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Researchers are currently trying to understand why some men with prostate cancer go 
on to develop aggressive disease whilst others maintain slow growing tumors. Although 
endogenous genetic anomalies within the tumor cell are important, the prevailing view 
is that the tissue microenvironment as a whole is the determinant factor. Many studies 
have focussed on the role of soluble factors in modulating the nature of the tumor 
microenvironment. There is however a growing interest in the role of extracellular 
vesicles, including exosomes, as regulators of disease progression. A variety of resident 
cells, as well as infiltrating cells, all contribute to a heterogeneous population of 
exosomes within the tumor microenvironment. Studies focussing on the role of exosomes 
in prostate cancer are however relatively rare. In this review, evidence from various 
cancers, including prostate, is used to present numerous potential roles of exosomes in 
prostate cancer. Whilst further validation of some functions may remain necessary it is 
clear that exosomes play a major role in intercellular communication between various 
cell types within the tumor microenvironment and are necessary for driving disease 
progression.
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INTRODUCTION

Prostate cancer is the most common form of cancer 
to affect men in the UK. Current survival rates 
suggest that of those men who develop the disease 
approximately eighty four percent will survive for 10 
or more years. For some men, however, the disease 
is far more aggressive. Ongoing studies are in place 
to try to understand the mechanisms responsible for 

this difference between slow growing, indolent tumors, 
and the aggressive disease. Many of these studies 
have focussed on the role of soluble growth factors 
as modulators of the tumor microenvironment thereby 
supporting aggressive metastatic forms of the disease. 
There is, however, a growing precedent to explore the 
role of extracellular vesicles (EV) in this process.

All cells are capable of secreting vesicles into the 
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extracellular space. Vesicle secretion becomes 
elevated when cells are subjected to cellular stress[1,2], 
which can also result in altered molecular cargo within 
the vesicle[3]. This is particularly relevant in cancer 
where stress can come from the hypoxic environment, 
nutrient deficiency, altered extracellular matrix, and 
other environmental factors. Such vesicles are often 
regarded as one of two broad subtypes, microvesicles 
and exosomes. Microvesicles are large, tending 
to be greater than 200 nm in diameter, dense, and 
are formed from outward budding of the plasma 
membrane. Exosomes are much smaller, typically 30 
to 150 nm in diameter, float at a characteristic density 
of 1.1 to 1.2 g/mL[4] and originate within multivesicular 
endosomes[4]. The secretion of small, exosome-like, 
vesicles has also been reported from the plasma 
membrane[5]. It remains a challenge to accurately 
define vesicle subtypes based on size alone. To aid 
researchers, the International Society for Extracellular 
Vesicles has released a position paper detailing the 
minimal experimental requirements for defining EV[6]. 
Although, the challenge of defining EV subtypes 
remains, and is further compounded by overlap in EV 
composition[7], hence the term EV is often used. The 
majority of EV present within both cell conditioned 
media or biological fluids tend to be small[8], suggesting 
a predominant exosome-like population. The biological 
significance of any one EV subtype compared to 
another, however, remains unknown.

The role of EV in cancer has been the studied 
intensively over recent years[9]. Relatively few of these 
studies have focused on the potential role of EV, and 
more specifically exosomes, in prostate cancer. In this 
current article, we review past studies into the role of 
exosomes, in diverse malignancies, to identify their 
potential functions in disease processes of relevance 
to prostate cancer.

EXOSOME-MEDIATED ANGIOGENESIS

Angiogenesis, or the formation of new blood vessels 
from pre-existing vasculature, is a vital component in 
numerous physiological and pathological responses. 
A variety of angiogenic signals are required to drive 
endothelial maturation and subsequent re-organisation 
with vascular smooth muscle cells and pericytes to 
form a functional vessel network[10], thereby allowing 
nutrient and waste product exchange[11,12]. In cancer, 
multiple modulators of vascular remodelling contribute 
to tumor growth and progression[13]. Once a tumor 
lesion forms it will become hypoxic and nutrient 
deprived. The secretion of growth factors activates 
normal surrounding quiescent cells, to initiate a 
cascade of events that become quickly dysregulated. 

This involves an “angiogenic” switch, regulated by both 
anti- and pro-angiogenic cytokines, examples of which 
include endothelial growth factor, fibroblast growth 
factor (FGF), hepatocyte growth factor (HGF), platelet-
derived growth factor (PDGF) and vascular endothelial 
growth factor (VEGF)[14-16]. These responses may 
initially provide the tumor with more nutrients and 
oxygen, however, the structural organization of the 
vessel network is poor, and the continuously remodeled 
tumor vasculature is disorganized and leaky[17]. This 
causes irregular blood flow and provides invasive 
tumors with access to the circulatory system.

