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Abstract
In this paper, we examine the stability of highly nonlinear switched stochastic systems (SSSs) with time-varying de-
lays, where the switching time instants are deterministic rather than stochastic. Herein, the boundedness of the
global solution is first proven for highly nonlinear SSSs via the average dwell time (ADT) method and multiple Lya-
punov function (MLF) approach. Then, the stability criteria for 𝑞th moment exponential stability and almost surely
exponential stability are presented. Themain difficulty lies in the presence of switching and time-varying delay terms,
which prevents the validation of existing methods. New inequality techniques have been developed to counteract the
effects of switching signals and time-varying delays. Finally, an example is provided to verify the effectiveness of the
results.
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1. INTRODUCTION
Switched systems are important dynamic systems. The idea of switching has been widely applied in various
fields, such as aircraft attitude control [1], ecological dynamics [2], and financial markets [3]. With the increasing
complexity of system architectures, dynamical analysis of switched systems has attracted significant academic
interest. A switched system consists of a family of continuous-time dynamics, discrete-time dynamics, and
switching rules between subsystems. According to the switching signal features, switched systems are divided
into two categories, namely, deterministic switched systems and randomly switched systems. Many researchers
have focused on stabilization and stability analyses of various switched systems. For example, in [4], a series of
results on stochastic differential equations (SDEs) with Markovian switching was obtained. In particular, the
authors have provided some useful stability criteria. In [5], the authors studied the input-to-state stability of
time-varying switched systems by employing the ADT method coupled with the MLF approach. The authors
of [6] investigated the stability of switched stochastic delay neural networks with all unstable subsystems based
on discretized Lyapunov-Krasovskii functions (DLKFs). In [7], a novel Lyapunov function was designed to
ensure a non-weighted L2 gain for switched systems with asynchronous switching. In [8], a hidden Markov
model was proposed to study the finite region𝐻∞ asynchronous control problem for two-dimensionalMarkov
jump systems. Other interesting researches on switched systems can be found in [9–11] and references therein.

The linear growth condition (LGC) is crucial for ensuring the existence of a global solution for a stochastic
system. However, many stochastic systems do not satisfy LGC. Hence, the solution of a stochastic system
may explode in a finite time. Recently, the stability of stochastic systems without LGC has drawn consider-
able attention. For instance, the authors of [12] investigated the stability and boundedness of nonlinear hybrid
stochastic differential delay equations without LGC based on a Lyapunov function approach. By introducing a
polynomial growth condition (PGC), [13] discussed the stabilization problem of highly nonlinear hybrid SDEs.
The input-to-state practically exponential stability in the sense of mean square was introduced in [14]. Suffi-
cient conditions for stability have been obtained. Additionally, other meaningful results were reported in [15]

and [16].

Time-delay is an important factor that affects dynamical performances of stochastic systems. By constructing a
suitable Lyapunov function, the authors of [12] studied the stability and boundedness of highly nonlinear hybrid
stochastic systems with a time delay. The authors of [17] used the ADTmethod to study the stability problem of
SSSs, where the switching signals are deterministic. Based on the stability criteria for stochastic time-delay sys-
tems, the authors of [18] introduced a suitable Lyapunov-Krasovskii (L-K) functional, and discussed the global
probabilistic asymptotic stability of the closed-loop system. In [19], the Razumikhin approach was presented to
study the exponential stability of a class of impulsive stochastic delay differential systems. Using the piecewise
dynamic gain method, the authors of [20] studied the global uniform ultimate boundedness of switched linear
time-delay systems. Motivated by the aforementioned literature, the stability of highly nonlinear SSSs with
time-varying delays is studied in this paper. Figure 1 shows the framework of this paper.

The challenges of this article lie in the following two parts: (1) The time delay studied here is merely a Borel
measurable function of time 𝑡. That is to say, it may be non-differentiable with respect to time 𝑡, which means
that the existing methods regarding constant delays or differentiable delays are no longer applicable; (2) Rather
than aMarkovian switching signal, a deterministic switching signal is involved in the studied system, indicating
thatMarkovian switched systems basedM-matrixmethod is invalid. To address the influences of deterministic
switching signals, an ADT method coupled with the MLF approach is utilized in our stability analysis.

The main advantages of this paper are as follows:
(1) Without the LGC, the existence and uniqueness of a global solution is proven for highly nonlinear SSSs,
where a deterministic switching signal rather than a Markovian switching signal is considered.
(2) By integrating the ADT method and MLF approach, the 𝑞th moment exponential stability and almost
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Figure 1. Framework of the paper.

surely exponential stability are presented for highly nonlinear SSSs with time-varying delays.

The remainder of this paper is organized as follows. An introduction of the model and important assumptions
are given in Section 2. The existence of a unique global solution and stability analysis are presented in Sections 3.
In Section 4, a simulation example is presented to validate our theoretical results. Finally, Section 5 concludes
the paper.

Note: In this paper, R+ = (0,∞), N+ = 1, 2, · · · , 𝜅, · · · , N = N+ ∪ {0} with 𝜅 being a positive finite integer,
R𝑛 denotes the 𝑛-dimensional real space. For 𝑥 ∈ R𝑛, |𝑥 | =

( ∑𝑛
𝑖=1 𝑥

2
𝑖

) 1
2 denotes the Euclidean norm of vector.

For any matrix 𝐴 ∈ R𝑛×𝑛, |𝐴| =
√
𝐴𝑇 𝐴 denotes the trace norm of matrix 𝐴, where 𝐴𝑇 is the transpose of

matrix 𝐴 and tr{𝐴} denotes its trace. For 𝜏 > 0, 𝐶 ([−𝜏, 0];R𝑛) denotes the space of all continuous functions
𝜑 from [−𝜏, 0] → R𝑛 with the norm | |𝜑 | | = sup−𝜏≤𝑢≤0 |𝜑(𝑢) |, C𝑏F0

([−𝜏, 0];R𝑛) denotes the family of all F0-
measurable bounded C([−𝜏, 0];R𝑛)-valued random variable 𝜉 = {𝜉 (𝜃) : −𝜏 ≤ 𝜃 ≤ 0}. Let (𝛺, F , P) be a
complete probability space with a filtration {F𝑡}𝑡≥0. 𝐵(𝑡)=(𝐵1(𝑡), · · · , 𝐵𝑚 (𝑡)) denotes an 𝑚-dimensional F𝑡-
adapted Brownian motion, which is defined on a complete probability space. In addition, V1,2 denotes the
family of all non-negative functions 𝑉 (𝑡, 𝑥, 𝑖) : [−𝜏,∞) × R𝑛 × Γ → R+, which are first-order continuously
differentiable in 𝑡 and second-order continuously differentiable in 𝑥. Let 𝐶 ([−𝜏,∞) ×R𝑛;R+) be the family of
continuous functions𝑊 : [−𝜏,∞)×R𝑛 → R+. For real numbers 𝑎 and 𝑏, 𝑎∧𝑏 = min{𝑎, 𝑏}, 𝑎∨𝑏 = max{𝑎, 𝑏}.

