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Abstract
When addressing the dynamic reliability analysis of structures, it becomes necessary to account for multiple limit
state functions or their combinations. In scenarios where structures are subjected to random excitation, this can lead
to intricate inter-dependencies among different limit states, and the computational workload can pose a substantial
challenge in ensuring sufficient precision. Code-based design primarily ensures safety at the member level, while
deterministic optimization fails to accommodate the inherent uncertainties associated with external excitation or
the system as a whole. Therefore, in such cases, to address both the uncertainties in excitations and the presence of
multiple limit stateswhilemitigating computational challenges, equivalent extreme-value criteria are employedwithin
the framework of the probability density evolutionmethod to calculate the global reliability of the structure subjected
to stochastic ground motions generated from the physically motivated stochastic ground motion model. Numerical
optimization is subsequently conducted using genetic algorithms, aiming to minimize the cost of the superstructure
while adhering to the design performance criteria related to the inter-story drift ratio and considering global reliability.
Additionally, multi-objective optimization is carried out usingNSGA-II, permitting the generation ofmultiple solutions,
from which one can select the most suitable solution as needed. The numerical results illustrate the effectiveness
of this technique in achieving an optimal balance between the cost of the structure and the consideration of global
reliability, providing a comprehensive solution for dynamic reliability analysis and design optimization of structures
under random excitations.
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1 INTRODUCTION
The evolution of seismic design for structures has seen continuous progress throughout history. However,
a significant paradigm shift occurred in the 1980s and 90s when it was recognized that defining structural
vulnerability made more sense through deformation capacity rather than strength. This realization led to a
shift in seismic design from traditional force-based methods to displacement-based methods [1].

The traditional force-based approach in design codes aims to achieve two primary objectives: ensuring the
safety of occupants by making structures strong and flexible and controlling structural damage by limiting
excessive sway or deformation. These objectives are met through the establishment of specific design crite-
ria. These criteria set boundaries on stress levels and forces experienced by different structural components,
and they are determined based on the expected lateral forces exerted on the building during an earthquake.
However, these conventional designs developed to meet these criteria often fall short of accurately quanti-
fying their reliability. Instead, they typically rely on simple safety factors or extreme values to address this
inherent uncertainty in their procedures [2,3]. On the contrary, the displacement-based design method takes a
more direct approach to addressing damage compared to the force-based approach. This method emphasizes
the structural performance and offers better control over the probability of surpassing critical damage states
when subjected to diverse seismic excitations [4]. To support this evolving design approach, which focuses
on structural performance, the Joint Committee on Structural Safety (JCSS) [5] introduced a comprehensive
probabilistic model code in 1997 to determine and verify structural reliability. Similarly, the Chinese Code
for Seismic Design of Buildings (GB50011-2010) [6] adopted the performance-based seismic design method
and provided it as a reference for design. However, even design codes aligned with performance-based design
methods often struggle to effectively account for uncertainties linked with earthquake ground motions. These
approaches typically rely on a limited number of historical earthquake ground-motion records or simulated
time histories that conform to the design spectrum [7,8].

Earthquakes are among the most unpredictable natural hazards, characterized by randomness in terms of re-
turn period, occurrence location, and amplitude. This inherent randomness transforms earthquake effects
on engineering structures into a stochastic or random process. Neglecting this uncertainty, whether by un-
derestimation or overestimation, can have severe consequences, ranging from structural failure to high costs.
Consequently, it is imperative to rigorously quantify this uncertainty using probabilistic design principles,
particularly for the analysis and assessment of stochastic systems [7,9]. In this context, reliability assessment
emerges as a crucial technique, quantifying this uncertainty and determining if the structural response remains
within desired limits under the influence of inherent randomness [10]. Building upon the insights derived from
reliability analysis, an optimal design can then be guided through the framework of Reliability-Based Design
Optimization (RBDO). RBDO aims to strike an optimal balance between reliability and cost, ensuring that
structural designs are both safe and economically viable.

In recent years, a variety of reliability methods have been developed and utilized to address these challenges.
Analytical approximation methods, such as the well-known First- and Second-Order Reliability Methods
(FORM and SORM), involve approximating the performance function around theMost Probable Point (MPP)
using linear or quadratic Taylor expansions. However, these methods may yield unreliable results when deal-
ing with substantially nonlinear problems featuring numerous MPPs [11–13]. In contrast to the Reliability In-
dex Approach (RIA) using the FORM, the Performance Measure Approach (PMA) became popular due to its
effectiveness, particularly with the advanced mean value (AMV) technique for locating the MPP. However,
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challenges arise with concave performance measure functions, as AMVmay face divergence issues [14–18]. De-
spite efforts to tackle this problem, such as the modified chaos control (MCC), MCC remains less efficient
for convex performance measure functions [15,19]. On the other hand, simulation-based approaches, including
Monte Carlo simulations (MCS) and their advanced versions, offer viable alternatives. MCS is recognized
for its reliability and unbiasedness but suffers from slow convergence rates, particularly for low failure rates,
leading to high computational costs [20]. Nonetheless, classical reliability methods, including FORM/SORM
and MCS, come with significant drawbacks, such as exceptionally high computational cost and insufficient
accuracy, especially when addressing dynamic responses and the seismic reliability of complex structures sub-
jected to random excitations [8,21,22]. These challenges underscore the ongoing need for innovative and efficient
reliability assessment methods. As an alternative, the Probability Density EvolutionMethod (PDEM), as devel-
oped by Professor Li and Chen [10,23] in the past decade, has emerged to offer improved accuracy in reliability
assessment while significantly reducing computational costs. The PDEM establishes a crucial link between
the evolution of the state of a system and the evolution of its probability density. This approach offers a uni-
fied framework for tackling engineering problems, whether they involve deterministic or stochastic systems.
These advancements introduce a novel approach to obtaining the stochastic response and assessing the reliabil-
ity of multi-degree-of-freedom systems, whether they exhibit linear or nonlinear behavior. Furthermore, they
enable precise control of stochastic structural systems, both under the influence of non-stationary and non-
Gaussian engineering excitations [7]. In particular, for addressing the dynamic reliability of structures with
complex failure modes related to single or multiple limit states, PDEM presents an efficient approach known
as the ”equivalent extreme-value (EEV) event”. Through PDEM, the first passage probability can be readily
derived by performing a one-dimensional integral of this event [7,24,25].

Further, to investigate the reliability of structural dynamic time history analysis properly, it is essential to
simulate random processes. However, in depicting real-world scenarios involving non-stationary and non-
Gaussian stochastic excitations, traditional models often fall short in terms of accuracy. For instance, power
spectral models, such as the Kanai-Tajimi and Kaede-Ou models, are frequently employed to simulate and
generate random ground motions. Nevertheless, these models do not account for non-stationary characteris-
tics, as they rely on stationary assumptions and fail to capture the consistent changes in ground motion over
time. Additionally, they overlook the physical processes involved in ground motion generation and do not
provide a comprehensive representation of the probabilistic information of original non-stationary stochastic
excitations [26,27]. On the other hand, while the spectral representation method is straightforward, complete,
and versatile, using the Monte Carlo method family to simulate stochastic ground motions based on the con-
ventional spectral representation method would require an exceptionally large number of samples to achieve
acceptable accuracy [28]. Therefore, to generate realistic non-stationary ground motion samples, a physically
motivated stochastic ground motion model was proposed by ProfessorWang and Li [26]. This model takes into
account the inherent randomness associated with seismic sources, propagation paths, and local site conditions.
Furthermore, the partitioning of the probability space can be done within the stochastic parameter space to
select representative points for use in the PDEM. As a result, each generated representative sample is allocated
a specific probability, and the collective set of these representative samples forms an all-encompassing proba-
bility dataset that serves as the source of stochastic excitation within the PDEM to facilitate in-depth structural
dynamic response analysis and dynamic reliability assessment [28]. The previously discussed model is one of
the approaches in current research for simulating artificial earthquakes and has been adopted in this study.
However, significant advancements in the realm of synthetic earthquake generation through the application
of techniques involving deep learning and artificial intelligence, particularly generative adversarial networks
(GANs), are extensively explained in work by Marano et al. [29].

In addition to conducting reliability analyses, the selection of an efficient and appropriate optimization scheme
is paramount in addressing RBDO problems. Within the domain of optimization, there exist gradient-based
techniques, such as Sequential Quadratic Programming (SQP) and the Extended Reduced Gradient Algo-
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rithm, typically employed for solving optimization design problems. However, these algorithms heavily rely
on gradient information, often resulting in localized optimal solutions. They aremost suitable for optimization
problems that involve continuous variables, where gradient information is readily accessible [3]. Conversely,
global optimization techniques, including Particle Swarm Optimization (PSO), Differential Evolution (DE),
and Genetic Algorithms (GA), offer the distinct advantage of exploring the entire design space without relying
on gradient information. This approach streamlines the resolution of optimization problems that encompass
discrete variables, all while facilitating the attainment of a globally optimal solution [3,30]. GA, functioning as
a heuristic optimization method, explores the problem domain probabilistically and on a global scale. This
approach enhances the chances of achieving solutions that are close to being globally optimal, particularly in
scenarios featuring intricate problem domains [31].