PRO-ANGIOGENIC ACTIVITY OF EXOSOME-
ASSOCIATED PROTEINS

Cancer cell-derived EV have been shown in several 
studies to promote angiogenesis. In the case of prostate 
cancer it is well established that c-Src tyrosine kinase, 
insulin-like growth factor 1 receptor (IGF-1R) and focal 
adhesion kinase (FAK) play important roles in tumor 
growth and disease progression[18]. Src-family kinases 
are normally expressed in prostatic epithelium and 
reported to transform normal cells when constitutively 
active and up-regulated during disease initiation and 
progression[19]. Cross-talk between Src and IGF-1R has 
previously been shown to promote angiogenesis[20]. 
It has been reported that Src, IGF-1R and FAK are 
enriched in prostate cancer exosomes[21]. Src and 
c-Src are also present in plasma exosomes derived 
from prostate tumor bearing mice; suggesting that 
Src-enriched exosomes can promote angiogenesis in 
vivo. Src is known to stimulate transcription of VEGF 
and modulate angiogenesis[22] whilst IGF-1R has been 
demonstrated to induce VEGF-C expression and 
stimulate angiogenesis[23]. These observations suggest 
that prostate cancer exosomes enriched with c-Src, 
IGF-1R and FAK may be able to stimulate angiogenic 
activity within the tumor microenvironment.

Prostate cancer EV are also likely to be capable of 
delivering growth factors with known pro-angiogenic 
function. For instance, EV from aggressive prostate 
cancer cells have been shown to contain urokinase-
type plasminogen activator (uPA)[24], known to be 
involved in activation of the protease plasminogen 
which is responsible for vascular remodeling[25]. 
Addition of uPA positive vesicles to less aggressive 
prostate cancer cells stimulated cell migration and 
invasiveness[24]. Although this study did not investigate 
the impact of uPA positive vesicles on the ability of 
treated cells to drive angiogenesis, it is conceivable 
that prostate cancer derived EV can support endothelial 
tubule formation via delivery of pro-angiogenic growth 
factors. Additional pro-angiogenic factors have been 
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identified on EV from a variety of different cancer cell 
types and are summarized in Table 1. Further studies 
are required to ascertain whether these factors are 
present on prostate cancer EV.

DELIVERY OF PRO-ANGIOGENIC RNAS BY 
EXOSOMES

Whilst direct evidence of RNA delivery by prostate 
cancer EV is currently lacking, EV from several cancer 
types are known to be enriched with mRNA transcripts 
related to pro-angiogenic function that can then be 
translated by recipient cells[26,27]. Similar studies have 
shown an enhanced proliferative impact on endothelial 
cells[28,29] and enhanced tubule formation within 3D cell 
cultures[28]. The transfer of exosomal miRNA, such as 
miRNA-92a and miR-17-92, may also play a role in 
this process[30] and miR-17-92 may play a role in this 
process[30]. Furthermore, transmittance of the miR-
17-92 cluster from EV to endothelial cells has been 
shown to attenuate endothelial expression of integrin 
αv resulting in enhanced endothelial cell migration and 
tube formation[30]. Numerous studies highlight a role of 
cancer exosomes in delivery of RNAs to endothelial 
cells, thereby promoting angiogenesis, and it is 
therefore likely that prostate cancer exosomes share 
this functionality.

HYPOXIC TUMOR-DERIVED EXOSOMES 
ENHANCE ANGIOGENESIS

As a tumor grows diffusion distances from the existing 
vascular supply increase, resulting in hypoxia. 

Sustained growth of the tumor mass often requires 
new blood vessels to provide rapidly proliferating 
tumor cells with an adequate supply of metabolites 
and oxygen. Under hypoxic conditions the cellular 
secretome becomes altered and a proportion of these 
changes may reside within the exosome fraction. 
Exosomes derived from solid tumors, which have 
been cultured in hypoxic conditions, become enriched 
with hypoxia-regulated mRNAs and proteins such as 
Caveolin 1, IL-8, matrix metalloproteinase (MMP) and 
PDGF, and are capable of promoting angiogenesis[31]. 
Similarly, under hypoxic conditions, the secretion of 
exosomes from breast cancer[32] or leukemic cells[33] 
demonstrate elevated levels of exosomal miR-210, 
with the capacity to enhance HUVEC tube formation 
compared to exosomes from normoxic conditions. 
Although EV from hypoxic prostate cancer cells are yet 
to be investigated, based on this evidence, it is highly 
likely that the cargo of prostate cancer exosomes is 
also influenced by hypoxic conditions. The impact 
of hypoxia-derived vesicles on angiogenesis and 
subsequent development of prostatic tumors remains 
unknown.

