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Abstract
Among single-cell analysis technologies, single-cell RNA-seq (scRNA-seq) has been one of the front runners 
in technical inventions. Since its induction, scRNA-seq has been well received and undergone many fast-paced 
technical improvements in cDNA synthesis and amplification, processing and alignment of next generation 
sequencing reads, differentially expressed gene calling, cell clustering, subpopulation identification, and 
developmental trajectory prediction. scRNA-seq has been exponentially applied to study global transcriptional 
profiles in all cell types in humans and animal models, healthy or with diseases, including cancer. Accumulative 
novel subtypes and rare subpopulations have been discovered as potential underlying mechanisms of stochasticity, 
differentiation, proliferation, tumorigenesis, and aging. scRNA-seq has gradually revealed the uncharted 
territory of cellular heterogeneity in transcriptomes and developed novel therapeutic approaches for biomedical 
applications. This review of the advancement of scRNA-seq methods provides an exploratory guide of the quickly 
evolving technical landscape and insights of focused features and strengths in each prominent area of progress. 

Keywords: Single-cell RNA-seq, transcriptome, heterogeneity, multiplexing, high throughput, dimensional 
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INTRODUCTION
Homogeneity and heterogeneity are proportionally co-existent in all phenotypical and genetic levels 
of humans. The extent of heterogeneity is increased from individuals down to molecules, whereas 
homogeneity is decreased [Figure 1A]. The diversity is observed in individuals, organs, tissues, cells, 
organelles, and molecules, and even more abundant in protein, DNA, and RNA molecules. The long-
standing paradigm that cells of the same tissue origin are homogeneous based on bulk cell studies has lately 
been challenged by single-cell studies[1-5]. New data show that cells arising from the same tissue origins are 
far more heterogeneous than they seemingly appear [Figure 1B][6-8]. Even genetically identical cells cultured 
in the same conditions have shown variations in gene expression[9,10]. 

In the new paradigm, the diverse properties of cells are mainly reflected in the heterogeneous gene 
expression, genomic alterations, epigenomic modifications, and proteomic fluctuations[7,11-16]. Cellular 
transcriptomic heterogeneity helped to establish a new paradigm of cellular heterogeneity with the 
invention of scRNA-seq[17-19]. The cellular transcriptomic heterogeneity arises from stochasticity, 
differentiation, environmental stimuli, diseases, aging, and other factors[5,8,11,20-23]. The development of single-
cell analysis was overshadowed by traditional bulk cell approaches and technically limited by the absence 
of high throughput single-cell isolation and minute initiation materials (picogram DNA and mRNA per 
cell)[3]. Combined technological advances in cell isolation, high throughput multiplexing, amplification, 
and next generation sequencing facilitated scRNA-seq and uncovered cellular heterogeneity[24]. Mapping 
transcriptomic changes at single-cell level has since revealed global gene expression profiles and exposed 
stochasticity, differentiation, cell fate plasticity, and diseases[25]. In this review, we highlight the novel 
scRNA-seq platforms and conduct a comparative analysis of each technology and their future applications 
in translational science. 

SINGLE-CELL ISOLATION TECHNOLOGIES
Cell purity is paramount for scRNA-seq and other single-cell analysis methods. Tissues, organoids, and 
2D and 3D cultured cells are multi-cellular, and the first step to dissociate aggregated cells into individual 
cells risks potential contamination with cell doublets, DNA, and RNA by incomplete enzymatic digestion 
and cell lysis. The impurity of single cells distorts the scRNA-seq data and leads to false interpretations. 
To ensure the purity and integrity of single cells, several instrumental technologies have been adopted to 
overcome these technical challenges. 

Manual cell picking (micromanipulation)
Manual cell picking presents a simple and cost-effective method for single-cell isolation. This technique 
involves an inverted fluorescent microscope, manipulator, and microinjector for precise cell location 
and picking after cells are labeled with markers[26]. The instrumental efficiency of picking individual cells 
exceeds old-fashioned mouth-pipetting[17]. Specifically, cells are maintained in suspension and manually 
isolated by capillary pipettes connected with a microinjector. Cellular integrity is maintained for further 
analysis and is particularly workable with rare cells. However, high operator skills are required through 
training and practice. Additionally, the throughput is relatively low compared with the other methods[27]. 