2. PRELIMINARIES
Model descriptions and assumptions are introduced in this section. In this study, we analyzed the following
highly nonlinear SSS with time-varying delays:

𝑑𝑥(𝑡) = 𝑓𝜎(𝑡) (𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝛿𝑡))𝑑𝑡 + 𝑔𝜎(𝑡) (𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝛿𝑡))𝑑𝐵(𝑡), (1)

with the initial value:

{𝑥(𝑡) : −𝑚 ≤ 𝑡 ≤ 0} = 𝜉 ∈ C𝑏F0
( [−𝑚, 0];R𝑛), (2)

where 𝑚 > 0 is a constant and switching signal 𝜎(𝑡) : [0,∞) → Γ = {1, 2, · · · , 𝜅} is a piecewise constant
function that is continuous from the right. In particular, it is a non-random function of 𝑡. For 𝑡 ∈ [𝑡𝑚 , 𝑡𝑚+1),
𝜎(𝑡) = 𝑖𝑚 ∈ Γ, where 𝑡𝑚 is the 𝑚th switching time instant and 𝑚 ∈ N. For each 𝑖 ∈ Γ, the mappings
𝑓𝑖 : R+ × R𝑛 × R𝑛 → R𝑛 and 𝑔𝑖 : R+ × R𝑛 × R𝑛 → R𝑛×𝑚 are Borel-measurable functions. Compared with [13],
one of the merits of this paper is that the time delay 𝛿𝑡 is merely a Borel measurable function of 𝑡 and may be
non-differentiable. Precisely, we need to impose some requirements on the time-varying delay 𝛿𝑡 .
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Assumption 1 The time-varying delay 𝛿𝑡 is a Borel measurable function of 𝑡 from R+ → [𝑚1, 𝑚] with the prop-
erty that

�̄� = lim sup
Δ→0+

(
sup
𝑠≥−𝑚

𝜇(𝑀𝑠,Δ)
Δ

)
< ∞, (3)

where 𝑚1 and 𝑚 are positive constants, 𝑀𝑠,4 = {𝑡 ∈ R+ : 𝑡 − 𝛿𝑡 ∈ [𝑠, 𝑠 + 4)} and 𝜇(·) denotes the Lebesgue
measure on R+.

Remark 1 Assumption 1 reveals that the time delay in SSS (1) is merely a Borel measurable function of time
𝑡, which means that it may be non-differentiable with respect to time 𝑡. In most reported studies on SSSs (see,
e.g., [21–25]), the time delay 𝛿𝑡 is always assumed to be a differentiable function and its time derivative ¤𝛿𝑡 should
satisfy ¤𝛿𝑡 ≤ 𝛿 < 1 with 𝛿 being a positive constant. However, this condition is too conservative for practical
application. Many time-delay functions in actual systems do not satisfy this assumption. For example, a time-
varying delay 𝛿𝑡 is defined as 𝛿𝑡 = 0.5 + 0.25| sin(10𝑡) |. If 𝛿𝑡 is a Lipschitz continuous function with a Lipschitz
coefficient 𝑚2 ∈ (0, 1), namely, |𝛿𝑡 − 𝛿𝑠 | ≤ 𝑚2 |𝑡 − 𝑠 |, then for all 0 ≤ 𝑠 < 𝑡 < ∞. Then, 𝛿𝑡 satisfies Assumption 1
with �̄� = (1−𝑚2)−1. In particular, if 𝛿𝑡 is differentiable and its derivative is bounded by 𝑚2 ∈ (0, 1), then 𝛿𝑡 still
satisfies Assumption 1. From a theoretical perspective, a large class of functions 𝛿𝑡 can satisfy Assumption 1. Note
that the constant �̄� must not be less than 1 (i.e., �̄� ≥ 1). This point can be obtained from the following lemma,
with 𝜓 = 1.

The following lemma provides a useful inequality to obtain the stability of the SSS (1) with time-varying delays,
and its proof can be found in [16].

Lemma 1 [16] Let 𝑇 > 0 and 𝜓 : [𝑡0 − 𝑚,𝑇 − 𝑚1] → R+ be a continuous function. If Assumption 1 holds, then∫ 𝑇

𝑡0

𝜓(𝑡 − 𝛿𝑡)𝑑𝑡 ≤ �̄�
∫ 𝑇−𝑚1

𝑡0−𝑚
𝜓(𝑡)𝑑𝑡. (4)

The conditions for the existence and uniqueness of global solution are the local Lipschitz condition (LLC) and
the LGC (see, e.g., [4,7,20,26]). In this paper, the highly nonlinear SSS (1) generally does not require the LGC.
Consequently, we must impose the PGC on it.

Assumption 2 (LLC & PGC) For any real number 𝑏 > 0, 𝑖 ∈ Γ, there exists a constant 𝐾𝑏,𝑖 > 0 such that

| 𝑓𝑖 (𝑡, 𝑥, 𝑦) − 𝑓𝑖 (𝑡, 𝑥, �̄�) | ∨ |𝑔𝑖 (𝑡, 𝑥, 𝑦) − 𝑔𝑖 (𝑡, 𝑥.�̄�) | ≤ 𝐾𝑏,𝑖 ( |𝑥 − 𝑥 | + |𝑦 − �̄� |), (5)

for all 𝑥, 𝑥, 𝑦, �̄� ∈ R𝑛, where |𝑥 | ∨ |𝑥 | ∨ |𝑦 | ∨ | �̄� | ≤ 𝑏. Moreover, there exist constants 𝐾 > 0, 𝛼1 > 1, 𝛼2 ≥ 1 such
that

| 𝑓𝑖 (𝑡, 𝑥, 𝑦) | ≤ 𝐾 (1 + |𝑥 |𝛼1 + |𝑦 |𝛼1),
|𝑔𝑖 (𝑡, 𝑥, 𝑦) | ≤ 𝐾 (1 + |𝑥 |𝛼2 + |𝑦 |𝛼2), (6)

where (𝑡, 𝑥, 𝑦) ∈ R+ × R𝑛 × R𝑛 and 𝑖 ∈ Γ.