INDIRECT EXOSOME-MEDIATED 
ANGIOGENESIS

In addition to direct modulation of angiogenesis within 
the tumor microenvironment, exosomes have the 
potential to regulate angiogenesis indirectly through 
interactions with various non-endothelial cell types. 
Prostate cancer exosomes, expressing transforming 
growth factor beta (TGFβ), can activate fibroblasts 

Table 1: EV-associated pro-angiogenic proteins

Protein Pro-angiogenic function Cancer cell of EV origin Reference
Angiogenin Translocates to the nucleus of recipient cells and enhances RNA 

transcription, stimulating expression of pro-angiogenic proteins
Multiple myeloma [131]

EGFR Induces VEGF expression in recipient cells through Akt signaling Lung, glioma [132,133]
FAK Interactions between FAK, IGF-1R and Src result in various 

downstream signaling events and modulation of angiogenesis
Prostate [21]

FGF2 Promotes proliferation and differentiation of endothelial cells Multiple myeloma [131]
IGF-1R Interactions between FAK, IGF-1R and Src result in various 

downstream signaling events and modulation of angiogenesis
Prostate [21]

MMP-2, MMP-9 Degradation of extracellular matrix components Ovarian [134]
Src Activation of FAK, and subsequent formation of focal adhesions 

between endothelial cells
Prostate, myeloid leukemia [21,135]

Tspan8 Induces uPA, VEGFR and vWF in recipient endothelial cells Pancreatic [134,135]
uPA Activation of plasminogen leading to vascular remodeling Prostate [24]
VEGF Rearranges the cytoskeleton through the FAK/paxillin pathway, 

induces capillary formation via RhoA/ROCK signaling and controls 
vascular permeability through PLCγ

Multiple myeloma, ovarian [131,134]

A selected overview of pro-angiogenic factors previously identified on EV. Association of pro-angiogenic proteins with EV has been 
demonstrated in multiple cancers, but the precise involvement of some such proteins in prostate cancer remains unclear. EV: extracellular 
vesicles; EGFR: epidermal growth factor receptor; VEGF: vascular endothelial growth factor; Akt: protein kinase B (serine/threonine specific 
protein kinase); FAK: focal adhesion kinase; IGF-1R: insulin-like growth factor 1 receptor; Src: proto-oncogene tyrosine-protein kinase 
Src; FGF2: fibroblast growth factor 2; MMP: matrix metalloproteinase; Tspan8: tetraspanin-8; uPA: urokinase-type plasminogen activator; 
VEGFR: vascular endothelial growth factor receptor; vWF: von willebrand factor; RhoA: Ras homolg gene family, member A; ROCK: Rho-
associated, coiled-coil containing protein kinase; PLCγ: phospholipase C gamma
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resulting in elevated secretion of multiple pro-
angiogenic factors including VEGF, HGF, FGF-2, and 
uPA[34,35]. Furthermore, prostate cancer exosomes 
were shown to induce pro-angiogenic function within 
primary prostate stromal cells and were shown to 
facilitate in vivo tumor growth[35]. Other studies have 
reported cancer-associated myofibroblasts can 
secrete pro-angiogenic growth factors and promote 
angiogenesis at the primary tumor site[36-39]. Also, HGF 
and stromal cell-derived factor-1 derived from these 
myofibroblasts can indirectly enhance angiogenesis by 
inducing the secretion of angiogenic factors from tumor 
cells[40,41]. Collectively, these studies demonstrate 
that exosomes derived from solid tumors, including 
prostate cancer, drive activation of fibroblasts to a pro-
angiogenic phenotype.

The ability of prostate cancer exosomes to trigger 
secretion of pro-angiogenic factors extends to bone 
marrow-derived mesenchymal stem cells (BM-MSCs), 
which can also gain exosome-induced pro-angiogenic 
function[42]. Exosome-activated MSCs were shown to 
secrete elevated levels of HGF, VEGF and MMPs, 
and support the formation of endothelial vessel-like 
structures. Exosomes from metastatic melanomas 
have also been shown to interact with bone marrow 
progenitor cells via the tyrosine kinase MET[43], which 
induced vascular leakiness at pre-metastatic sites and 
reprogrammed bone marrow progenitors towards a 
pro-vasculogenic phenotype. This “reprogramming” of 
the bone marrow progenitors resulted in significantly 
increased tumor vascular density in vivo.

A wide range of studies have demonstrated various 
roles of cancer exosomes in promoting angiogenesis 
either through direct or indirect interaction with 
endothelial cells. Prostate cancer exosomes are 
likely to be dynamic in response to hypoxia and may 
act as a means to deliver a variety of factors capable 
of supporting the formation of tumor-associated 
vasculature in vivo.

EXOSOME-DRIVEN TUMOR-STROMA 
INTERACTIONS

Stromal cells surrounding a tumor can undergo a 
desmoplastic response, characterized by aberrant 
cell growth and morphological transformation of 
the stroma, resulting in a more aggressive tumor 
microenvironment[44]. A key feature of this tumor reactive 
stroma is the presence of cells with a myofibroblast-
like phenotype[45]. Myofibroblasts are contractile cells, 
characterized by the formation of α smooth muscle actin 
(αSMA) stress fibers[46], loss of the spindle phenotype 
and formation of a hyaluronic acid pericellular coat[47]. 

During wound healing myofibroblasts are present 
to aid wound closure. In various cancers, however, 
a chronic wound response can occur resulting in 
sustained presence of myofibroblasts within the tumor 
microenvironment[48].