Flow activated cell sorting
This high throughput method relies on antibody affinity to cell surface markers and has become the most 
common strategy for single-cell isolation. Cells are labeled with fluorescent or conjugated antibodies 
and run through flow cytometry, sensed by laser detectors or a magnetic field, and sorted with surface 
specific markers[27,28]. With advanced fluorochrome and microscope techniques, 18 fluorescent, inorganic 
semiconductor nanocrystals (Quantum Dots) are used to label antigens on cells, which increases the 
specificity and sensitivity of single-cell isolation from a bulk sample[29,30]. However, greater than 10,000 
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cells are required for this method and signal overlap may affect the purity of the target cells. Moreover, this 
method cannot perform single-cell analysis with rare cells.

Microfluidic technology
This technology for single-cell isolation can be divided into three main approaches: droplet-based 
microfluidics, channel-based microfluidics, and hydrodynamic traps. These methods rely on cell adhesion, 
hydrodynamics, physical characteristics (e.g., size and shape), cellular density, and elasticity. Microfluidic 
technology platforms can actively or passively recognize and sort single cells from a heterogenic 
population[31]. In droplet-based microfluidics, each single cell is embedded in a hydrophilic droplet which 
suspends hydrophobic channels. The advantages of this approach are high throughput and yield, making 
it feasible to isolate rare cell types[32]. Besides, genetic barcodes can be added within the cell droplet that 
record the cell origin, allowing profiling of cells from simultaneous preparation of thousands of single-cell 
libraries[33,34]. In channel-based microfluidics, single cell is controlled and confined by pneumatic membrane 
valves according to the biological requirements. This selection approach increases the accuracy of cell 
isolation and the flexibility of experimental design. However, it is limited by the low throughput compared 
with droplet-based microfluidics. Hydrodynamic traps such as Fluidigm C1 passively isolate and trap single 
cells based on cell size[31,32]. Both channel-based microfluidics and hydrodynamic traps enable long-term 
cell culture and high-resolution observation for further biological experiments such as drug treatment or 
cDNA library preparation[35]. 

Figure 1. A new paradigm for cellular heterogeneity: heterogeneity and homology coexistent in all levels of phenotypes and genotypes 
in humans, as heterogeneity is increased from individual level down to molecular level (A); a new paradigm predicts that cells from the 
same tissue are not created equally and heterogeneity of cells are far more than we previously perceived based on bulk studies (B)
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Laser capture microdissection
This microscopy-based technology carries out isolation of specific single cells on a microscope slide without 
cell dissociation from solid samples. Tissue sections are either top-covered by or laid on a thermoplastic 
polymer film, which is heat-activated by infrared or ultraviolet laser. The boundaries of a single cell on a 
tissue section are recognized and severed precisely by laser, and the dissected cell is captured[36,37]. Laser 
capture microdissection is a rapid and precise isolation technology that maintains versatility for further 
analysis including scRNA-seq[38,39]. 