Assumption 3 Assume that there are two functions 𝛬 ∈ V1,2([−𝑚,∞) × R𝑛 × Γ;R+) and𝑊 ∈ 𝐶 ([−𝑚,∞) ×
R𝑛;R+), as well as positive numbers 𝑎1, 𝑎2, 𝜆1, 𝜆3 and real numbers 𝜆2, 𝜆4, satisfying 𝜆1 > 𝜆2, 𝜆3 > 𝜆4 and
𝑞 > 2, 𝜇𝑖 > 1, such that for any (𝑡, 𝑥, 𝑦, 𝑖) ∈ R+ × R𝑛 × R𝑛 × Γ,

𝑎1 |𝑥 |𝑞 ≤ Λ(𝑡, 𝑥, 𝑖) ≤ 𝑎2 |𝑥 |𝑞 , (7)
𝛬(𝑡, 𝑥, 𝑖) ≤ 𝜇𝑖𝛬(𝑡, 𝑥, 𝑗), ∀(𝑡, 𝑥, 𝑖) ∈ R+ × R𝑛 × Γ, (8)

L𝛬(𝑡, 𝑥, 𝑦, 𝑖) = 𝛬𝑡 (𝑡, 𝑥, 𝑖) + 𝛬𝑥 (𝑡, 𝑥, 𝑖) 𝑓𝑖 (𝑡, 𝑥, 𝑦) +
1
2

trace{𝑔𝑖𝑇 (𝑡, 𝑥, 𝑦)𝛬𝑥𝑥 (𝑡, 𝑥, 𝑖)𝑔𝑖 (𝑡, 𝑥, 𝑦)}

≤ −𝜆1𝑊 (𝑥) + 𝜆2𝑊 (𝑦) − 𝜆3 |𝑥 |𝑞 + 𝜆4 |𝑦 |𝑞 , (9)
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where 𝑦 = 𝑥(𝑡 − 𝛿𝑡) and

𝛬𝑡 (𝑡, 𝑥, 𝑖) =
𝜕𝛬(𝑡, 𝑥, 𝑖)

𝜕𝑡
,

𝛬𝑥 (𝑡, 𝑥, 𝑖) =
(
𝜕𝛬(𝑡, 𝑥, 𝑖)
𝜕𝑥1

, · · · , 𝜕𝛬(𝑡, 𝑥, 𝑖)
𝜕𝑥𝑛

)
,

𝛬𝑥𝑥 (𝑡, 𝑥, 𝑖) =
(
𝜕2𝛬(𝑡, 𝑥, 𝑖)
𝜕𝑥 𝑗𝜕𝑥𝑘

)
𝑛×𝑛
.

Moreover, assume that there exists a constant 𝜀 > 0, such that

𝜆3 − 𝜆4�̄�𝑒
𝜀𝑚 − 𝜀𝑎2 = 0, (10)

𝜆1 − 𝜆2�̄�𝑒
𝜀𝑚 > 0. (11)

Remark 2 The system studied in this research has the property of high nonlinearity. In other words, the LGC is
removed from the SSS (1), which makes the considered system more general. Without the LGC, the solution of a
stochastic system may explode in a finite time. To ensure the existence of a global solution, a PGC (i.e., condition
(6)) is imposed on the SSS (1) (see, e.g., [13,27,28]). Therefore, the system (1) we studied obeys the LLC (i.e., condition
(5)) and the PGC. By combining theMLF approach and ADTmethod, we then prove the existence and uniqueness
of the global solution.

Before presenting the main results, the definition of ADT is revisited.

Definition 1 [28] For a switching signal 𝜎(𝑡) and any 𝑡 ≥ 𝑠 ≥ 0, 𝑇𝑖 (𝑡, 𝑠) and 𝑁𝑖 (𝑡, 𝑠) denote the whole running
time and the switching number of the i-th subsystem over the interval [𝑠, 𝑡], respectively, 𝑖 ∈ Γ. Then, the following
inequality holds:

𝑁𝑖 (𝑡, 𝑠) ≤
𝑇𝑖 (𝑡, 𝑠)
J𝑎𝑖

+ 𝑁0𝑖 ,

where J𝑎𝑖 > 0 is called the mode-dependent ADT and 𝑁0𝑖 > 0 is the mode-dependent chatter bound.

3. MAIN RESULTS
In this section, we prove the existence of a unique global solution for a highly nonlinear SSS (1) by using the
ADT and MLF approaches. Then, both the 𝑞th moment exponential stability and almost surely exponential
stability are provided for a highly nonlinear SSS (1).

Theorem 1 Under Assumptions 1-3, if there exists a constant 𝜀 > 0 such that

J𝑎𝑖 >
ln 𝜇𝑖
𝜀
. (12)

Then, for any initial data (2), there exists a unique global solution 𝑥(𝑡) for the SSS (1) on [−𝑚,∞), and the solution
satisfies

sup
−𝑚≤𝑡<∞

E|𝑥(𝑡) |𝑞 < ∞. (13)

Proof. We divide the whole proof into two steps. In step 1, for all 𝑖 ∈ S, we prove that the 𝑖-th subsystem with
the initial value 𝑥𝑖 (0) has a unique global solution 𝑥𝑖 (𝑡). In step 2, when each subsystem has a unique global
solution, the SSS (1) with a deterministic switching signal has a unique global solution 𝑥(𝑡) on [−𝑚,∞).
Step 1. For all 𝑖 ∈ S, the control system becomes

𝑑𝑥𝑖 (𝑡) = 𝑓𝑖 (𝑡, 𝑥𝑖 (𝑡), 𝑦𝑖 (𝑡))𝑑𝑡 + 𝑔𝑖 (𝑡, 𝑥𝑖 (𝑡), 𝑦𝑖 (𝑡))𝑑𝐵(𝑡), 𝑡 ≥ −𝑚, (14)
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where 𝑦𝑖 (𝑡) = 𝑥𝑖 (𝑡 − 𝛿𝑡). Under the LLC, system (14) has a unique maximal global solution on [−𝑚, 𝜌𝑖∞),
denoted as 𝑥𝑖 (𝑡), where 𝜌𝑖∞ is the explosion time. Then, we prove 𝜌𝑖∞ = ∞ a.s. Thus, it is necessary to define
the stopping time sequence. Let 𝑘0 be a constant sufficiently large to satisfy 𝑘0 > |𝑥𝑖 (0) |. For any integer
𝑘 ≥ 𝑘0, we define the stopping time sequence as follows:

𝛿𝑘,𝑖 = inf{𝑡 ∈ [0, 𝜌𝑖∞), |𝑥𝑖 (𝑡) | ⩾ 𝑘}.