Cancer associated myofibroblasts display an 
altered phenotype compared to wound associated 
myofibroblasts[49] and have been termed activated 
fibroblasts, tumor associated fibroblasts and cancer 
associated fibroblasts. There is conflicting evidence 
as to whether myofibroblasts promote or suppress 
tumorigenesis. Rhim et al.[50] observed that removal 
of myofibroblasts from the stroma of pancreatic 
ductal adenocarcinoma (PDAC) in vivo results in 
more aggressive tumors and reduced mouse survival 
rates. However, the prevailing view is that stroma rich 
in myofibroblasts has an increased ability to drive 
tumor growth, angiogenesis, metastasis and treatment 
resistance[45,51,52].

ACTIVATION AND MODULATION OF 
STROMAL CELLS BY EXOSOMES

Fibroblast differentiation is known to be induced 
by TGFβ1 via SMAD dependent and independent 
signaling pathways[53-55]. It has been established that 
exosomes secreted by prostate cancer cells express 
latent TGFβ1[56], tethered to the exosome surface 
via proteoglycans and capable of activating SMAD3 
dependent signaling[34]. The authors demonstrate 
that prostate cancer derived exosomes, with greater 
than 6 pg TGFβ1/µg exosome, can induce fibroblast 
differentiation[34]. Differentiation could be sustained for 
at least 2 weeks in the absence of further exosome 
treatment, indicating the resulting myofibroblast-
like phenotype is self-maintaining. In contrast, EV 
originating from MDA-MB231 breast cancer cells and 
u87 glioblastoma cells could only induce transient 
fibroblast differentiation[57], potentially suggesting 
differences between EV from distinct tissue types.

A subsequent study by Webber et al.[35] identified that 
exosomal TGFβ1 induces a more aggressive, pro-
angiogenic myofibroblast phenotype compared to 
the soluble form of the growth factor. These results 
were replicated in primary stromal cells from normal 
prostate tissue, resulting in a myofibroblast-like 
phenotype that matched that found within disease-
associated stromal tissue. Furthermore, pre-treating 
normal stroma with prostate cancer derived exosomes 
prior to administration enhanced tumor growth in mice. 
In contrast, pre-treatment with soluble TGFβ1 led to 
tumor control. Consistent with this report, a separate 
study showed that metastatic rat prostate tumor EV are 
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capable of activating primary rat prostate fibroblasts, 
leading to upregulation of αSMA, HGF and VEGFA[58]. 
Exosomes therefore appear to play a crucial role in 
communication between prostate cancer cells and the 
surrounding stroma, with exosome-associated TGFβ1 
essential for inducing fibroblast differentiation towards 
a disease supporting phenotype.

The exact origin of disease-associated myofibroblasts 
remains unclear, and it has been shown that other 
cells are capable of myofibroblastic differentiation. 
MSCs, a multipotent cell type capable of generating 
many different types of connective tissue, can also 
differentiate into myofibroblasts in response to 
secreted factors from tumors[40]. MSCs make up 1.1% 
of cells within the prostate cancer stroma[59] and exhibit 
similar tumor promoting effects to cancer associated 
stroma[40,60,61].

Exosomes secreted by breast[62], ovarian[63] and 
gastric[64] cancer cells induce TGFβ1-dependent 
differentiation of adipose or cord blood derived MSCs 
to myofibroblasts. In addition, chronic lymphocytic 
leukemia exosomes have been shown to enhance 
tumor growth in vivo by inducing differentiation of 
BM-MSCs[65]. Adipose derived MSCs, meanwhile, 
differentiate in response to EV from metastatic breast 
cancer in 2D and 3D culture. This process was shown 
to require TGFβ dependent MAPK signaling involving 
phosphorylation of ERK1/2 and JNK1/2[66].

Chowdhury et al.[42] demonstrated that prostate cancer 
exosomes can also drive BM-MSC differentiation, 
resulting in myofibroblasts with increased VEGFA, 
HGF and MMP secretion, capable of enhancing cancer 
cell growth. Exosome differentiated BM-MSCs drove 
prostate cancer cell invasion in a 3D spheroid model 
and stimulated endothelial cell migration, proliferation 
and angiogenic potential. As previously observed, 
exosomal TGFβ1 treatment resulted in myofibroblasts 
with an enhanced pro-tumorigenic phenotype compared 
to soluble TGFβ1. Interestingly, exosomes also 
modulated BM-MSC derived myofibroblast expression 
of ITGB6 and ITGB8, encoding for components 
of integrins αvβ6 and αvβ8, which are involved in 
converting latent TGFβ1 to the active form[67,68]. This 
may therefore explain how latent TGFβ1 delivered 
by exosomes becomes functionally active. The 
predominant population of myofibroblast precursors 
remains unclear. Regardless of the precursor cell, it 
is evident that prostate cancer exosomes can trigger 
differentiation to a stromal phenotype with disease 
promoting properties.