In the context of addressing uncertainty and optimizing designs under uncertainty, numerous studies have
emerged in recent years. Zou et al. [32] introduced an optimization technique focused on the seismic drift
performance design of both fixed-base and base-isolated buildings under earthquake loads. This work was
subsequently extended to encompass an automated, integrated design optimizationmethod [33], employing the
principle of virtual work to establish an explicit design problem formulation. It is important to note, however,
that this particular work did not incorporate the inherent randomness associated with external excitation.
An extended version of this research was presented in [34], specifically addressing the integrated RBDO of
base-isolated structures, including optimization for fixed-base structures. In this study, for response spectrum
analysis, earthquake action was transformed into an equivalent static action and was treated as a random
variable; reliability analysis was conducted using the classical FORM, and the optimization was carried out
using an Optimality Criteria (OC) method. The exploration of global reliability in structures can also be seen
in the work of Lu et al. [35], where the FORM and the High-Order Moment Method (HOMM) were employed.
A comparison of results between these two methods revealed that HOMM is better suited for global reliability
analysis of complex engineering structures. While there are other noteworthy works in this area, each has
its unique limitations. Some rely on classical reliability methods, while others lack a proper formulation of
multiple limit states. Additionally, certain studies neglect the physical mechanisms of earthquakes during
the simulation of random seismic events. Hence, there is a growing need for a seamless RBDO procedure
capable of mitigating all these limitations. Nevertheless, there are also notable works that have their own way
of accessing optimal designs, as seen in the work of Castaldo et al. [36] where equation ofmotion is implemented
in non-dimensional form considering PGA to PGV ratios for optimal design of FPS bearings.

To illustrate the rationale behind the adoption of stochastic ground motions and the utilization of the PDEM
for RBDO, several notable contributions in this field have been referenced. The foundational model of the
physically motivated stochastic ground motion was initially introduced by Professors Wang and Li in their
work [26]. Building upon this model, Peng et al. [8,37] have applied it in various studies, employing it for gen-
erating stochastic ground motions and conducting RBDO and probabilistic analyses for adaptive sliding base
isolation systems and base-isolated structures with sliding hydro-magnetic bearings. Additionally, this ground
motion model has been used alongside the absorbing boundary condition of PDEM to facilitate the probabilis-
tic optimization of TMDI (Tuned Mass Damper-Inerter) systems, as demonstrated by Sun et al. [38]. Further-
more, the realm of stochastic optimal control for physical stochastic systems has been extensively explored
through the application of PDEM, as detailed in the book authored by Peng et al. [7]. These references col-
lectively underscore the significance and versatility of stochastic ground motion modeling and the PDEM
framework in addressing complex problems related to reliability and optimization in structural engineering.

In this study, RBDO for a planar frame structure is conducted. This is achieved by combining the EEV event
criteria in the PDEM with GA. The aim is to secure the structure against interstory drift ratios under non-
stationary external excitations. To achieve this, the concept of global reliability, synonymous with system
reliability, is employed to accommodate multiple limit states associated with interstory drift across all floors.
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In Section 2, the generation of physically motivated stochastic ground motion and the subsequent reliability
analysis using PDEM for the generated random ground motions are detailed. Section 3 outlines the RBDO
problem formulation, including the chosen design variables, objectives, and constraints. The later sections
present the results of deterministic optimization and RBDO using GA, with further comparisons of the out-
comes. Moreover, the NSGA-II algorithm is applied to provide the advantage of selecting the desired design
from the feasible solution set, resulting in an efficient and flexible optimal design solution for structures sub-
jected to random ground motions.

2 RELIABILITY ASSESSMENT OF A LINEAR STOCHASTIC DYNAMICAL SYSTEM
In the context of a linear structural systemwith 𝑁 degrees of freedom exposed to stochastic dynamic excitation,
the equation that governs the motion of the system is formulated as follows:

𝑀 ¥𝑋 (𝑡) + 𝐶 ¤𝑋 (𝑡) + 𝐾𝑋 (𝑡) = 𝐹 (Θ, 𝑡) (1)

In this expression,M, C, and K represent n*n matrices corresponding to mass, damping, and stiffness, respec-
tively. The acceleration, velocity, and displacement of the system are denoted as n-dimensional column vectors,
represented as ¥𝑋 (𝑡), ¤𝑋 (𝑡), and 𝑋 (𝑡), respectively. The term 𝐹 (Θ, 𝑡) represents an n-dimensional column vec-
tor responsible for defining random external excitation, with Θ consisting of a vector of random parameters
linked to the stochastic excitation in Equation (1).

2.1 Modeling of stochastic ground motion
In Equation (1), the random input term 𝐹 (Θ, 𝑡) is modeled using the physically motivated stochastic ground
motion model, as described in [26]. This model incorporates the physical aspects of seismic wave propagation
and combines the Fourier transfer representation with seismic source, propagation path, and site models, as
outlined in [26], resulting in the following formulation:

¥𝑦0(Θ, 𝑡) = − 1
2𝜋

∫ ∞

−∞
𝐴�̄� (Θ, 𝜔) cos

[
𝜔𝑡 +Φ�̄� (Θ, 𝜔)

]
d𝜔 (2)

where,

𝐴�̄� (Θ, 𝜔) =
𝐴0𝜔 exp(−𝐾𝜔�̄�)√

𝜔2 +
(

1
𝜏

)2
·

√
1 + 4𝜁2

𝑔 (𝜔/𝜔𝑔)2

[1 − (𝜔/𝜔𝑔)2]2 + 4𝜁2
𝑔 (𝜔/𝜔𝑔)2

(3)

Φ�̄� (Θ, 𝜔) = arctan
(

1
𝜔𝜏

)
− �̄�𝑑 ln

(
(𝑎 + 0.5)𝜔 + 𝑏 + 1

4𝑐
sin(2𝑐𝜔)

)
(4)

Here, the random parameter vector Θ = {𝐴0, 𝜏, 𝜁𝑔, 𝜔𝑔} captures the randomness related to the seismic wave
propagation process from the seismic source to the local site. This vector encompasses random parameters, in-
cluding those governing the Fourier amplitude spectrum 𝐴𝑅 (Θ, 𝜔) and the Fourier phase spectrumΦ�̄� (Θ, 𝜔).
It also includes parameters related to the seismic source, such as the amplitude parameter 𝐴0 and the Brune
source model parameter 𝜏. Furthermore, it accounts for site-specific characteristics, incorporating the equiva-
lent damping ratio 𝜁𝑔 and the predominant circular frequency 𝜔𝑔 . K is the parameter accounting for propaga-
tion path attenuation, and the epicentral distance is denoted by �̄�. In Equation (4), the empirical parameters
connected to the propagation path are denoted as a, b, c, and d, completing the characterization of the seismic
system.

The model outlined above addresses the stochastic nature of acceleration at the bedrock and the specific char-
acteristics of the site’s soil. To derive the input at the bedrock, a comprehensive integration of seismic source
effects and wave propagation is conducted, guided by seismic hazard analysis. In this approach, the soil layer
is effectively represented as an equivalent linear single-degree-of-freedom system, as shown in Figure 1. Subse-
quently, seismic excitation is applied at the base, and the absolute response of this system serves as an accurate
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Figure 1. Soil layer and equivalent single-degree-of-freedom-model of local site

representation of the seismic ground motion process. As a result, ground motions can be reliably simulated
using a simplified theoretical formula that captures the physical relationship between surface ground motions
and input motions at the bedrock while considering essential parameters such as the predominant circular
frequency and equivalent damping ratio as depicted below [7,27,39]:

¥𝑋𝑔 (Θ, 𝜔) =
Θ2
𝜔𝑔

+ 2iΘ𝜔𝑔Θ𝜁𝑔𝜔

Θ2
𝜔𝑔

− 𝜔2 + 2iΘ𝜔𝑔Θ𝜁𝑔𝜔
¥𝑈𝑏 (Θb, 𝜔) (5)

where ¥𝑋𝑔 (Θ, 𝜔) represents the seismic acceleration at the surface of the local site in the frequency domain,
while ¥𝑈𝑏 (Θb, 𝜔) corresponds to the seismic acceleration at the bedrock, also in the frequency domain. The
random vector Θ =

{
Θ𝜔𝑔 ,Θ𝜁𝑔 ,Θ𝑏

}
encompasses random parameters that account for the inherent random-

ness in ground motions at the surface of the local site. Furthermore, Θ𝜔𝑔
and Θ𝜁 denote the random variables

associated with the equivalent circular frequency and the equivalent damping ratio of the local site, respectively.
Lastly, Θb =

{
Θ𝑏,𝑖

}𝑠b
𝑖=1 constitutes a vector of stochastic parameters that describe the randomness in ground

motion at the bedrock introduced by the seismic wave propagation from the seismic source to the bedrock,
with 𝑠b denoting the number of random variables involved.