Clearly , 𝛿𝑘,𝑖 increases as 𝑘 → ∞ and therefore we set 𝛿∞,𝑖 := lim
𝑘→∞

𝛿𝑘,𝑖 . Observe that 𝛿∞,𝑖 ≤ 𝜌∞,𝑖 a.s. Thus,
𝛿∞,𝑖 = ∞, a.s., which yields 𝜌∞,𝑖 = ∞ a.s. From the It𝑜 formula and condition (9), it is easily proven that

𝐸𝑒𝜀(𝑡∧𝛿𝑘,𝑖)Λ(𝑡 ∧ 𝛿𝑘,𝑖 , 𝑥𝑖 (𝑡 ∧ 𝛿𝑘,𝑖), 𝑖)

= 𝐸𝑒𝜀𝑡0Λ(𝑡0, 𝑥𝑖 (𝑡0), 𝑖) + 𝐸
∫ 𝑡∧𝛿𝑘,𝑖

𝑡0

𝑒𝜀𝑠 [𝜀Λ(𝑠, 𝑥𝑖 (𝑠), 𝑖) + LΛ(𝑠, 𝑥𝑖 (𝑠), 𝑖)]𝑑𝑠

≤ 𝐸𝑒𝜀𝑡0Λ(𝑡0, 𝑥𝑖 (𝑡0), 𝑖) + 𝐸
∫ 𝑡∧𝛿𝑘,𝑖

𝑡0

𝑒𝜀𝑠 [𝜀𝑎2 |𝑥𝑖 (𝑠) |𝑞 − 𝜆1𝑊 (𝑥𝑖 (𝑠)) + 𝜆2𝑊 (𝑦𝑖 (𝑠))

− 𝜆3 |𝑥𝑖 (𝑠) |𝑞 + 𝜆4 |𝑦𝑖 (𝑠) |𝑞]𝑑𝑠.

By Lemma 1, we have

𝐸

∫ 𝑡∧𝛿𝑘,𝑖

𝑡0

𝑒𝜀𝑠𝑊 (𝑥𝑖 (𝑠 − 𝛿𝑠))𝑑𝑠

≤ 𝑒𝜀𝑚�̄�𝐸

∫ 𝑡∧𝛿𝑘,𝑖

𝑡0−𝑚
𝑒𝜀𝑠𝑊 (𝑥𝑖 (𝑠))𝑑𝑠

≤ 𝑒𝜀𝑚�̄�𝐸

∫ 𝑡0

𝑡0−𝑚
𝑒𝜀𝑠𝑊 (𝑥𝑖 (𝑠))𝑑𝑠 + 𝑒𝜀𝑚�̄�𝐸

∫ 𝑡∧𝛿𝑘,𝑖

𝑡0

𝑒𝜀𝑠𝑊 (𝑥𝑖 (𝑠))𝑑𝑠, (15)

and

𝐸

∫ 𝑡∧𝛿𝑘,𝑖

𝑡0

𝑒𝜀𝑠 |𝑥𝑖 (𝑠 − 𝛿𝑠) |𝑞𝑑𝑠

≤ 𝑒𝜀𝑚�̄�𝐸
∫ 𝑡∧𝛿𝑘,𝑖

𝑡0−𝑚
𝑒𝜀𝑠 |𝑥𝑖 (𝑠) |𝑞𝑑𝑠

≤ 𝑒𝜀𝑚�̄�𝐸
∫ 𝑡0

𝑡0−𝑚
𝑒𝜀𝑠 |𝑥𝑖 (𝑠) |𝑞𝑑𝑠 + 𝑒𝜀𝑚�̄�𝐸

∫ 𝑡∧𝛿𝑘,𝑖

𝑡0

𝑒𝜀𝑠 |𝑥𝑖 (𝑠) |𝑞𝑑𝑠. (16)

Hence,

𝐸𝑒𝜀(𝑡∧𝛿𝑘,𝑖)Λ(𝑡 ∧ 𝛿𝑘,𝑖 , 𝑥𝑖 (𝑡 ∧ 𝛿𝑘,𝑖), 𝑖)

≤ 𝐶 − (𝜆3 − 𝜆4�̄�𝑒
𝜀𝑚 − 𝜀𝑎2)𝐸

∫ 𝑡∧𝛿𝑘,𝑖

𝑡0

𝑒𝜀𝑠 |𝑥𝑖 (𝑠) |𝑞𝑑𝑠 − (𝜆1 − 𝜆2�̄�𝑒
𝜀𝑚)𝐸

∫ 𝑡∧𝛿𝑘,𝑖

𝑡0

𝑒𝜀𝑠𝑊 (𝑥𝑖 (𝑠))𝑑𝑠,

where

𝐶 =𝐸

(
sup

[𝑡0−𝑚,𝑡0]
𝑒𝜀𝑡0Λ(𝑡0, 𝜉, 𝑖)

)
+ 𝜆2�̄�𝑒

𝜀𝑚𝐸

(
sup

[𝑡0−𝑚,𝑡0]

∫ 𝑡0

𝑡0−𝑚
𝑒𝜀𝑡0𝑊 (𝜉)𝑑𝑠

)
+ 𝜆4�̄�𝑒

𝜀𝑚𝐸

(
sup

[𝑡0−𝑚,𝑡0]

∫ 𝑡0

𝑡0−𝑚
𝑒𝜀𝑡0 |𝜉 |𝑞𝑑𝑠

)
is a finite constant. Applying (10) and (11) from Assumption 3, we can deduce that

𝐸𝑒𝜀(𝑡∧𝛿𝑘,𝑖)Λ(𝑡 ∧ 𝛿𝑘,𝑖 , 𝑥𝑖 (𝑡 ∧ 𝛿𝑘,𝑖), 𝑖) ≤ 𝐶.
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Recalling the condition (7), we can get

𝐸𝑎1𝑒
𝜀(𝑡∧𝛿𝑘,𝑖) |𝑥𝑖 (𝑡 ∧ 𝛿𝑘,𝑖) |𝑞 ≤ 𝐶.

This implies

𝑘𝑞𝑃(𝛿𝑘,𝑖 ≤ 𝑡) ≤ 𝐸 |𝑥𝑖 (𝑡 ∧ 𝛿𝑘,𝑖) |𝑞 ≤ 𝐶

𝑎1
𝑒−𝜀(𝑡∧𝛿𝑘,𝑖) .

We observe that

𝑃(𝛿𝑘,𝑖 ≤ 𝑡) ≤
𝐶

𝑎1𝑘𝑞
𝑒−𝜀(𝑡∧𝛿𝑘,𝑖) .