Delivery of TGFβ1 is not the only mechanism by which 
exosomes can stimulate pro-tumorigenic phenotypes 

in stromal cells. EV transfer of mRNA, miRNA and 
membrane proteins have all been implicated. For 
instance, acute myeloid leukemia cell exosomes 
promote proliferation and migration of bone marrow 
stromal cells via transfer of IGF-IR mRNA[69]. Similar 
results have been shown in solid cancers whereby 
exosomal miRNAs regulate stromal cell behavior. 
Metastatic breast cancer cells, for example, were 
shown to enhance vascular permeability, and promote 
tumor metastasis, via the suppression of the tight 
junction protein ZO-1 by exosome delivered miR-
105[70]. Gastric cancer exosomes stimulate primary 
mouse liver myofibroblasts and hepatic pericytes by 
exosome mediated delivery of the membrane protein 
epidermal growth factor receptor (EGFR)[71]. After 
insertion into the stromal cell membrane, where it 
co-localizes with E-cadherin, EGFR activates HGF 
secretion by potentially suppressing upstream miRNAs 
such as miR-26a/b. The subsequent increase in HGF 
secretion promotes gastric cancer cell proliferation, 
migration and invasion.

Exosomes are not the only EV subgroup shown to 
alter the prostate stroma phenotype. Prostate cancer 
cells also secrete large oncosomes, EV between 
100-400 nm in diameter[72], which have sustained 
AKT1 activity[73,74]. A recent study by Minciacchi et al.[75] 
reported that internalization of large oncosomes by 
prostate fibroblasts resulted in the induction of a 
αSMA-positive myofibroblast phenotype. Interestingly, 
induction of other myofibroblast markers, such as 
MMP1, thrombospondin-1 (TSP-1) and TGFβ1 did not 
occur, potentially suggesting that oncosomes induce 
a distinct myofibroblast-like phenotype. Analysis of 
transcription factor DNA binding in treated prostate 
fibroblasts highlighted that MYC binding was essential 
for this induction of a myofibroblast-like phenotype. 
The mechanism by which large oncosomes stimulate 
MYC-DNA binding has not yet been elucidated, 
however, as MYC has not been found to be present 
inside the EV it appears MYC is activated rather than 
delivered. This study also explored the impact of large 
oncosomes in vivo and found that prostate fibroblasts 
pre-treated with oncosomes facilitated enhanced 
tumor growth. These findings are similar to the earlier 
results obtained with exosomes and lend support to 
the critical role of diverse vesicle subtypes in tumor-
stroma communication in prostate cancer.

SECRETION OF STROMA-DERIVED 
EXOSOMES

Stromal cells activated by cancer cell secreted 
EV can initiate a positive feedback mechanism 
via release of stromal cell EV which promote 
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tumorigenesis after internalization by tumor cells. 
A study by Josson et al.[76] highlighted this cyclical 
system in prostate cancer. Activated prostate 
fibroblasts were shown to release miR-409 containing 
EV, which are taken up by prostate cancer cells. Upon 
EV internalization miR-409 downregulates the tumor 
suppressors Ras suppressor 1 and stromal antigen 2, 
promoting cancer cell tumorigenesis and stimulating 
EMT and stemness in epithelial cells. This effect 
can also be observed in other tissues. For example, 
activated PDAC fibroblasts secrete ANXA6 positive EV 
containing the ANXA6/LRP1/TSP1 complex. Uptake 
of these EV by PDAC cells was shown to enhance 
tumorigenesis by stimulating cancer cell migration and 
driving tumor growth in vivo[77]. Activation of the Wnt-
planar cell polarity (PCP) pathway, and subsequent 
stimulation of cell motility and metastasis, can also be 
induced by stromal cell EV. Luga et al.[78] determined 
that CD81+ vesicles secreted from activated fibroblasts 
are capable of activating the Wnt-PCP pathway in 
breast cancer cells via transfer of Wnt11.

Stromal cells can also confer chemoresistance on 
surrounding tumor cells via EV communication. 
Activated fibroblasts resistant to the chemotherapy 
drug Gemcitabine (GEM) release exosomes 
containing miR-146a and mRNA for its upstream 
transcription factor Snail[79]. Incubation of PDAC 
cells with exosomes from GEM treated fibroblasts 
results in increased levels of Snail mRNA and miR-
146a in the cancer cells, leading to cell proliferation 
and chemoresistance. Similar findings have been 
observed in colorectal[80] and breast cancers[81], 
with the latter study identifying activation of antiviral 
signaling pathways through stimulation of the pattern 
recognition receptor RIG-I by exosomal RNA. 
RIG-I activates STAT1 dependent signaling which 
cooperates with NOTCH3 to mediate NOTCH target 
gene transcription, supporting maintenance of therapy 
resistant tumor initiating cells.

Activation of stromal cells by cancer cell-derived 
exosomes results in a pro-proliferative and pro-
angiogenic stromal phenotype. In turn, EV and 
exosomes from activated stromal cells may then drive 
surrounding cancer cells towards a more aggressive, 
chemoresistant, phenotype. This suggests a network 
of reciprocal communication based on EV exists to 
exacerbate disease.

EXOSOME MODULATION OF MYELOID 
CELLS

There have been numerous studies demonstrating 
immunological control by EV, as reviewed previously[9]. 