The frequency domain equation of ground motion data presented in Equation (5) can now be obtained in
terms of time domain by performing inverse Fourier transfer of this equation [39].

¥𝑋𝑔 (Θ, 𝑡) =
1

2𝜋

+∞∫
−∞

¥𝑋𝑔 (Θ, 𝜔) 𝑒𝑖𝜔𝑡𝑑𝜔 (6)

The time history of ground acceleration obtained from Equation (6) can be further enhanced by adding non-
stationary characteristics. This is done using a uniform modulation function as follows [10]:

𝑓 (𝑡) =


𝑡2

4 , 𝑡 ≤ 𝑡𝑎
1, 𝑡𝑎 < 𝑡 ≤ 𝑡𝑏

𝑒−0.8(𝑡−𝑡𝑏) , 𝑡𝑏 < 𝑡 ≤ 𝑇
(7)

𝑇 in the above equation represents the total time duration of the groundmotion; 𝑡𝑎 and 𝑡𝑏 represent the starting
and ending time of the strong motion phase, respectively.

2.2 Probability density evolution method
In this study, a structural reliability analysis employs the PDEM introduced by Li and Chen [23]. Based on
the probability conservation principle, this method is proficient at capturing the probability density function
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(PDF) of structural responses in the presence of random excitations and associated uncertainties at any given
time instant [7,8,40].

In the context of a dynamic system, the likelihood of surpassing a predefined limit state can be characterized
as the first passage probability. This helps us understand the probability of the system crossing a specific
point within a certain time, providing insight into the system reliability [10,41]. The dynamic structure reliability
associated with the first-passage problem under stochastic ground motions is defined as:

𝑅(𝑇) = Pr {𝑍 (Θ, 𝑡) ∈ Ω𝑠,∀𝑡 ∈ [0, 𝑇]} (8)

where Ω𝑠 signifies the safety domain, while 𝑃𝑟.{} represents the probability operator applied to the random
event 𝑍 (Θ, 𝑡). This event pertains to relevant physical quantities such as structural drift, displacement, and so
on.

The above definition of reliability holds when there is involvement of a single limit state function only, i.e., when
a single mode of failure is considered or when only one member or element of the structure fails. However,
when assessing the reliability of a structure, we typically need to consider multiple modes of failure or multiple
failures of elements, as represented by the following equation [7,10,37]:

𝑅(𝑇) = Pr {𝑍1 (Θ, 𝑡) ≤ 𝑧𝐵1, 𝑍2 (Θ, 𝑡) ≤ 𝑧𝐵2, . . . , 𝑍𝑚 (Θ, 𝑡) ≤ 𝑧𝐵𝑚}

= Pr
{
𝑚
∩
𝑖=1

(𝑋𝑖 (Θ, 𝑡) ≤ 𝑧𝐵𝑖)
} (9)

where 𝑚 denotes the number of random events such as the number of modes of failure or failed elements;
{𝑧𝐵𝑖}𝑚𝑖=1 denote the safe thresholds of the random events.

The above equation (Equation (9)) can be solved using commonly employed reliability theory based on the
level-crossing process. However, this theory often struggles to ensure accuracy, and its procedure is not
straightforward or convenient due to the requirement of the joint PDF of the response and its velocity for
reliability assessment, along with the need to assume properties of the level-crossing events. Consequently, in
this study, a more efficient method, devoid of the mentioned issues, is employed to assess dynamic reliability.
This method transforms the problem into an EEV scenario, as detailed in [24,25]. By calculating the probability
of such an EEV event, it becomes possible to evaluate the probability of compound random events involving
combinations of more than one inequality.

The EEV event can be constructed in terms of random variables as:

𝑍𝑒𝑞 (Θ, 𝑇) = max
0≤𝑖≤𝑚

( max
𝑡∈[0,𝑇]

(𝑍𝑖 (Θ, 𝑡) − 𝑧𝐵𝑖)) (10)

Now, Equation (9) can be defined alternatively in terms of EEV as:

𝑅(𝑇) = Pr
{
𝑍𝑒𝑞 (Θ, 𝑇) ≤ 0

}
(11)

It can also be written in an integral form as:

𝑅(𝑇) = Pr
{
𝑍𝑒𝑞 (Θ, 𝑇) ≤ 0

}
=
∫ 0

−∞
𝑝𝑍𝑒𝑞 (𝑧, 𝑇)𝑑𝑧 (12)

where 𝑝𝑍𝑒𝑞 (𝑧, 𝑇) denotes the PDF of 𝑍𝑒𝑞 (Θ, 𝑇).

The equation above illustrates how system reliability, which involves a high-dimensional integral, can be sim-
plified to a one-dimensional integral through the establishment of the EEV event.
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The extreme value distribution or the PDF of this EEV event can be characterized by constructing a virtual
stochastic process as follows:

𝜈(𝜏) = 𝜓 [𝑍𝑒𝑞 (Θ, 𝑇), 𝜏] (13)

The virtual stochastic process is to ensure that its extreme value coincides with the value of the virtual stochastic
process at a specific time point, denoted as (𝜏𝑐). This constructed random process adheres to the following
conditions:

𝜈(𝜏) |𝜏=𝜏0 = 0,
𝜈(𝜏) |𝜏=𝜏𝑐 = 𝑍𝑒𝑞 (Θ, 𝑡)

(14)

The variables used in the equation are defined as follows: 𝜏 represents the generalized time, while 𝜏0 and 𝜏𝑐
represent the initial and final time instances of the pseudo-random process, respectively.

In this context, the constructed pseudo-random process 𝜈(𝜏) adheres to the conditions outlined in Equa-
tion (14). The specific form of 𝜈(𝜏) adopted in this study is 𝜈(𝜏) = 𝑍𝑒𝑞 (Θ, 𝑇) sin(𝜔𝜏), where 𝜔 = 5𝜋/2 and
𝜏𝑐 = 1 are considered [8].

Here, both the pseudo-random process 𝜈(𝜏) and the EEV event 𝑍𝑒𝑞 (Θ, 𝑇) share the same randomness pa-
rameter, Θ. Moreover, the final time instance of 𝜈(𝜏) encapsulates the complete probabilistic information of
𝑍𝑒𝑞 (Θ, 𝑇). Consequently, the pair (𝜈(𝜏),Θ) can be conceptualized as a probability-conserved system governed
by the Generalized Probability Density Evolution Equation (GDEE) [10] expressed as follows:

𝜕𝑝𝜈Θ(𝜐, 𝜃, 𝜏)
𝜕𝜏

+ ¤𝜈(𝜃, 𝜏) 𝜕𝑝𝜈Θ(𝜐, 𝜃, 𝜏)
𝜕𝜐

= 0 (15)

The initial condition for the above partial differentiation equation is given by:

𝑝𝜈Θ(𝜐, 𝜃, 𝜏) |𝜏=𝜏0 = 𝛿(𝜐)𝑝Θ(𝜃) (16)

where 𝛿(·) denotes the Dirac delta function, and 𝜃 denotes a sample of stochastic vector Θ.

To derive the solution of 𝑝𝜈Θ(𝜐, 𝜃, 𝜏), the initial value problem of a partial differential equation is solved, which
results in:

𝑝𝜈 (𝜐, 𝜏) =
∫
ΩΘ

𝑝𝜈Θ(𝜐, 𝜃, 𝜏)𝑑𝜃 (17)

where ΩΘ denotes the sample domain for the vector of random parameters Θ.

Now, to determine the PDF of the EEV event, 𝑍𝑒𝑞 (Θ, 𝑇), we establish a connection with the virtual random
process at the time instant 𝜏𝑐 in the following manner:

𝑅(𝑇) =
∫ 0
−∞ 𝑝𝑍𝑒𝑞 (𝑧, 𝑇)𝑑𝑧

=
∫ 0
−∞ 𝑝𝜈 (𝜐, 𝜏) |𝜏=𝜏𝑐𝑑𝜐

(18)

2.3 Numerical procedure for solving the first-passage problem using PDEM
The theoretical derivation mentioned above can be explicitly expressed in terms of a combination of steps as
mentioned below. The following algorithm first evaluates the first passage probability using PDEM, ultimately
resulting in the structural reliability.