Letting 𝑘 → ∞ yields that 𝑃(𝛿∞,𝑖 ⩽ 𝑡) = 0. Hence, 𝛿∞,𝑖 = ∞ a.s. Therefore, we have 𝜌∞,𝑖 = ∞ a.s. This implies
that the unique solution for the 𝑖-th subsystem (14) will not explode in finite time.
Step 2. This section proves the existence of a unique global solution for SSS (1). Let 𝑘0 > 0 be a sufficiently
large integer, such that 𝑘0 > |𝑥𝑖 (0) |, where |𝑥𝑖 (0) | is the initial data of the 𝑖-th subsystem. For any integer
𝑘 ≥ 𝑘0, we define the stopping time sequence as follows:

𝛿𝑛𝑘 = inf{𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1) : |𝑥(𝑡) | ⩾ 𝑘}.

Clearly, 𝛿𝑛𝑘 increases as 𝑘 → ∞. For 𝑡 ∈ [𝑡0, 𝑡1), 𝜎(𝑡) = 𝑖0, using the It𝑜 formula, we have

𝐸𝑒𝜀(𝑡∧𝛿
0
𝑘
)Λ(𝑡 ∧ 𝛿0

𝑘 , 𝑥(𝑡 ∧ 𝛿
0
𝑘 ), 𝑖0)

≤ 𝐸𝑒𝜀𝑡0Λ(𝑡0, 𝑥(𝑡0), 𝑖0) + 𝐸
∫ 𝑡∧𝛿0

𝑘

𝑡0

𝑒𝜀𝑠𝛯 (𝑠, 𝑖0)𝑑𝑠, (17)

where 𝛯 (𝑠, 𝑖0) = 𝜀Λ(𝑠, 𝑥(𝑠), 𝑖0)+LΛ(𝑠, 𝑥(𝑠), 𝑦(𝑠), 𝑖0). Letting 𝑡 = 𝑡1, according to condition (8) inAssumption
3, we derive that

𝐸𝑒𝜀𝑡1Λ(𝑡1, 𝑥(𝑡1), 𝑖1) ≤ 𝜇𝑖𝐸𝑒
𝜀𝑡1Λ(𝑡1, 𝑥(𝑡1), 𝑖0)

≤ 𝜇𝑖 [𝐸𝑒𝜀𝑡0Λ(𝑡0, 𝑥(𝑡0), 𝑖0) + 𝐸
∫ 𝑡1

𝑡0

𝑒𝜀𝑠𝛯 (𝑠, 𝑖0)𝑑𝑠] . (18)

For 𝑡 ∈ [𝑡1, 𝑡2), 𝜎(𝑡) = 𝑖1, we obtain

𝐸𝑒𝜀(𝑡∧𝛿
1
𝑘 )Λ(𝑡 ∧ 𝛿1

𝑘 , 𝑥(𝑡 ∧ 𝛿1
𝑘 ), 𝑖1)

≤ 𝐸𝑒𝜀𝑡1Λ(𝑡1, 𝑥(𝑡1), 𝑖1) + 𝐸
∫ 𝑡∧𝛿1

𝑘

𝑡1

𝑒𝜀𝑠𝛯 (𝑠, 𝑖1)𝑑𝑠. (19)

Combining (18) and (19), it implies that

𝐸𝑒𝜀(𝑡∧𝛿
1
𝑘 )Λ(𝑡 ∧ 𝛿1

𝑘 , 𝑥(𝑡 ∧ 𝛿1
𝑘 ), 𝑖1)

≤ 𝜇𝑖 [𝐸𝑒𝜀𝑡0Λ(𝑡0, 𝑥(𝑡0), 𝑖0) + 𝐸
∫ 𝑡1

𝑡0

𝑒𝜀𝑠𝛯 (𝑠, 𝑖0)𝑑𝑠] + 𝐸
∫ 𝑡∧𝛿1

𝑘

𝑡1

𝑒𝜀𝑠𝛯 (𝑠, 𝑖1)𝑑𝑠. (20)

For 𝑡 ∈ [𝑡𝑚−1, 𝑡𝑚) and 𝜎(𝑡) = 𝑖𝑚−1, we assume that

𝐸𝑒𝜀(𝑡∧𝛿
𝑚−1
𝑘 )Λ(𝑡 ∧ 𝛿𝑚−1

𝑘 , 𝑥(𝑡 ∧ 𝛿𝑚−1
𝑘 ), 𝑖𝑚−1)

≤ 𝐸𝑒𝜀𝑡𝑚−1Λ(𝑡𝑚−1, 𝑥(𝑡𝑚−1), 𝑖𝑚−1) + 𝐸
∫ 𝑡∧𝛿𝑚−1

𝑘

𝑡𝑚−1

𝑒𝜀𝑠𝛯 (𝑠, 𝑖𝑚−1)𝑑𝑠

≤ 𝜇𝑁𝑖 (𝑡𝑚−1,𝑡0)
𝑖 𝐸𝑒𝜀𝑡0Λ(𝑡0, 𝑥(𝑡0), 𝑖0) + 𝜇𝑁𝑖 (𝑡𝑚−1,𝑡0)

𝑖 𝐸

∫ 𝑡1

𝑡0

𝑒𝜀𝑠𝛯 (𝑠, 𝑖0)𝑑𝑠

+ 𝜇𝑁𝑖 (𝑡𝑚−1,𝑡0)−1
𝑖 𝐸

∫ 𝑡2

𝑡1

𝑒𝜀𝑠𝛯 (𝑠, 𝑖1)𝑑𝑠 + · · · + 𝜇𝑖𝐸
∫ 𝑡𝑚−1

𝑡𝑚−2

𝑒𝜀𝑠𝛯 (𝑠, 𝑖𝑚−2)𝑑𝑠

+ 𝐸
∫ 𝑡∧𝛿𝑚−1

𝑘

𝑡𝑚−1

𝑒𝜀𝑠𝛯 (𝑠, 𝑖𝑚−1)𝑑𝑠. (21)
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By mathematical induction, for 𝑡 ∈ [𝑡𝑚 , 𝑡𝑚+1) and 𝜎(𝑡) = 𝑖𝑚 , we have

𝐸𝑒𝜀(𝑡∧𝛿
𝑚
𝑘 )Λ(𝑡 ∧ 𝛿𝑚𝑘 , 𝑥(𝑡 ∧ 𝛿

𝑚
𝑘 ), 𝑖𝑚) = 𝐸𝑒

𝜀𝑡𝑚Λ(𝑡𝑚 , 𝑥(𝑡𝑚), 𝑖𝑚) + 𝐸
∫ 𝑡∧𝛿𝑚𝑘

𝑡𝑚

𝑒𝜀𝑠𝛯 (𝑠, 𝑖𝑚)𝑑𝑠. (22)