Despite such studies, there is a surprising paucity 
of information relating to prostate cancer exosomes 
and their influence on myeloid cells. This topic is 
highly relevant, however, as the presence of CD14+ 
macrophages and chronic inflammation within the 
microenvironment is a key risk factor in prostate 
cancer[82].

EXOSOME-MEDIATED ANTIGEN 
PRESENTATION

Some of the early discoveries of exosome function 
have centered on their potential as immune-activating 
factors[4], where professional antigen presenting cells 
derived from monocyte precursors were able to secrete 
exosomes carrying MHC-peptide complexes that were 
functional in T cell stimulation[83]. Antigen presenting 
cells (APC), educated with cancer antigens in the form 
of protein or peptide fragments, therefore produce 
nanovesicles as APC-surrogates to disseminate the 
activation of T cells. Isolated APC-exosomes can 
also be manipulated directly, by pulsing with antigenic 
peptides of desired specificity, and this scheme has 
been proposed as a cancer vaccine strategy[84]. APC 
can, however,  also receive a complex set of antigenic 
information in the form of exosomes secreted by tumor 
cells[85,86], providing not only tumor-associated antigens 
but importantly additional information such as cellular 
stress signals (e.g. heat shock proteins[87]), or even 
encapsulated RNA[88], to modulate APC-phenotype 
and control subsequent functions. Some researchers 
argue that cancer cell-derived exosomes may be an 
advantageous form of antigen delivery to APCs in 
vivo[89]. There are, however, conflicting examples where 
the interaction of cancer-exosomes with myeloid cells 
may lead to disease exacerbating effects.

Amongst the earliest examples are reports detailing 
the skewing of dendritic cell differentiation away 
from a competent antigen presentation phenotype, 
and towards TGFβ producing myeloid cells capable 
of negatively regulating T cell responses[90,91]. More 
recent reports also point to this phenomenon, where 
monocytes stimulated with cancer cell-derived EV 
become alternatively-activated/M2-type macrophages, 
expressing elevated levels of VEGF, IL6, Cox2,  and 
arginase-1 amongst many other tumor-supportive 
factors[92,93]. Similar modulation of myeloid cells are 
seen using pancreatic cancer exosomes, giving a 
suppressive CD14+HLA-DRlow/neg phenotype akin to 
those elevated within the circulation of patients[94]. 
Similarly, myeloma-derived EV present within the bone 
marrow microenvironment can activate myeloid-derived 
suppressor cells (MDSC) and promote progression[95]. 
In acute myeloid leukemia, vesicles may play a role 
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in modulating normal myeloporesis and select for 
cells destined for suppressor-like differentiation[96,97]. 
It currently remains unclear as to whether this latter 
phenomenon is also true of solid cancers.

MECHANISMS OF MYELOID ACTIVATION BY 
EV

Whilst there remains much to be learned about how 
EV exert such influences on myeloid cells, evidence 
points to delivery of EV-associated ligands to trigger 
signaling cascades mediated through toll-like[98,99] 
or other receptors[100,101]. Moreover, there is a likely 
additional effect of EV-encapsulated RNAs which 
may also be delivered to myeloid cells. In one elegant 
experimental system, cancer cells were engineered 
to express Cre-recombinase. Cre mRNA was 
detectable in various EV sub-fractions secreted by 
these cells, with the predominant EV type appearing 
to be exosome-like. Transplantation of these cells 
into mice with a Cre-reporter background led to 
recombination events at the tumor site, as indicated 
by β-galactosidase expression following receipt 
of vesicular Cre mRNA. These Cre-recombined 
cells were 90% CD45+ leukocytes, principally of a 
Gr1+CD11b+ MDSC phenotype[102]. The MDSC which 
had taken up vesicular RNA exhibited more potent 
suppressive functions compared to their counterparts 
that had not. The study highlights the in vivo transfer 
of vesicle-encapsulated RNA to myeloid cells within 
the tumor microenvironment, resulting in enhanced 
immune-suppressive function of MDSC.

The influence of EV may, however, not be limited to 
the local environment. In a highly metastatic breast 
cancer model EV were again taken up principally by 
CD45+ bone marrow-derived cells present at distant 
sites of the lung and liver. These myeloid cells were 
implicated thereafter in aiding the colonization of 
these organs by metastasizing cells. Part of this effect 
may also be due to localized natural killer and T cell 
suppressive effects attenuating anti-cancer immunity 
in the premetastatic organs[103]. Dissemination of EV 
may be more limited in some other cancer types, like 
glioma, where influences on myeloid phenotypes are 
not always found in the periphery[104]. In one study, 
attenuating TLR2-dependent interaction between 
cancer exosome and MSDS was an effective strategy 
for limiting MDSC numbers and activation in vivo, and 
in fact potentiated the effect of chemotherapeutics 
that would otherwise lead to heightened release of 
MDSC-activating vesicles. Preventing vesicle effects 
on MDSC may be a worthwhile therapeutic approach 
to consider[99].