Step 1: Selection of representative points: Partition the probability space of the random vectorΘ, which embod-
ies the random parameters governing stochastic ground motion. Create a set of representative points denoted
as {𝜃𝑞}𝑛res

𝑞=1, where 𝑛𝑟𝑒𝑠 signifies the set’s size. Calculate P𝑞 = {𝑝1
𝑎𝑠𝑠𝑖𝑔𝑛, 𝑝

2
𝑎𝑠𝑠𝑖𝑔𝑛, ....., 𝑝

𝑛𝑟𝑒𝑠
𝑎𝑠𝑠𝑖𝑔𝑛} as the correspond-

ing probabilities. The tangent sphere method is employed for selecting these representative points, where each
representative point represents a time history of seismic ground acceleration.
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Step 2: Deterministic structural analyses: For each representative point 𝜃𝑞 , perform deterministic structural
analyses to attain the structural response of concern. From the results, construct the EEV event 𝑍𝑒𝑞 (𝜃𝑞 , 𝑇)
and the pseudo-random process 𝜈(𝜃𝑞 , 𝜏).

Step 3: Solve GDEE: Compute the velocity term of the pseudo-random process by taking its derivative and
incorporating it into the GDEE presented in Equation (15). For each 𝜃𝑞 , solve the GDEE to obtain the solution
for the joint PDF denoted as 𝑝𝜈Θ(𝜐, 𝜃𝑞 , 𝜏). To solve the GDEE, employ the finite difference method with a
Total Variation Diminishing (TVD) scheme.

Step 4: Reliability evaluation: Derive the PDF 𝑝𝜈 (𝜐, 𝜏) by integrating the joint PDF, as shown in Equation (17).
The reliability is finally obtained using Equation (18).

3 RELIABILITY-BASED DESIGN OPTIMIZATION
When dealing with problems related to uncertainty and randomness, as opposed to deterministic design ap-
proaches, it is important to undertake a reliability assessment for the resultant design—whether it is in the
form of a preliminary design or a finalized iteration. However, within the realm of structural design, neither
an excessive abundance of reliability nor an insufficiency in it is sought. The former could lead to inflated costs,
while the latter could pave the way for structural failure. The traditional iterative trial-and-error approach to
finding an optimal solution is not only imprecise but also time-intensive. Thus, to strike a balance between
cost and reliability, a more effective avenue is the adoption of RBDO. This method constitutes an automated
process that seamlessly integrates both reliability assessment and optimization procedures.

To establish the RBDO framework, the following factors should be incorporated into the RBDO scheme:

3.1 Design variables
In a structural system with a fixed base, the pivotal role of distributing loads and maintaining stability falls
upon components such as beams, columns, and slabs. The source of uncertainty in this study is the external
excitation and the structural geometry uncertainties are not considered; therefore, given a pre-determined
topology and layout of the superstructure, the dimensions of these structural members can be regarded as
deterministic design variables within the framework of the superstructure’s design. However, sometimes epis-
temic uncertainties do affect the RC structures, which should be considered in the analysis, as explained in [42].
When dealing with rectangular members, their cross-sectional property, such as the moment of inertia (𝐼𝑍 ),
can be formulated by means of the fundamental design parameters, namely, the width (𝐵) and depth (𝐷).
Consequently, these two fundamental dimensions—width (𝐵) and depth (𝐷) emerge as the principal design
variables in the context of the optimization procedures undertaken in this particular study.

𝐼𝑍 =
1
12
𝐵𝐷3 (19)

3.2 Design Objective
The fundamental aim of this study is the minimization of construction costs pertaining to the superstructure.
In scenarios involving a structure composed of 𝑖 rectangular components, the pivotal factors governing their
sizes are (𝐵𝑖 , 𝐷𝑖). The assessment of the cost incurred by reinforcing rebars is excluded from this analysis as the
variations in steel reinforcement exhibit negligible sensitivity to lateral elastic displacement [33]. Furthermore,
the flexural members, such as beams and columns, have their flexural stiffness directly proportional to the cube
of their depth that varies linearly with the width of the member. Thus, while enhancing the size of a frame
member, it is more cost-effective to increase the depth (𝐷𝑖) of the member rather than enlarging its width [43].

While formulating the design objective, it is essential to properly consider the uncertainties associated with the
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objective function within the RBDO procedure. However, due to the lack of reliable cost data, it is generally
acceptable to treat the cost function as deterministic, and this study also adopts this approach. The design
objective is, thus, formulated as:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 :
𝑇𝐶 (𝐿𝑖 , 𝐵𝑖 , 𝐷𝑖) =

∑𝑁𝑖

𝑖=1 𝑤𝑖𝐿𝑖𝐵𝑖𝐷𝑖
(20)

Here, 𝑇𝐶 represents the total construction cost, i.e., total concrete cost, and 𝑤𝑖 is the unit weight of concrete;
𝐿𝑖 is the length of the 𝑖𝑡ℎ member.

3.3 Design constraints
In this study, the primary design constraint for evaluating system reliability revolves around the global relia-
bility of interstory drift ratios. Specifically, this constraint does not solely focus on the inter-story drift ratio
between particular floors, such as drift ratios between the first and second floors, but instead encompasses a
broader scope called ”global reliability”, necessitating that all other inter-story drift ratios remain below their
corresponding thresholds ensuring the reliability of the specified parameter to remain above a designated
threshold. This threshold might be established through a probabilistic model code or chosen based on specific
performance criteria. The assessment of the reliability of this parameter is conducted through themethodology
outlined in Section 2.2 and Section 2.3.

𝑅(𝐼𝑆𝐷) ≥ 𝑋 (21)

Here, 𝑅(𝐼𝑆𝐷) is the global reliability of the interstory drift ratio, i.e., a combination of multiple limit states
pertaining to interstory drift of all the floors, and 𝑋 represents the probabilistic target value.

3.4 RBDO problem formulation
Once the reliability threshold is established and the reliability is computed through the process outlined in
Section 2.3, the RBDO scheme is formulated as a mixed continuous-discrete optimization problem, expressed
as:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 :
𝑇𝐶 (𝐿𝑖 , 𝐵𝑖 , 𝐷𝑖) =

∑𝑁𝑖

𝑖=1 𝑤𝑖𝐿𝑖𝐵𝑖𝐷𝑖

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 :
𝑅(𝐼𝑆𝐷) ≥ 𝑋 (𝑚𝑎 𝑗𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡)
𝐵𝐿𝑖 ≤ 𝐵𝑖 ≥ 𝐵𝑈𝑖

𝐷𝐿
𝑖 ≤ 𝐷𝑖 ≥ 𝐷𝑈𝑖 (𝑖 = 1, 2, ...𝑁𝑖)

(22)

In the above equation, 𝑅(𝐼𝑆𝐷) is the global reliability of the interstory drift; 𝐵𝐿𝑖 and 𝐵
𝑈
𝑖 are the lower and upper

bound sizing constraints for the width 𝐵𝑖 ; 𝐷𝐿
𝑖 and 𝐷𝑈𝑖 are the lower and upper bound sizing constraints for

the width 𝐷𝑖 , respectively.

This study employs the GA within the pymoo module [44] in Python for optimization. The GA iteratively
evaluates design solutions by creating an initial population, calculating failure probabilities, and analyzing
reliability based on the constraints. Solution fitness is determined by their reliability, and reproduction is
driven by selection, crossover, and mutation. Offspring also undergo reliability analysis, and this iterative
process continues. The algorithm aims to find solutions that balance cost and reliability, aiming for designs to
meet performance and safety requirements while fulfilling other criteria.

3.5 Reliability-based design optimization procedure
Step 1: Set initial values for the deterministic design variables and establish their corresponding bounds. Addi-
tionally, first, set the allowable limit and determine the targeted reliability for the specific parameter of interest,
namely, the interstory drift ratio.
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Figure 2. Flowchart of GA-based optimization

Step 2: Conduct structural analyses using the stochastic ground motions generated based on the principles
detailed in Section 2.1 for the design variables. Calculate the drift ratio for each floor and record the maximum
drift ratio among all floors at each time interval for further analysis.

Step 3: Perform reliability analysis using PDEM, as detailed in Section 2.3, to evaluate the global structural
reliability against interstory drift ratios.

Step 4: Based on the results of reliability analysis, formulate the RBDO problem, as mentioned in Equa-
tion (22).

Step 5: Adopt the GA to perform the optimization procedure. Within each population, the algorithm adjusts
the width (𝐵𝑖) and depth (𝐷𝑖) of the structural members to minimize the total cost of the superstructure while
adhering to the imposed reliability constraints.

Step 6: End the design optimization procedure when the designated termination criterion for a solution is
met. If not, proceed to Step 2 for the subsequent design iteration.

The procedure described above is depicted in a flowchart shown in Figure 2.