It follows from (8) and (21) that

𝐸𝑒𝜀(𝑡∧𝛿
𝑚
𝑘 )Λ(𝑡 ∧ 𝛿𝑚𝑘 , 𝑥(𝑡 ∧ 𝛿

𝑚
𝑘 ), 𝑖𝑚)

≤ 𝜇𝑖𝐸𝑒
𝜀𝑡𝑚Λ(𝑡𝑚 , 𝑥(𝑡𝑚), 𝑖𝑚−1) + 𝐸

∫ 𝑡∧𝛿𝑚𝑘

𝑡𝑚

𝑒𝜀𝑠𝛯 (𝑠, 𝑖𝑚)𝑑𝑠

≤ 𝜇𝑁𝑖 (𝑡𝑚,𝑡0)
𝑖 𝐸𝑒𝜀𝑡0Λ(𝑡0, 𝑥(𝑡0), 𝑖0) + 𝜇𝑁𝑖 (𝑡𝑚,𝑡0)

𝑖 𝐸

∫ 𝑡1

𝑡0

𝑒𝜀𝑠𝛯 (𝑠, 𝑖0)𝑑𝑠 + · · ·

+ 𝜇2
𝑖 𝐸

∫ 𝑡𝑚−1

𝑡𝑚−2

𝑒𝜀𝑠𝛯 (𝑠, 𝑖𝑚−2)𝑑𝑠 + 𝜇𝑖𝐸
∫ 𝑡𝑚

𝑡𝑚−1

𝑒𝜀𝑠𝛯 (𝑠, 𝑖𝑚−1)𝑑𝑠 + 𝐸
∫ 𝑡∧𝛿𝑚𝑘

𝑡𝑚

𝑒𝜀𝑠𝛯 (𝑠, 𝑖𝑚)𝑑𝑠. (23)

Because 𝜇𝑖 > 1, we obtain from (23) that

𝐸𝑒𝜀(𝑡∧𝛿
𝑚
𝑘 )Λ(𝑡 ∧ 𝛿𝑚𝑘 , 𝑥(𝑡 ∧ 𝛿

𝑚
𝑘 ), 𝑖𝑚) ≤ 𝜇𝑁𝑖 (𝑡,𝑡0)

𝑖 [𝐸𝑒𝜀𝑡0Λ(𝑡0, 𝑥(𝑡0), 𝑖0) + 𝐸
∫ 𝑡∧𝛿𝑚𝑘

𝑡0

𝑒𝜀𝑠𝛯 (𝑠, 𝑖𝑚)𝑑𝑠] .

Similar to the proof stated in Part 1, we can derive

𝐸𝑒𝜀(𝑡∧𝛿
𝑚
𝑘 )Λ(𝑡 ∧ 𝛿𝑚𝑘 , 𝑥(𝑡 ∧ 𝛿

𝑚
𝑘 ), 𝑖𝑚) ≤ 𝜇𝑁𝑖 (𝑡,𝑡0)

𝑖 [𝐶1 − (𝜆1 − 𝜆2�̄�𝑒
𝜀𝑚)𝐸

∫ 𝑡∧𝛿𝑚𝑘

𝑡0

𝑒𝜀𝑠𝑊 (𝑥(𝑠))𝑑𝑠

− (𝜆3 − 𝜆4�̄�𝑒
𝜀𝑚 − 𝜀𝑎2)𝐸

∫ 𝑡∧𝛿𝑚𝑘

𝑡0

𝑒𝜀𝑠 |𝑥(𝑠) |𝑞𝑑𝑠],

where

𝐶1 =𝐸

(
sup

[𝑡0−𝑚,𝑡0]
𝑒𝜀𝑡0Λ(𝑡0, 𝜉, 𝑖0)

)
+ 𝜆2�̄�𝑒

𝜀𝑚𝐸

(
sup

[𝑡0−𝑚,𝑡0]

∫ 𝑡0

𝑡0−𝑚
𝑒𝜀𝑡0𝑊 (𝜉)𝑑𝑠

)
+ 𝜆4�̄�𝑒

𝜀𝑚𝐸

(
sup

[𝑡0−𝑚,𝑡0]

∫ 𝑡0

𝑡0−𝑚
𝑒𝜀𝑡0 |𝜉 |𝑞𝑑𝑠

)
,

is finite. Then,

𝐸𝑒𝜀(𝑡∧𝛿
𝑚
𝑘 )Λ(𝑡 ∧ 𝛿𝑚𝑘 , 𝑥(𝑡 ∧ 𝛿

𝑚
𝑘 ), 𝑖𝑚) ≤ 𝐶1𝜇

𝑁𝑖 (𝑡,𝑡0)
𝑖 . (24)

Recalling condition (7), we obtain

𝐸 |𝑥(𝑡 ∧ 𝛿𝑚𝑘 ) |
𝑞 ≤ 𝐶1

𝑎1
𝜇𝑁𝑖 (𝑡,𝑡0)
𝑖 𝑒−𝜀(𝑡∧𝛿

𝑚
𝑘 ) .

This implies

𝑃(𝛿𝑚𝑘 ≤ 𝑡) ≤ 𝐶1

𝑎1𝑘𝑞
𝜇𝑁𝑖 (𝑡,𝑡0)
𝑖 𝑒−𝜀(𝑡∧𝛿

𝑚
𝑘 ) .

Letting 𝑘 → ∞, we observe that 𝑃(𝛿𝑚∞ ≤ 𝑡) = 0 and hence 𝛿𝑚∞ ≥ 𝑡 a.s. We let 𝑘 → ∞ in (24) to obtain

𝐸Λ(𝑡, 𝑥(𝑡), 𝜎(𝑡)) ≤ 𝜇𝑁𝑖 (𝑡,𝑡0)
𝑖 𝐶1𝑒

−𝜀𝑡 .
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Using Definition 1, we have that for 𝑡 ≥ 0 and 𝑖 ∈ Γ,

𝐸Λ(𝑡, 𝑥(𝑡), 𝜎(𝑡)) ≤ 𝐶1𝜇

𝑡 − 𝑡0
J𝑎𝑖

+𝑁0𝑖

𝑖 𝑒−𝜀𝑡

≤ 𝐶1𝜇
𝑁0𝑖
𝑖 𝑒

ln 𝜇𝑖
J𝑎𝑖

𝑡

𝑒−𝜀𝑡

= 𝐶2𝑒
−

(
𝜀−

ln 𝜇𝑖
J𝑎𝑖

)
𝑡

, (25)

where 𝐶2 = 𝐶1𝜇
𝑁0𝑖
𝑖 . This implies

𝐸 |𝑥(𝑡) |𝑞 ≤ 𝐶2

𝑎1
. (26)

Therefore, for all 𝑚 ∈ N, we obtain

𝐸Λ(𝑡𝑚 , 𝑥(𝑡𝑚), 𝜎(𝑡𝑚)) ≤ 𝐶2.