If lessons are to be gained from these studies of other 
diverse cancer types, it is indeed likely that EV of 
prostate cancer origin may also exert local and possibly 
distant influences on the myeloid cell components 
of tissues, and profoundly impact the course of the 
disease. New studies are, however, required in order 
to examine this further.

EXOSOME DRIVEN METASTASIS AND 
MULTIDRUG RESISTANCE

A key step in the progression of various cancers is the 
invasion of cancer cells into surrounding tissues and 
subsequent metastasis from the primary tumor site. 
The 5-year survival rates of patients with prostate 
cancer drop dramatically following metastasis from 
the primary tumor. The primary site of metastasis 
of prostate cancer is the bone; such metastasis 
remains incurable. An increased concentration of 
circulating microvesicles has been reported in in 
vivo models of metastatic prostate cancer[74] and 
studies by Peinado et al.[43] have demonstrated a role 
of exosomes in the support of tumor metastasis to 
the bone.

EXOSOME-MEDIATED REGULATION OF 
MMPS

Cancer cell invasion, and disease progression, has 
been linked to an altered expression of MMPs, key 
regulators of the extracellular matrix. Fibronectin-
mediated binding of exosomes to myeloma cells 
has been shown to activate p38 and ERK signaling, 
resulting in elevate expression of DKK1 and MMP-
9 and subsequent myeloma progression[105]. More 
recently, it has been shown that prostate cancer 
exosomes can regulate MMP-9 expression within 
osteoclast precursor cells and impair osteoclastic 
differentiation[106]. Collectively these studies suggest a 
role of prostate cancer exosomes in the modulation of 
the bone environment, and subsequent preparation of 
the metastatic site.

Proteomic analyses have revealed that both 
cell surface-anchored and soluble matrix 
metalloproteinases are present in EV isolated from 
either cell conditioned media or from biofluids[107]. 
Such vesicular-associated MMPs have been shown 
to be proteolytically active, and may play a variety 
of functional roles including direct interaction or 
cleavage of extracellular matrix proteins or removal 
of membrane-anchored receptors from target 
cells[108]. This is supported by further evidence 
from Hakulinen et al.[109] demonstrating that cancer 
exosomes can express functionally active MMP-14.
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It has long been recognized that platelets can play a 
role in tumor progression by promoting angiogenesis, 
resulting in leaky capillaries, and therefore facilitating 
tumor metastasis. The mechanism of their action has 
however remained unclear until relatively recently. In a 
study by Janowska-Wieczorek et al.[110], it was shown 
that platelet-derived EV, and exosomes released from 
α-granules, can contribute to metastatic spread via 
phosphorylation of mitogen activated protein kinase 
p42/44 and serine/threonine kinase as well as the 
expression of membrane type 1-MMP (MT1-MMP). 
The authors also showed that platelet-derived EV 
are capable of inducing MMP-9 mRNA expression. 
This study demonstrates that platelet-derived EV can 
simultaneously activate MT1-MMPs and induce de 
novo expression of MMPs within cancer cells.

Collectively, these studies suggests that exosomes 
may be capable of direct contribution to matrix 
remodeling both within the tumor microenvironment 
and potentially at distant sites away from the 
primary tumor.

EXOSOME-REGULATED METABOLISM AND 
DRUG RESISTANCE

Altered cell metabolism is a hallmark of cancer, with 
many cancer cells demonstrating an increase of aerobic 
glycolysis. This results in subsequent lowering of pH, 
leading to increased tumor invasion, proliferation, 
migration and drug resistance[111,112]. There is growing 
interest in the role of exosomes, and other EV, as 
modulators of cancer cell metabolism. It has been 
reported that pH of the tumor microenvironment is a 
key factor in regulating both the release and uptake of 
exosomes by cancer cells[113], suggesting a positive-
feedback mechanism resulting in elevated secretion 
of EV from the tumor microenvironment.

Several studies have demonstrated a link between 
altered cell metabolism and the development of 
multidrug resistance in multiple cancer types[114-116], 
including prostate[117]. Prostate cancer progression is 
a complex process. In early stage disease the cancer 
remains androgen sensitive and can be treated with 
androgen-deprivation therapy. Over time, however, 
the cancer cells become androgen insensitive. 
Chemotherapeutic agents, such as docetaxel, can 
be used to treat androgen-independent disease[118]. 
By this stage, however, disease relapse is extremely 
likely and the development of multidrug resistant 
cancers results in impaired treatment. Several 
factors have been linked to multidrug resistance[119] 
including the overexpression of transporter proteins 
such as P-glycoprotein[120], a well characterized 

ATP-binding cassette transporter that is involved in 
the transportation of various substances across the 
plasma membrane.

Drug-resistant prostate cancer cell lines can transfer 
drug resistance to non-resistant cells via uptake of 
exosomes[121], and other EV[122], shed from drug-
resistant cells. The initiation of drug-resistance is 
triggered by vesicular-mediated metabolic alteration 
of drug-sensitive cells towards a drug-resistant 
phenotype, with an increase in glycolysis and 
glycolytic capacity[123]. Such changes in metabolic 
profile may also be reflected in cargo of EV secreted 
from the cancer, and may represent a source of 
biomarkers useful for both diagnosis and monitoring 
prognosis of disease[124].