4 ILLUSTRATIVE EXAMPLE
To showcase the practical implementation of the aforementioned methodology, a structural example from the
work of Zou et al. [34] has been employed. For this analysis, the structural topology, layout, material properties,
and story masses across all levels are retained to be identical as in the work of Zou et al. [34]. However, to
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Figure 3. Structural layout and design spectrum. A: Ten-story two-bay planar concrete frame; B: Design spectrum (𝜁 = 5%)

investigate system reliability under the impact of dynamic stochastic loads, the input loads have beenmodified.

Initially, deterministic optimization is performed for static loads, following the seismic design response spec-
trum outlined in the Chinese seismic design code (GB50010-2010) and is termed ’Case A’. Subsequently, a
reliability analysis is conducted using the PDEM with stochastic ground motions consistent with the site class
and seismic intensity used in the deterministic optimization. Recognizing the inadequate reliability of deter-
ministically optimized structures, optimal reliability is pursued through RBDO and is termed ’Case B’. This
approach integrated PDEMwith GA to achieve an optimized design that ensured the desired level of reliability.
Recognizing the necessity for adaptable optimization approaches, a multi-objective optimization employing
NSGA-II was pursued, facilitating the creation of a Pareto solution set. This allows for a range of solutions,
providing the flexibility to strike a balance between cost and reliability as needed.

The exampled structure comprises a ten-story two-bay planar frame with its base fixed on the ground, as
shown in Figure 3A. Each story has an assigned mass of 50, 000𝑘𝑔, and the material used is Grade 30 concrete
possessing Young’s modulus of 3.0 ∗ 104𝑀𝑃𝑎. For consistency, members are grouped to maintain uniform
sizes across every two stories, as indicated in Table 1. An allowable limit of 1/800 is adopted for inter-story
drift ratios by referring to [32–34,43]. The finite element (FE) model is developed within the open-source FE
analysis library Opensees [45] in Python. Parameters such as natural period of vibration, lateral displacements,
and inter-story drift ratios are compared and cross-validated with the research conducted by Zou et al. [34].

4.1 Deterministic Optimization
To initiate deterministic optimization, lower-bound depths andwidths were adopted fromZou’s prior study [34].
For beams and columns, the depths are set at a minimum of 300𝑚𝑚, and the widths at 250𝑚𝑚 and 300𝑚𝑚,
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respectively, in accordance with common buildability standards. Employing site class 𝐼 𝐼 𝐼 , seismic intensity
8, frequently occurring earthquake and damping ratio (𝜁 = 5%), a response spectrum curve is generated
according to Chinese seismic design code (GB50010-2010), as shown in Figure 3B.

A response spectrum modal analysis is conducted to determine the peak modal displacements. The Square
Root of the Sum of Squares (SRSS) rule, known for its accuracy in two-dimensional problems, is employed to
combine the first five peak modal responses [46]. Subsequently, the inter-story drift ratio is computed as the
ratio between the difference in lateral displacement of 𝑗 𝑡ℎ and ( 𝑗 − 1)𝑡ℎ floor to the height of the story.

The optimal design problem is defined in a manner consistent with the RBDO formulation presented in Equa-
tion (22). The only distinction is that the reliability constraint is replaced by a deterministic constraint, which
is expressed as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 :
𝑇𝐶 (𝐿𝑖 , 𝐵𝑖 , 𝐷𝑖) =

∑𝑁𝑖

𝑖=1 𝑤𝑖𝐿𝑖𝐵𝑖𝐷𝑖

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 :
|𝛿𝑢 |𝑚𝑎𝑥 ≥ 𝑋 (𝑋 = 1/800)
𝐵𝐿𝑖 ≤ 𝐵𝑖 ≥ 𝐵𝑈𝑖

𝐷𝐿
𝑖 ≤ 𝐷𝑖 ≥ 𝐷𝑈𝑖 (𝑖 = 1, 2, ...𝑁𝑖)

(23)

where |𝛿𝑢 |𝑚𝑎𝑥 is the maximum interstory drift ratio among all the floors; X is the allowable inter-story drift
ratio limit, which is taken as 1/800; 𝐵𝐿𝑖 and 𝐵

𝑈
𝑖 are the lower and upper bound sizing constraints for the width

𝐵𝑖 ; 𝐷𝐿
𝑖 and 𝐷

𝑈
𝑖 are the lower and upper bound sizing constraints for the depth 𝐷𝑖 , respectively. Upper bounds

for all the members are arbitrarily taken to be 1.5m in this study.

The design optimization process aims to minimize the cost function, as described in Equation (20), ensuring
that the maximum inter-story drift among all floors remains below the threshold of 1/800. As mentioned in
the previous section, the pymoo module in Python is utilized for GA in the optimization procedure. The pop-
ulation size is assigned to be 100 with 15 variables (depths) to be optimized, and the optimization terminates
when the number of generations reaches 100. The optimal objective function fulfilling the constraints within
these generations is then obtained as the globally optimal solution.

4.2 Results of Deterministic Optimization
The initial structure, adopted with minimal member sizes to ensure basic constructability requirements [34],
failed to meet multiple inter-story drift ratio criteria, leading to excessive flexibility, longer vibration periods,
lateral displacement, and drift violations, as shown in Figure 4 and Table 2. After optimization, the member
depths of the structure increased, making it stiffer, as shown inTable 1. This reduced lateral displacement across
all floors and reduced the period of the first mode of vibration from 3.86 seconds to a suitable 1.5 seconds
(as shown in Table 2). The increased member size also raised the structural cost (seismic weight) from the
initial 46,782.5 kg to 74,813.60 kg for the optimal configuration. However, this cost increase is justified by the
significant reduction in lateral displacement and drift ratios, which are now within acceptable limits, as shown
in Figure 4.

Although Figure 4A illustrates that all floor drift ratios are well within acceptable limits post-optimization, it
is essential to note that this optimization process does not consider uncertainties in external excitation or the
system. Therefore, the reliability of this optimal solution remains unverified. Relying solely on deterministic
optimization would necessitate an exceptionally high safety factor, leading to a rapid escalation in costs without
guaranteeing reliability. Therefore, to address this concern and thoroughly assess the reliability of the optimized
structure, a comprehensive reliability assessment is conducted in the subsequent section.
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Table 1. Comparison of Optimal Member Sizes

Minimum requirement Case A (DO) Case B (RBDO)

Initial sizes Optimal sizes Optimal sizes

Element Storey Member Width Depth Width Depth Width Depth

type level group (mm) (mm) (mm) (mm) (mm) (mm)

Column 1𝑠𝑡 /2𝑛𝑑 C1,C3 300 300 300 300 300 301

C2 300 300 300 844 300 1400

3𝑟𝑑/4𝑡ℎ C1,C3 300 300 300 300 300 301

C2 300 300 300 776 300 1083

5𝑡ℎ/6𝑡ℎ C1,C3 300 300 300 571 300 1255

C2 300 300 300 300 300 310

7𝑡ℎ/8𝑡ℎ C1,C3 300 300 300 537 300 771

C2 300 300 300 300 300 325

9𝑡ℎ/10𝑡ℎ C1,C3 300 300 300 300 300 305

C2 300 300 300 550 300 851

Beam 1𝑠𝑡 /2𝑛𝑑 B1,B2 250 350 250 689 250 744

3𝑟𝑑/4𝑡ℎ B1,B2 250 350 250 709 250 830

5𝑡ℎ/6𝑡ℎ B1,B2 250 350 250 628 250 621

7𝑡ℎ/8𝑡ℎ B1,B2 250 350 250 542 250 751

9𝑡ℎ/10𝑡ℎ B1,B2 250 350 250 406 250 556

Reliability - 0.41307 0.89534

Cost (Kg) 46782.5 74813.6 98235.4
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Figure 4. Responses of deterministic optimization. A: Initial and final inter-story drift ratios; B: Initial and final lateral displacement profiles

4.3 Reliability Assessment of optimal results from deterministic optimization
The optimal structure obtained from Section 4.1 is subjected to random ground motions derived using the
physically motivated stochastic ground motion model detailed in Section 2.1 to incorporate the randomness
within the external excitation. Subsequently, the global reliability of the structure with respect to the inter-story
drift ratio is assessed through the utilization of PDEM.

4.3.1 Generation of stochastic ground motion
As detailed in Section 2.1, the two principle sources of randomness are defined as randomness in site soil and
randomness in acceleration at bedrock. To evaluate the former, an engineering site is considered, character-
ized as site class 𝐼 𝐼 𝐼 , with a seismic fortification intensity of 8 according to the Chinese seismic design code
(GB50010-2010). The random variables, 𝜔𝑔 and 𝜁𝑔 , have been ascertained to follow a log-normal distribution
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Figure 5. Stochastic ground motions from the physical model. A: Mean and mean plus standard deviation of stochastic ground motions; B:
Representative time history of stochastic ground motion

through the fitting of seismic records associated with the aforementioned site class. Consequently, a mean and
a coefficient of variation values are obtained for 𝜔𝑔 and 𝜁𝑔 , resulting in 12 rad/s and 0.42 for 𝜔𝑔 , and 0.1 and
0.35 for 𝜁𝑔 , respectively. Furthermore, to characterize the variability in bedrock acceleration, seismic hazard
parameters are defined based on a frequently occurring earthquake with a 50-year return period, peak ground
acceleration of 0.1g, and Fourier amplitude of 0.2 𝑚/𝑠2. Additionally, it is assumed that the initial phase angle
used to simulate stochastic ground motion follows a normal distribution, with a mean of 𝜋 and a coefficient
of variation of 1.2 [7].