This means that the unique solution 𝑥(𝑡) will not explode for 𝑡 ∈ [𝑡𝑚 , 𝑡𝑚+1) and 𝑚 ∈ N. Hence, there exists a
unique global solution {𝑥(𝑡), 𝑡 ≥ 0} for SSS (1). Moreover, from (25), we obtain that

sup
−𝑚≤𝑡≤∞

E|𝑥(𝑡) |𝑞 < ∞.

The proof is completed. □

Remark 3 To deal with the time-varying delay 𝛿𝑡 , some new inequalities (e.g., see (15) and (16) for details) are
constructed in the proof for Theorem 1. Compared with the results reported in existing studies [21–25], the time
delay 𝛿𝑡 in this paper is merely a Borel-measurable function, which invalidates these existing methods. By virtue
of Lemma 1, a more general form of time delay can be imposed on system (1).

We now refer to the equation (25) in the proof of Theorem 1. The following theorem provides sufficient con-
ditions for the 𝑞th exponential stability of system (1) .

Theorem 2 Under the same conditions as those considered inTheorem 1, the solution of system (1) with the initial
value (2) is 𝑞th moment exponentially stable. That is,

lim sup
𝑡→∞

1
𝑡

ln 𝐸 |𝑥(𝑡) |𝑞 < 0. (27)

Proof. Applying (25) yields

𝐸Λ(𝑡, 𝑥(𝑡), 𝜎(𝑡)) ≤ 𝐶2𝑒
−

(
𝜀−

ln 𝜇𝑖
J𝑎𝑖

)
𝑡

.

Recalling condition (7), we have

𝑎1𝐸 |𝑥(𝑡) |𝑞 ≤ 𝐶2𝑒
−

(
𝜀−

ln 𝜇𝑖
J𝑎𝑖

)
𝑡

. (28)

Hence, from (12), we observe that

lim sup
𝑡→∞

1
𝑡

ln 𝐸 |𝑥(𝑡) |𝑞 ≤ lim sup
𝑡→∞

1
𝑡

ln𝐶3𝑒
−

(
𝜀−

ln 𝜇𝑖
J𝑎𝑖

)
𝑡

= −
(
𝜀 − ln 𝜇𝑖

J𝑎𝑖

)
< 0,

where 𝐶3 =
𝐶2

𝑎1
, which is the required assertion in (27). The proof is completed.
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Remark 4 The difficulty of the proof is that the time delay 𝛿𝑡 is merely a Borel measurable function of 𝑡 rather
than a differentiable function of 𝑡 [13,28]. This means that the existing results [13,28]cannot be applied to SSS (1).
By selecting a suitable form of MLF, the existence and uniqueness of the global solution are initially proven via
an inequality scaling technique (i.e., Lemma 1). Subsequently, the 𝐿𝑞-boundedness of the solution is obtained by
using the ADT method.

The following theorem demonstrates that a stronger result can be obtained under proper conditions.

Theorem 3 Let Assumptions 1-3 hold. If 𝑞 > 2𝛼1 ∨ 2𝛼2, then the solution of the controlled system (1) with the
initial value (2) is almost surely exponentially stable. That is,

lim sup
𝑡→∞

1
𝑡

ln( |𝑥(𝑡) |) < 0 𝑎.𝑠. (29)

Proof. Let 𝑘 be any non-negative integer. Using the H ¥𝑜lder and Doob martingale inequalities [26], we obtain

𝐸 ( sup
𝑘≤𝑡≤𝑘+1

|𝑥(𝑡) |2) ≤ 4𝐸 |𝑥(𝑘 + 1) |2

≤ 4[3𝐸 |𝑥(𝑘) |2 + 3𝐸
∫ 𝑘+1

𝑘
| 𝑓𝑖 (𝑡, 𝑥(𝑡), 𝑦(𝑡)) |2𝑑𝑡

+ 12𝐸
∫ 𝑘+1

𝑘
|𝑔𝑖 (𝑡, 𝑥(𝑡), 𝑦(𝑡)) |2𝑑𝑡] .

From condition (6), we have

𝐸 ( sup
𝑘≤𝑡≤𝑘+1

|𝑥(𝑡) |2) ≤ 12𝐸 |𝑥(𝑘) |2 + 𝐶4𝐸

∫ 𝑘+1

𝑘
(1 + |𝑥(𝑡) |2𝛼1 + |𝑥(𝑡 − 𝛿𝑡) |2𝛼1)𝑑𝑡

+ 𝐶4𝐸

∫ 𝑘+1

𝑘
(1 + |𝑥(𝑡) |2𝛼2 + |𝑥(𝑡 − 𝛿𝑡) |2𝛼2)𝑑𝑡,

where 𝐶4 is a positive constant. According to 𝑞 > 2𝛼1 ∨ 2𝛼2, we derive

𝐸 |𝑥(𝑡) |2𝛼1 ≤ (𝐸 |𝑥(𝑡) |𝑞)
2𝛼1
𝑞 ≤ 1 + 𝐸 |𝑥(𝑡) |𝑞 .

Similarly, we also have

𝐸 |𝑥(𝑡) |2𝛼2 ≤ 1 + 𝐸 |𝑥(𝑡) |𝑞 .

From (28), it follows that

𝐸

∫ 𝑘+1

𝑘
|𝑥(𝑡) |2𝛼1𝑑𝑡 ≤ 1 + 𝐸

∫ 𝑘+1

𝑘
|𝑥(𝑡) |𝑞𝑑𝑡 ≤ 1 + 𝐸

∫ 𝑘+1

𝑘
𝐶3𝑒

−𝜀𝑡𝑑𝑡 ≤ 𝐶5𝑒
−𝜀𝑘 ,

where 𝐶5 is a positive constant, 𝜀 = 𝜀 − 𝑙𝑛𝜇𝑖
J𝑎𝑖

. Consequently, we can deduce that

𝐸

(
sup

𝑘≤𝑡≤𝑘+1
|𝑥(𝑡) |2

)
≤ 𝐶5𝑒

−𝜀𝑘 .

