the above problem, which has demonstrated good performance, there are still some
limitations. First of all, the number of agents used in experiments and algorithms is limited to two, which
means the scalability of this algorithm is not high and VFRL algorithms for a large number of agents need
to be designed. Secondly, this algorithm uses Q-network as the federated model, which is a relatively simple
algorithm. Therefore, how to design VFRL models based on other more complex and changeable networks
remains an open issue.

6.3. Communications
In FRL, the agents need to exchange the model parameters, gradients, intermediate results, etc., between them-
selves or with a central server. Due to the limited communication resources and battery capacity, the commu-
nication cost is an important consideration when implementing these applications. With an increased number
of participants, the coordinator has to bear more network workload within the client-server FRL model [120].
This is because each participant needs to upload and download model updates through the coordinator. Al-
though the distributed peer-to-peer model does not require a central coordinator, each agent may have to
exchange information with other participants more frequently. In current research for distributed models,
there are no effective model exchange protocols to determine when to share experiences with which agents. In
addition, DRL involves updating parameters in deep neural networks. Several popular DRL algorithms, such
as DQN [121] and DDPG [122], consist of multiple layers or multiple networks. Model updates contain millions
of parameters, which isn’t feasible for scenarios with limited communication resources. The research direc-
tions for the above issues can be divided into three categories. First, it is necessary to design a dynamic update
mechanism for participants to optimize the number of model exchanges. A second research direction is to use
model compression algorithms to reduce the amount of communication data. Finally, aggregation algorithms
that allow participants to only submit the important parts of local model should be studied further.

6.4. Privacy and Security
Although FL provides privacy protection that allows the agents to exchange information in a secure manner
during the learning process, it still has several privacy and security vulnerabilities associated with communica-
tion and attack [123]. As FRL is implemented based on FL algorithms, these problems also exist in FRL in the
same or variant form. It is important to note that the data poisoning attack is a different attack mode between
FL and FRL. In the existing classification tasks of FL, each piece of training data in the dataset corresponds to
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a respective label. The attacker flips the labels on training examples in one category onto another while the
features of the examples are kept unchanged, misguiding the establishment of a target model [124]. However, in
the decision-making task of FRL, the training data is continuously generated from the interaction between the
agent and the environment. As a result, the data poisoning attack is implemented in another way. For example,
the malicious agent tampers with the reward, which causes the evaluative function to shift. An option is to
conduct regular safety assessments for all participants. Participants whose evaluation indicator falls below the
threshold are punished to reduce the impact on the global model [125]. Apart form the insider attacks which
are launched by the agents in the FRL system, there may be various outsider attacks which are launched by
intruders or eavesdroppers. Intruders may hide in the environment where the agent is and manipulate the
transitions of environment to achieve specific goals. In addition, by listening to the communication between
the coordinator and the agent, the eavesdropper may infer sensitive information from exchanging parameters
and gradients [126]. Therefore, the development of technology that detects and protects against attacks and
privacy threats does have great potential and is urgently needed.

6.5. Join and exit mechanisms design
One overlooked aspect of FRL-based research is the join and exit process of participants. In practice, the
management of participants is essential to the normal progression of cooperation. As mentioned earlier in
the security issue, the penetration of malicious participants severely impacts the performance of the cooper-
ative model and the speed of training. The joining mechanism provides participants with the legal status to
engage in federated cooperation. It is the first line of defense against malicious attackers. In contrast, the exit
mechanism signifies the cancellation of the permission for cooperation. Participant-driven or enforced exit
mechanisms are both possible. In particular, for synchronous algorithms, ignoring the exit mechanism can
negatively impact learning efficiency. This is because the coordinator needs to wait for all participants to sub-
mit their information. In the event that any participant is offline or compromised and unable to upload, the
time for one round of training will be increased indefinitely. To address the bottleneck, a few studies consider
updating the global model using the selectedmodels from a subset of participants [113,127]. Unfortunately, there
is no comprehensive consideration of the exit mechanism, and the communication of participants is typically
assumed to be reliable. Therefore, research gaps of FRL still exist in joining and exiting mechanisms. It is
expected that the coordinator or monitoring system, upon discovering a failure, disconnection, or malicious
participant, will use the exit mechanism to reduce its impact on the global model or even eliminate it.

6.6. Incentive mechanisms
Formost studies, the agents taking part in the FRL process are assumed to be honest and voluntary. Each agent
provides assistance for the establishment of the cooperation model following the rules and freely shares the
masked experience through encrypted parameters or gradients. An agent’s motivation for participation may
come from regulation or incentive mechanisms. The FRL process within an organization is usually governed
by regulations. For example, BSs belonging to the same company establish a joint model for offloading and
caching. Nevertheless, because participants may be members of different organizations or use disparate equip-
ment, it is difficult for regulation to force all parties to share information learned from their own data in the
same manner. If there are no regulatory measures, participants prone to selfish behavior will only benefit from
the cooperation model but not submit local updates. Therefore, the cooperation of multiple parties, organiza-
tions, or individuals requires a fair and efficient incentive mechanism to encourage their active participation.
In this way, agents providing more contributions can benefit more and selfish agents unwilling to share there
learning experience will receive less benefit. As an example, Google Keyboard [128] users can choose whether
or not to allow Google to use their data, but if they do, they can benefit from more accurate word prediction.
Although an incentive mechanism in a context-aware manner among data owners is proposed in the study
from Yu et al. [129], it is not suitable for the RL problems. There is still no clear plan of action regarding how
the FRL-based application can be designed to create a reasonable incentive mechanism for inspiring agents to
participate in collaborative learning. To be successful, future research needs to propose a quantitative standard
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for evaluating the contribution of agents in FRL.

6.7. Peertopeer cooperation
FRL applications have the option of choosing between a central server-client model as well as a distributed
peer-to-peer model. A distributed model can not only eliminate the single point of failure, but it can also
improve energy efficiency significantly by allowing models to be exchanged directly between two agents. In a
typical application, two adjacent cars share experience learned from road condition environment in the form
of models with D2D communications to assist autonomous driving. However, the distributed cooperation
increases the complexity of the learning system and imposes stricter requirements for application scenarios.
This research should include, but not be limited to, the agent selection method for the exchange model, the
mechanism for triggering themodel exchange, the improvement of algorithm adaptability, and the convergence
analysis of the aggregation algorithm.

7. CONCLUSION
As a new and potential branch of RL, FL can make learning safer and more efficient while leveraging the
benefits of FL.We have discussed the basic definitions of FL and RL as well as our thoughts on their integration
in this paper. In general, FRL algorithms can be classified into two categories, i.e., HFRL and VFRL. Thus, the
definition and general framework of these two categories have been given. Specifically, we have highlighted the
difference between HFRL and VFRL.Then, a lot of existing FRL schemes have been summarized and analyzed
according to different applications. Finally, the potential challenges in the development of FRL algorithms have
been explored. Several open issues of FRL have been identified, which will encourage more efforts toward
further research in FRL.
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