In this study, PDEM, as described in Section 2.2, is utilized to perform reliability analyses on structures ex-
posed to randomgroundmotions. The initial step involves choosing representative points within the stochastic
parameter space. Subsequently, the physical stochastic model outlined in Section 2.1 referred from [7] is em-
ployed to generate ground motion acceleration time histories. The tangent spheres method is then used for
partitioning the probability space, resulting in the selection of 221 representative points. The generated ground
motions have a sampling frequency of 50 Hz and a total duration of 20.48 s. To capture the non-stationary
characteristics of these ground motions, Equation (7) is applied, with values of 𝑡𝑎 and 𝑡𝑏 set at 2s and 16s,
respectively.

Now, the seismic load utilized in both deterministic optimization and stochastic analysis corresponds to the
same site conditions and seismic intensity. To confirm their consistency, statistical properties of the response
spectrum of these stochastic ground motions are computed. Figure 5A depicts the mean and the mean plus
one times the standard deviation plotted against the design spectrum. The mean response spectrum is scaled
to match the design spectrum, and it is evident that the calculated mean plus one times the standard devi-
ation encompasses the entire design spectrum, affirming their validity. Additionally, the model effectively
captures the non-stationary characteristics of the time histories and the sample-to-sample variation, with one
representative time history illustrated in Figure 5B.

4.3.2 Results of Reliability Assessment
The PDF and Cumulative Density Function (CDF) of the EEV interstory drift ratio resulting from the struc-
ture’s exposure to stochastic ground motions are depicted in Figure 6. In contrast to the work of Zou, where
reliability indices were employed, PDEM quantifies target reliability in terms of percentages. For this study,
the target reliability in PDEM is set at 0.886, which corresponds to a reliability index of 1.2 in his study. This
determination is made using a first-order approximation of the failure probability, which is calculated as the
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Table 2. Comparison of natural periods of vibration

Initial sizes Case A Case B

Mode Period (sec) Period (sec) Period (sec)

1 3.86 1.528 1.064
2 1.274 0.598 0.383
3 0.75 0.359 0.233
4 0.522 0.245 0.15
5 0.395 0.183 0.137

probability content of the half-space in the standard normal space, as described in the following equation [16,47]:

𝑝 𝑓 ≊ 𝑝 𝑓 1 = Φ(−𝛽) (24)

where 𝑝 𝑓 1 represents the first-order approximation of the failure probability; Φ(.) represents the standard
Normal CDF, and 𝛽 represents the reliability index.

The red curve in Figure 6B illustrates the CDF of the structure optimized deterministically. It is evident that
with a drift ratio of 1/800, the reliability is only 0.41, which falls significantly below the target reliability. Ex-
amining the PDF curve depicted in Figure 6A, it becomes apparent that the probability of exceeding the drift
limit is approximately 50%, a value considerably higher than the targeted exceedance probability. These results
underscore the inadequacy of the deterministic optimization technique. Consequently, the subsequent section
focuses on optimization while enforcing the constraint of drift ratio reliability.

4.4 Reliability-based design optimization
4.4.1 Single-objective optimization using GA
To initiate the RBDO procedure, the initial and final bounds, material properties, and structural configura-
tion remain consistent with those in deterministic optimization. However, a fundamental distinction arises
from the incorporation of random ground motions, resulting in a stochastic process. The central concept is
to design an optimal structure in which the maximum interstory drift ratio remains within the permissible
failure probability, ensuring global reliability where all limit states fall within safe margins. To achieve this, the
concept of global reliability is integrated using the EEV event approach. In this context, the limit state of each
floor must be considered. Consequently, the maximum drift ratio among all floors is evaluated for each rep-
resentative point, as formulated in Equation (9). PDEM is then readily applied to obtain the PDF and CDF of
the inter-story drift ratio. RBDO is a two-step optimization procedure; the inner loop is dedicated to reliability
analysis, and the outer loop is focused on structural optimization. This process is mathematically defined in
Equation (22), with a primary constraint stating 𝑅(𝐼𝑆𝐷) ≥ 0.886. The GA, thus, selects offspring that primarily
satisfy this critical constraint and subsequently minimizes the cost function, ultimately leading to a globally
reliable optimal structure. In this case, a population of 100 for 100 generations is used for single-objective
optimization using GA.

The root-mean-square time histories of the inter-story drift ratios of several floors for the optimal results ob-
tained through deterministic and reliability-based optimization are depicted in Figure 7. Notably, the optimal
outcome of RBDO showcases a substantial reduction in drift ratios compared to the deterministic optimization
results, all while maintaining superior global reliability for the structure and incurring only a slight increase
in cost. It is evident that the drift ratio of the structure comfortably meets the design requirements, as its root-
mean-square time history remains well within the limit of 1/800 ≈ 0.00125. To further assess the performance
of the reliability-based optimal design, the PDF and CDF are presented in Figure 6. Figure 6B reveals that the
reliability of this optimal design stands at approximately 89%, which ismore than double the reliability achieved
by the deterministically optimized structure. However, as detailed in Table 1, the seismic weight/cost of this
optimal design is approximately 31% higher than that of the deterministically optimized structure and nearly
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Figure 6. PDFs and CDFs of deterministic and reliability-based optimized structures subjected to stochastic ground motions. A: probability
density functions; B: cumulative density functions
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Figure 7. Root mean square interstory drifts deterministic and reliability-based optimal structures. A: 1𝑠𝑡 Interstory drift ratio; B: 3𝑟𝑑 Inter-
story drift ratio; C: 5𝑡ℎ Interstory drift ratio; D: 10𝑡ℎ Interstory drift ratio

double the initial structural cost. Despite this increase in cost, it is justified by the substantial enhancement
in reliability from 0.413 of the deterministically optimized structure to 0.895 of the reliability-based optimal
structure. This result underscores how a relatively modest cost increase of around 31% can yield nearly double
the reliability. Furthermore, this enhanced reliability encompasses the entire structure, emphasizing its global
reliability. Additionally, the first mode of vibration for this optimal structure exhibits a fundamental period of
approximately 1.064 seconds, as shown in Table 2, aligning with the fundamental rule of thumb for structural
dynamics and confirming the effectiveness of this design procedure.

4.4.2 Multi-objective optimization using NSGA-II
In this section, our aim is to introduce greater flexibility in design optimization, offering a spectrum of solu-
tions for achieving a balanced trade-off between cost and reliability without degrading any of them. Utilizing
NSGA-II, which stands for non-dominated sorting GA for multi-objective optimization, allows us to expand
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Figure 8. Pareto solution obtained from multi-objective optimization using NSGA-II

beyond the single global value generated by GA, introducing multiple solutions that serve as a Pareto set. The
concept of Pareto dominance involves an exhaustive comparison of each solution with every other solution in
the population. If no other solution dominates, it is considered non-dominated and is selected by NSGA-II
to be part of the Pareto front set. While GA focuses on scalar optimization by providing a single outcome,
multi-objective optimization provides a vector, enabling a holistic approach to objectives. Here, we emphasize
minimizing structural cost while maximizing reliability. Originally, reliability was utilized only as a constraint
in single-objective optimization; however, in this section, we have integrated an additional objective for max-
imizing reliability. The constraint remains unchanged at 𝑅(𝐼𝑆𝐷) ≥ 0.886, leading to a suite of solutions that
comply with the constraints while addressing both objectives.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 :
𝑇𝐶 (𝐿𝑖 , 𝐵𝑖 , 𝐷𝑖) =

∑𝑁𝑖

𝑖=1 𝑤𝑖𝐿𝑖𝐵𝑖𝐷𝑖

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 :
𝑅(𝐼𝑆𝐷)

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 :
𝑅(𝐼𝑆𝐷) ≥ 0.886

𝐵𝐿𝑖 ≤ 𝐵𝑖 ≥ 𝐵𝑈𝑖

𝐷𝐿
𝑖 ≤ 𝐷𝑖 ≥ 𝐷𝑈𝑖 (𝑖 = 1, 2, ...𝑁𝑖)

(25)

The optimization process involved a population of 100 candidates across 100 generations, yielding the results
depicted in Figure 8. Adhering to the constraint 𝑅(𝐼𝑆𝐷) ≥ 0.886, the solutions range from a cost of 95550 with
a reliability of 0.8864 to a cost of 103400 with a notably higher reliability of 0.964. This broad spectrum of
solutions offers the flexibility to choose as needed within this range.