By the Doob martingale inequality, it follows that

∞∑
𝑘=0

𝑃

(
sup

𝑘≤𝑡≤𝑘+1
|𝑥(𝑡) | > 𝑒−0.25𝜀𝑘

)
≤

∞∑
𝑘=0

𝐶5𝑒
−0.5𝜀𝑘 < ∞.
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From the well-known Borel-Cantelli lemma [4], it follows that for almost all 𝜔 ∈ Ω, there exists a positive inte-
ger 𝑘0 = 𝑘0(𝜔) such that

sup
𝑘≤𝑡≤𝑘+1

|𝑥(𝑡) | ≤ 𝑒−0.25𝜀𝑘 .

Therefore, for almost all 𝜔 ∈ Ω,

1
𝑡

ln(|𝑥(𝑡) |) ≤ −0.25𝜀𝑘
(𝑘 + 1) , 𝑡 ∈ [𝑘, 𝑘 + 1], 𝑘 ≥ 𝑘0.

Then, we can obtain

lim sup
𝑡→∞

1
𝑡

ln( |𝑥(𝑡) |) ≤ −0.25𝜀 < 0 𝑎.𝑠.

which is the required assertion in (29). Thus, the proof is completed.
So far, we can conclude that under Assumptions 1-3, system (1) is not only 𝑞th moment exponentially stable
but also almost surely exponentially stable.

Remark 5 In general, for a stochastic nonlinear system, the 𝑞th moment exponential stability does not imply
almost surely exponential stability without any imposed conditions. However, this result can be ensured using the
PGC (6). Similar arguments can be found in [4,13].

Remark 6 In this paper, the highly nonlinear SSSs with time-varying delays are considered, in which the switching
signal is deterministic and differs from those considered in [13,16,29–32]. In the current study on stochastic systems
with Markovian switching [13,16,29–32], 𝑀 matrix theory is an efficient tool for achieving stochastic stability. How-
ever, this method is not valid for SSS (1) because a deterministic switching signal rather than the Markovian
switching signal is involved in (1). In this paper, a new stability analysis based on the ADT method coupled with
the MLF approach is developed for SSSs. In our proof, the Lyapunov functions do not need to be specified initially,
which increases the flexibility for the choice of Lyapunov functions in practice.

4. NUMERICAL EXAMPLE
In this section, a numerical example is presented to validate the derived results. Consider the following highly
nonlinear SSS with a time-varying delay:

𝑑𝑥(𝑡) = 𝑓𝜎(𝑡) (𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝛿(𝑡)))𝑑𝑡 + 𝑔𝜎(𝑡) (𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝛿(𝑡)))𝑑𝐵(𝑡), (30)

where the time-varying delay 𝛿𝑡 = 1
2 + 1

4 | sin(10𝑡) |, the initial data 𝑥(𝜃) = 𝜉 = 0.1𝜋 with − 3
4 ≤ 𝜃 ≤ 0, and

𝑓1(𝑡, 𝑥, 𝑦) = −𝑥 − 𝑥3 + 1
3
𝑦2, 𝑔1(𝑡, 𝑥, 𝑦) =

1
4
𝑦 + 1

4
𝑦2,

𝑓2(𝑡, 𝑥, 𝑦) = −𝑥 + 1
3
𝑦 − 4

3
𝑥3 + 1

3
𝑦2, 𝑔2(𝑡, 𝑥, 𝑦) =

1
4
𝑦2.

In addition, we set Λ(𝑡, 𝑥, 1) = 𝑥6 and Λ(𝑡, 𝑥, 2) = 11
12𝑥

6. It is not difficult to verify that Assumption 1 holds
with 𝑚1 = 1

2 , 𝑚 = 3
4 , and �̄� = 4

3 , and 𝑓1, 𝑓2, 𝑔1, 𝑔2 satisfy Assumption 2. Then, we have 𝑎1 = 11
12 , 𝑎2 = 1 and

𝜇1 = 𝜇2 = 11
10 , which satisfy (7) and (8). A direct computation yields

L𝛬(𝑡, 𝑥, 𝑦, 1) = 6𝑥5(−𝑥 − 𝑥3 + 1
3
𝑦2) + 30

2
𝑥4( 1

4
𝑦 + 1

4
𝑦2)2

≤ −407
112

𝑥8 + 169
112

𝑦8 − 93
28
𝑥6 + 67

56
𝑦6.
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Figure 2. The exponential stability in 𝐿6 of system (30).

and

L𝛬(𝑡, 𝑥, 𝑦, 2) =11
2
𝑥5(−𝑥 + 1

3
𝑦 − 4

3
𝑥3 + 1

3
𝑦2) + 55

4
𝑥4( 1

4
𝑦2)2

≤ −15037
2688

𝑥8 + 2563
2688

𝑦8 − 671
252

𝑥6 + 209
252

𝑦6.

Then, we obtain

L𝛬(𝑡, 𝑥, 𝑦, 𝑖) ≤ −407
112

𝑥8 + 169
112

𝑦8 − 671
252

𝑥6 + 67
56
𝑦6,

whichmeans that the condition (9) holds with 𝜆1 = − 407
112 , 𝜆2 = 169

112 , 𝜆3 = 671
252 , 𝜆4 = 67

56 ,𝑊 (𝑥) = |𝑥 | 8,𝑊 (𝑦) = |𝑦 |8,
and 𝑞 = 6. Let J𝑎1 = J𝑎2 = 1𝑠 (i.e., the active period of each subsystem is 1 s) and 𝑁01 = 𝑁02 = 0.1. From
(11) and (12), we can compute that the constant 𝜀 should satisfy 0.0953 < 𝜀 < 0.7883. Then, it follows from
(10) that 𝜀 = 0.4414. According to Theorem 1, the highly nonlinear SSS (30) has a unique global solution on
[− 4

3 ,∞) and is bounded. In addition, the system (30) is not only 6th moment exponentially stable but also
almost surely exponentially stable. Figure 2 shows that the system (30) is exponentially stable in 6th moment.
Figure 3 shows that the system (30) is exponentially stable in the sample path. Figure 4 shows the switching
signal 𝜎(𝑡).

5. CONCLUSIONS
In this paper, the existence of a unique global solution for a highly nonlinear SSS with a deterministic switching
signal is examined by using the ADT method coupled with the MLF approach. The stability criteria of 𝑞th
moment exponential stability and almost surely exponential stability of the highly nonlinear SSS are stated.
Finally, a numerical example is presented to illustrate the effectiveness of the obtained results. Inspired by
recent studies [7,20,33–36], two further research directions have emerged: (1) Solving the problem of stability for
highly nonlinear SSSs with impulsive effects under asynchronous switching, and (2) designing a control input
function to stabilize a highly nonlinear SSS with a time-varying delay.
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Figure 3. Exponential stability in the sample path of the system (30).

Figure 4. Switching signal 𝜎 (𝑡 ).
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