In addition, cancer-associated fibroblasts can also 
regulate metabolic processes within neighboring 
cancer cells[125]. It was recently shown that cancer-
associated fibroblast-derived exosomes can reprogram 
prostate cancer cell metabolism by downregulating 
mitochondrial function[126]. Specifically, fibroblast-
derived exosomes were shown to inhibit mitochondrial 
oxidative phosphorylation, resulting in an increase 
in glycolysis. This may be in part due to delivery of 
metabolite cargo consisting of lactate, acetate, amino 
acids, tricarboxylic acid cycle intermediates and lipids 
from fibroblast-exosomes[126]. Activated stromal cells 
therefore appear capable of inducing the Warburg 
effect[127,128], an increased rate of glycolysis followed 
by lactic acid fermentation, in surrounding cancer 
cells through EV mediated processes. Despite further 
studies being required to clarify the effects of metabolic 
change on cancer progression, stromal cell EV appear 
to contribute to cancer proliferation and survival in 
environments low in oxygen and nutrients.

CONCLUSION

As studies into the role of exosomes in prostate 
cancer continue, we are likely to learn of further ways 
in which exosomes regulate disease progression. 
Whilst studies specifically on prostate cancer/stroma-
derived exosomes may appear limited in number 
there is a great wealth of knowledge on the role of 
exosomes within other solid cancers that remain 
useful in informing us of the potential role of exosomes 
in prostate cancer [Figure 1].

Prostate cancer exosomes have been shown to 
regulate angiogenesis, which may occur through 
exosome-mediated delivery of growth factors or RNAs. 
Prostate cancer exosomes have also been shown to 
further regulate the tumor microenvironment through 
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activation of stromal cells to a disease-supporting 
myofibroblast-like phenotype and may be capable 
of modulating myeloid cells, thereby regulating 
immune and inflammatory responses within the 
tumor microenvironment. There is sufficient evidence 
to suggest that exosomes are capable of regulating 
cancer cell metabolism and tumor metastasis, and 
are capable of transferring drug resistance from one 
cell to another. Such exosome-mediated effects, may 
impact tumor progression through direct or indirect 
mechanisms. Furthermore, it is not just cancer cell-
derived exosomes, but also exosomes from other cell 
types within the tumor microenvironment, which may 
facilitate cancer progression. Whilst we may currently 
only be scratching the surface in terms of the possible 

roles for exosomes in prostate cancer, it is clear that 
exosomes are present and actively contribute to the 
disease process.

It remains unclear why some men with prostate cancer 
have slow growing, indolent, tumors whilst others 
develop aggressive late stage disease that is resistant 
to treatment. There is therefore a growing demand for 
improved assays capable of predicting those men who 
are likely to develop aggressive disease. Due to the 
elevated secretion of exosomes from neoplastic cells, 
their altered cargo, and their presence within numerous 
biological fluids, there is substantial interest in the use 
of exosomes as biomarkers for both diagnostic and 
prognostic monitoring of disease. Methodologies for 

Figure 1: Overview of multiple roles of exosomes in prostate cancer. The previously described roles of prostate cancer exosomes are 
varied. Many other potential roles demonstrated for exosomes, and/or EV, from other cancer types may also be applicable to prostate 
cancer exosomes. Cancer exosomes can modulate the immune system. They can transmit tumor antigens to DC, or direct differentiation of 
myeloid cells towards MDSC/anti-inflammatory (M2) macrophage phenotypes. Exosome-mediated delivery of RNAs can induce endothelial 
cell proliferation, and exosome-associated proteins can induce endothelial tubule formation. Exosomal-TGFβ can induce differentiation 
of stromal fibroblasts or MSC towards a pro-angiogenic and tumor supporting myofibroblast-like phenotype. Stromal cell-derived EV 
can transfer chemoresistance to cancer cells and modulate both cancer cell metastasis and metabolism. Disease progression is further 
enhanced by cancer exosomes, which have been shown to drive extracellular matrix remodeling and impair osteoclastic differentiation. 
EV: extracellular vesicles; DC: dendritic cells; MDSC: myeloid-derived suppressor cell; MSC: mesenchymal stem cell; VEGF: vascular 
endothelial growth factor; MMP: matrix metalloproteinase; FAK: focal adhesion kinase; IGFR: insulin-like growth factor receptor; Src: proto-
oncogene tyrosine-protein kinase Src; FGF2: fibroblast growth factor 2; uPA: urokinase-type plasminogen activator; HGF: hepatocyte 
growth factor, PDGF: platelet-derived growth factor; TGFβ: transforming growth factor beta
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isolation of exosomes from biofluids, such as urine 
and plasma[129], already exist and early testing of 
exosomes as potential biomarkers of prostate cancer 
appear promising[130]. Further studies are however 
required to validate the clinical utility of such assays 
and to fully understand the relationship between EV, 
biomarkers, and disease outcome.
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