The computational times for different optimization methods are tabulated in Table 3. The computational sys-
temutilized an Intel(R) Xenon (R)Gold 5218RCPU@2.10GHzwith 30 logical processors and 127GBRAM.A
marginal increase in time occurred due to the utilization of Python to run theMATLAB code using aMATLAB
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Table 3. Comparison of computational time for different optimization procedures

Deterministic optimization Single-objective optimization using
GA

Multi-objective optimization using
NSGA-II

Computational time (seconds) 156.9 60949.07 119705.03

engine API within Python for reliability analysis. For the deterministic analysis, only response spectrum static
analysis was employed. However, for RBDO, 221 deterministic time history analyses were conducted for each
fitness check, and their outcomes were then processed in MATLAB for reliability analysis, which extended the
time. The multi-objective optimization took approximately 119705.03 seconds, around 96% longer than the
single-objective optimization, which consumed 60949.07 seconds. The deterministic analysis required only
about 156.9 seconds due to a single static analysis per fitness check. However, it is worth noting that the com-
putational time for reliability analysis was significantly reduced through the adoption of PDEM over classical
reliability methods, substantially reducing the number of samples needed for each reliability analysis.

5 CONCLUSION
In this study, a framework for RBDO is outlined, which combines the PDEM and GA to address global relia-
bility concerns in the context of physically motivated ground motions. The global reliability, which takes into
account multiple limit states related to the interstory drift ratio of each floor, is streamlined using the EEV
event criteria within PDEM. As a result, an optimal design that ensures sufficient reliability under fully non-
stationary groundmotion conditions is attained, and a Pareto front set is further obtained to provide flexibility
in the trade-off between cost and reliability.

The findings reveal a significant advantage of RBDO over deterministic optimization. The optimal results
obtained through deterministic optimization account for only half of the desired reliability level when sub-
jected to stochastic ground motions but come at a cost equivalent to 76.16% of the reliability-based optimal
design. In contrast, for a relatively modest 31% increase in cost, the RBDO approach delivers the desired
level of reliability against the same stochastic ground motions. This highlights the importance of the RBDO
procedure, emphasizing its efficiency and accuracy in achieving reliable designs. Moreover, multi-objective
optimization broadens the spectrum of available solutions, meeting the established reliability constraint and
ultimately amplifying the quest for flexible and optimal designs. Furthermore, the study demonstrates the
advantage of utilizing a physically motivated stochastic ground motion model over the power spectral models
and spectral representation method coupled with MCS. The physically motivated model allows for the gener-
ation of random ground motions with assigned probabilities, achieved by partitioning the probability space.
Consequently, the RBDO process benefits from reduced computational burden compared to the alternative
method.

While the RBDO procedure results in a reliable and optimal design, the study acknowledges that even more
logical designs can be achieved by incorporating control systems to mitigate seismic hazards. Future investi-
gations will focus on these control systems, including the use of viscous dampers and base isolation systems,
to further enhance structural resilience against earthquakes.

6 DECLARATIONS
6.1 Acknowledgments
The support of the Committee of Science and Technology of Shanghai, China (Grant No. 21ZR1425500) and
the Ministry of Science and Technology, China (Grant No. SLDRCE19-B-26) is highly appreciated.

http://dx.doi.org/10.20517/dpr.2023.35


Page 20 of 21 Shrestha et al. Dis Prev Res 2023;2:23 I http://dx.doi.org/10.20517/dpr.2023.35

6.2 Authors’ contributions
Software, investigation, implementation, numerical analysis, and formal analysis: Shrestha S
Critical input, supervision, visualization, validation, writing - review & editing, and resources: Peng Y

6.3 Availability of data and materials
Some or all data and materials that support the findings of this study are available upon reasonable request.

6.4 Financial support and sponsorship
Committee of Science and Technology of Shanghai, China (Grant No. 21ZR1425500) and the Ministry of
Science and Technology, China (Grant No. SLDRCE19-B-26)

6.5 Conflicts of interest
All authors declared that there are no conflicts of interest.

6.6 Ethical approval and consent to participate
Not applicable.

6.7 Consent for publication
Not applicable.

6.8 Copyright
©The Author(s) 2023.

REFERENCES
1. Powell GH. Displacement-based seismic design of structures. Earthq Spectra 2008;24:555–57. DOI
2. Ghobarah A. Performance-based design in earthquake engineering: state of development. Eng Struct 2001;23:878–84. DOI
3. Dawei Z, Jinyu Z, Chunqiu L, Zhiling W. A short review of reliability-based design optimization. In: IOP Conference Series: Materials

Science and Engineering. vol. 1043; 2021. p. 032041. DOI
4. Sullivan TJ, Welch DP, Calvi GM. Simplified seismic performance assessment and implications for seismic design. Earthq Eng Eng Vib

2014;13:95-122. DOI
5. Vrouwenvelder ACWM. Developments towards full probabilistic design codes. Struct Safe 2002;24:417–32. DOI
6. Ministry of Housing and Urban-rural Development of the People’s Republic of China. GB 50011-2010: Code for seismic design of

buildings; 2010. Available from: https://www.chinesestandard.net/PDF.aspx/GB50011-2010.
7. Peng Y, Li J. Stochastic optimal control of structures. Singapore: Springer Singapore; 2019. DOI
8. Peng Y, Ma Y, Huang T, De Domenico D. Reliability-based design optimization of adaptive sliding base isolation system for improving

seismic performance of structures. Reliab Eng Syst Safe 2021;205:107167. DOI
9. Aloisio A, Contento A, Alaggio R, Briseghella B, FragiacomoM. Probabilistic assessment of a light-timber frame shear wall with variable

pinching under repeated earthquakes. J Struct Eng 2022;148:04022178. DOI
10. Li J, Chen J. Stochastic dynamics of structures. Singapore ; Hoboken, NJ: Wiley; 2009. DOI
11. Zhao YG, Ono T. A general procedure for first/second-order reliability method (FORM/SORM). Struct Safe 1999;21. Available from:

https://www.sciencedirect.com/science/article/abs/pii/S0167473099000089.
12. Hu Z, Du X. Reliability-based design optimization under stationary stochastic process loads. Eng Optimiz 2016;48:1296–312. DOI
13. Hu Z, Mansour R, Olsson M, Du X. Second-order reliability methods: a review and comparative study. Struct Multidiscipl Optimiz

2021;64:3233–63. DOI
14. Youn BD, Choi KK, Park YH. Hybrid analysis method for reliability-based design optimization. J Mech Des 2003;125:221–32. DOI
15. Yang M, Zhang D, Jiang C, Han X, Li Q. A hybrid adaptive Kriging-based single loop approach for complex reliability-based design

optimization problems. Reliab Eng Syst Safe 2021;215:107736. DOI
16. Yang M, Zhang D, Han X. New efficient and robust method for structural reliability analysis and its application in reliability-based design

optimization. Compu Meth Appl Mech Eng 2020;366:113018. DOI
17. Yang M, Zhang D, Jiang C, Wang F, Han X. A new solution framework for time-dependent reliability-based design optimization. Compu

Meth Appl Mech Eng 2024;418:116475. DOI
18. Wang L, Zhao Y, Liu J. A Kriging-based decoupled non-probability reliability-based design optimization scheme for piezoelectric PID

control systems. Mech Syst Sig Process 2023;203:110714. DOI
19. Meng Z, Li G, Wang BP, Hao P. A hybrid chaos control approach of the performance measure functions for reliability-based design

optimization. Comput Struct 2015;146:32–43. DOI

http://dx.doi.org/10.20517/dpr.2023.35
http://dx.doi.org/10.1193/1.2932170
http://dx.doi.org/10.1016/S0141-0296(01)00036-0
http://dx.doi.org/10.1088/1757-899X/1043/3/032041
http://dx.doi.org/10.1007/s11803-014-0242-0
http://dx.doi.org/10.1016/S0167-4730(02)00035-8
https://www.chinesestandard.net/PDF.aspx/GB50011-2010
http://dx.doi.org/10.1007/978-981-13-6764-9
http://dx.doi.org/10.1016/j.ress.2020.107167
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0003464
http://dx.doi.org/10.1002/9780470824269
https://www.sciencedirect.com/science/article/abs/pii/S0167473099000089
http://dx.doi.org/10.1080/0305215X.2015.1100956
http://dx.doi.org/10.1007/s00158-021-03013-y
http://dx.doi.org/10.1115/1.1561042
http://dx.doi.org/10.1016/j.ress.2021.107736
http://dx.doi.org/10.1016/j.cma.2020.113018
http://dx.doi.org/10.1016/j.cma.2023.116475
http://dx.doi.org/10.1016/j.ymssp.2023.110714
http://dx.doi.org/10.1016/j.compstruc.2014.08.011


Shrestha et al. Dis Prev Res 2023;2:23 I http://dx.doi.org/10.20517/dpr.2023.35 Page 21 of 21

20. Rubinstein RY, Kroese DP. Simulation and the monte carlo method. 1st ed. Wiley Series in Probability and Statistics. Wiley; 2016. DOI
21. Peng Y, Chen J, Li J. Nonlinear response of structures subjected to stochastic excitations via probability density evolution method. Adv

Struct Eng 2014;17:801–16. DOI
22. Wang L, Zhou Z, Liu J. Interval-based optimal trajectory tracking control method for manipulators with clearance considering time-

dependent reliability constraints. Aero Sci Techn 2022;128:107745. DOI
23. Li J, Chen J. The principle of preservation of probability and the generalized density evolution equation. Struct Safe 2008;30:65–77. DOI
24. Li J, Chen J, Fan W. The equivalent extreme-value event and evaluation of the structural system reliability. Struct Safe 2007;29:112–31.

DOI
25. Chen J, Li J. The extreme value distribution and dynamic reliability analysis of nonlinear structures with uncertain parameters. Struct

Safe 2007;29:77–93. DOI
26. Wang D, Li J. Physical random function model of ground motions for engineering purposes. Sci Chin TechnScie 2011;54:175–82. DOI
27. Ai XQ, Li J. Random model of earthquake ground motion for engineering site basing on stochastic physical process. In: International

Collaboration in Lifeline Earthquake Engineering 2016. Shanghai, China: American Society of Civil Engineers; 2017. pp. 390–95. DOI
28. Zhangjun L, Xinxin R, Zixin L. Performance-based global reliability assessment of a high-rise frame-core tube structure subjected to

multi-dimensional stochastic earthquakes. Earthq Eng Eng Vib 2022;21:395–415. DOI
29. Marano GC, Rosso MM, Aloisio A, Cirrincione G. Generative adversarial networks review in earthquake-related engineering fields. Bull

Earthquake Eng 2023. DOI
30. Safaeian Hamzehkolaei N,Miri M, Rashki M. An enhanced simulation-based design method coupled with meta-heuristic search algorithm

for accurate reliability-based design optimization. Eng Comput 2016;32:477–95. DOI
31. Shayanfar M, Abbasnia R, Khodam A. Development of a GA-based method for reliability-based optimization of structures with discrete

and continuous design variables using OpenSees and Tcl. Finite Eleme Anal Des 2014;90:61–73. DOI
32. Zou XK, Chan CM. Optimal drift performance design of base isolated buildings subject to earthquake loads. Comput Aid Optim Des

Struct 2001;VII. DOI
33. Zou XK. Integrated design optimization of base-isolated concrete buildings under spectrum loading. Struct Multidisc Optim 2008;36:493–

507. DOI
34. Zou XK, Wang Q, Li G, Chan CM. Integrated reliability-based seismic drift design optimization of base-isolated concrete buildings. J

Struct Eng 2010;136:1282–95. DOI
35. Lu DG, Song PY, Yu XH. Analysis of global reliability of structures: FORM vs. HOMM. In: Safety, Reliability, Risk and Life-Cycle

Performance of Structures & Infrastructures. London; 2013. DOI
36. Castaldo P, Miceli E. Optimal single concave sliding device properties for isolated multi-span continuous deck bridges depending on the

ground motion characteristics. Soil Dynam Earthq Eng 2023;173:108128. DOI
37. Peng Y, Ding L, Liu J, Chen J. Probabilistic analysis of seismic mitigation of base‐isolated structure with sliding hydromagnetic bearings

based on finite element simulations. Earthqu Eng Resili 2023;2:194–210. DOI
38. Sun P, Peng Y. Probabilistic design optimization of TMDI system for seismic mitigation subjected to stochastic ground motions. Dublin,

Ireland; 2023. Available from: http://www.tara.tcd.ie/bitstream/handle/2262/103432/submission_355.pdf?sequence=1.
39. Peng Y, Ghanem R, Li J. Generalized optimal control policy for stochastic optimal control of structures: GENERALIZED CONTROL

POLICY FOR STOCHASTIC OPTIMAL CONTROL. Struct Control Health Monit 2013;20:187–209. DOI
40. Xian J, Su C, Guo H. Seismic reliability analysis of energy-dissipation structures by combining probability density evolution method and

explicit time-domain method. Struct Safe 2021;88:102010. DOI
41. Chen JB, Lin PH, Li J. First-passage reliability evaluation based on the probability density evolution of stochastic processes. In: Vulner-

ability, Uncertainty, and Risk. Liverpool, UK: American Society of Civil Engineers; 2014. pp. 782–91. DOI
42. Miceli E, Castaldo P. Robustness improvements for 2D reinforced concrete moment resisting frames: Parametric study by means of NLFE

analyses. Struct Concr 2023;suco.202300443. DOI
43. Zou X. Optimal seismic performance-based design of reinforced concrete buildings. The Hong Kong University of Science and Technol-

ogy; 2002. Available from: https://xueshu.baidu.com/usercenter/paper/show?paperid=157f0xs0cj580xd0v2590630hw418322.
44. Blank J, Deb K. Pymoo: multi-objective optimization in python. IEEE Access 2020;8:89497–509. DOI
45. Mazzoni S, McKenna F, Scott MH, Fenves GL. OpenSees command language manual. Berkley: University of California; 2006. Available

from: http://opensees.berkeley.edu/manuals/usermanual.
46. Fragiadakis M. Response spectrum analysis of structures subjected to seismic actions. In: Beer M, Kougioumtzoglou IA, Patelli E, Au

ISK, editors. Encyclopedia of Earthquake Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. pp. 1–18. DOI
47. Huang C, El Hami A, Radi B. Overview of structural reliability analysis methods — part I : local reliability methods. Incertitudes et

fiabilité des systèmes multiphysiques 2017;17. DOI

http://dx.doi.org/10.20517/dpr.2023.35
http://dx.doi.org/10.1002/9781118631980
http://dx.doi.org/10.1260/1369-4332.17.6.801
http://dx.doi.org/10.1016/j.ast.2022.107745
http://dx.doi.org/10.1016/j.strusafe.2006.08.001
http://dx.doi.org/10.1016/j.strusafe.2006.03.002
http://dx.doi.org/10.1016/j.strusafe.2006.02.002
http://dx.doi.org/10.1007/s11431-010-4201-3
http://dx.doi.org/10.1061/9780784480342.053
http://dx.doi.org/10.1007/s11803-022-2097-0
http://dx.doi.org/10.1007/s10518-023-01645-7
http://dx.doi.org/10.1007/s00366-015-0427-9
http://dx.doi.org/10.1016/j.finel.2014.06.010
http://dx.doi.org/10.2495/OP010331
http://dx.doi.org/10.1007/s00158-007-0184-5
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000216
http://dx.doi.org/10.1201/B16387-174
http://dx.doi.org/10.1016/j.soildyn.2023.108128
http://dx.doi.org/10.1002/eer2.46
http://www.tara.tcd.ie/bitstream/handle/2262/103432/submission_355.pdf?sequence=1
http://dx.doi.org/10.1002/stc.483
http://dx.doi.org/10.1016/j.strusafe.2020.102010
http://dx.doi.org/10.1061/9780784413609.080
http://dx.doi.org/10.1002/suco.202300443
https://xueshu.baidu.com/usercenter/paper/show?paperid=157f0xs0cj580xd0v2590630hw418322
http://dx.doi.org/10.1109/ACCESS.2020.2990567
http://opensees.berkeley.edu/manuals/usermanual
http://dx.doi.org/10.1007/978-3-642-36197-5_133-1
http://dx.doi.org/10.21494/ISTE.OP.2017.0115

	Introduction
	Reliability assessment of a linear stochastic dynamical system
	Modeling of stochastic ground motion
	Probability density evolution method
	Numerical procedure for solving the first-passage problem using PDEM

	Reliability-based design optimization
	Design variables
	Design Objective
	Design constraints
	RBDO problem formulation
	Reliability-based design optimization procedure

	Illustrative Example
	Deterministic Optimization
	Results of Deterministic Optimization
	Reliability Assessment of optimal results from deterministic optimization
	Generation of stochastic ground motion
	Results of Reliability Assessment

	Reliability-based design optimization
	Single-objective optimization using GA
	Multi-objective optimization using NSGA-II


	Conclusion
	Declarations
	Acknowledgments
	Authors' contributions
	Availability of data and materials
	Financial support and sponsorship
	Conflicts of interest
	Ethical approval and consent to participate
	Consent for publication
	Copyright