TECHNICAL ADVANCES FOR CDNA SYNTHESIS AND AMPLIFICATION 
The uniform and full coverage of cDNA synthesis from single-cell mRNA/RNA is a crucial step for the 
success of scRNA-seq because the limited starting materials are as little as 5-30 pg and need to be amplified 
for next generation sequencing. The cDNA synthesis from single cells has been attempted for qRT-PCR and 
microarrays, and the technical predecessors were adopted and modified for scRNA-seq[40,41]. The protocols 
of scRNA-seq have fruitfully advanced in a decade [Table 1][19,25,42-44]. The technical variations have strengths 
and weaknesses in linear amplification, length coverage, low copy RNA species detection, multiplexing, 
high throughputs, and cost reduction. Tang’s protocol was the first scRNA-seq modality and was based on 
single-cell RNA amplification from RNA microarray assays[45,46]. Tang’s protocol uses poly(T) primers to 
generate full-length cDNA of transcripts less than 3 kb and can detect ~13,000 genes, 65% of microarray 
genes[42]. Two years later, Single-cell Tagged Reverse Transcription sequencing (STRT-seq) introduced 
template switching to incorporate bead-linked barcoded primers for strand-specific amplification of 3’ ends 
and high throughput 96-cell multiplexing with 2000-4000 genes detected in individual cells[18,47,48]. In 2012, 
a significant advancement for full-length cDNA synthesis of 40% transcripts was made with Smart-seq, 
and it was updated with the Smart-seq2 in 2013[49-51]. Smart-seq has laid the foundation for future scRNA-
seq methods, employing more stable template switching ribo(guanosine)3 oligos and having more unique 
mapping reads, higher recovery rates of low expression genes, and a two-fold increase in spliced forms 
discovered. At about the same time, Cell Expression by Linear amplification and sequencing (CEL-seq) 
utilized linear strand-specific in vitro transcript amplification mainly at 3’ ends, and an improved CEL-seq2 
version reduced mRNA molecule counting biases with the introduction of unique molecular identifiers 
(UMIs)[52-55]. Single Cell RNA Barcoding and sequencing (SCRB-seq) is a protocol for high throughput of 
12,000 cells at a low cost and one of the first scRNA-seq protocols to include UMIs[56]. Previous scRNA-seq 
platforms utilized relative measures such as reads per kilobase per million reads (RPKM), which masked 
differences in total mRNA content. As an example, a gene may be “upregulated” in terms of RPKM and 
have a decrease in absolute expression level. UMIs are short unique sequences integrated in cDNAs before 
PCR amplification to allow for unique identification of amplified DNAs carrying the same UMI sharing the 
same mRNA/RNA molecule origin and reduce nonlinear PCR amplification bias. For full length transcript 
coverage and analysis of noncoding RNA, Multiple Annealing and dC-Tailing-based Quantitative single-
cell RNA-seq (MATQ-seq) and Random Displacement Amplification sequencing (RamDA-seq) can be 
employed, which allow for poly(A)+ and non-poly(A) scRNA-seq, useful for characterization of lncRNA 
or circRNA[57-59]. RamDA-seq also detects enhancer RNAs differentially expressed in a cell-type specific 
manner. Quartz-Seq builds upon both CEL-seq2 and STRT-seq to perform 3’ coverage scRNA-seq, 
vastly improving poly(A) tailing and initial read UMI conversion and augmenting sequencing depth and 
accuracy[60]. 

Many methods employ cDNA amplification strategies, as mentioned above, but they each have unique 
methods of single-cell sorting and significant high throughput improvement. MAssively parallel RNA 
Single-cell sequencing (MARS-seq) uses fluorescence-activated cell sorting sorting to separate and 
sort 100-1000 cells into individual wells[61]. Drop-seq and InDrop are two similar methods that employ 
droplet capture microfluidic methods to isolate cells. The main differences are that Drop-seq uses reagent 
containing beads, while InDrop uses reagent carrying hydrogel microspheres. Both platforms can quickly 
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process tens of thousands of cells daily[33,34]. Chromium is similar to both previous methods, employing a 
gel bead in emulsion[62] microfluidic capture method, but has the advantage of being able to process eight 
samples at once or a single sample more quickly due to its eight-channel microfluidic chip[63]. Seq-Well is a 
low-cost alternative, not requiring any expensive microfluidic devices and instead utilizing semi-permeable 
membranes on a picowell plate with wells that contain one barcoded capture bead and space for one single 
cell per well[64]. Seq-Well plates have ~86,000 wells, but the actual capture efficiency varies. Similar to the 
other platforms (CEL-seq, STRT-seq, and SCRB-seq), CytoSeq employs a microfluidic method automating 
high throughput cell settling in 1/10 of 100,000-well plate by gravity[65]. It employs a similar plate system 
to Seq-Well with 30-µm well sizes only allowing one cell per well and one magnetic bead with a universal 
primer plus 106 diverse UMIs created by a split-pool synthesis process. It can easily reach up to 10,000 cells 
with detection of ~100 genes per cell. 

For harder to work with tissues, such as frozen samples, DroNC-seq is able to salvage samples and 
produce high quality data, employing single nucleus RNA-seq with 3’ coverage[66]. sci-RNA-seq performs 

Table 1. cDNA synthesis and amplification techniques for scRNAseq

Methods coverage UMI Strand 
specific cDNA synthesis Detected genes Ref.

Tang’s Nearly full-
length

No No poly(T) primer  13K Tang et al.[43], 2009

STRT-seq and 
STRT/C1

3’ and 5’-only Yes Yes tailed oligo-dT primer; a barcoded 
r(G)3 helper oligo primer

~2-4K Islam et al.[18,48], 2011, 2014

Smart-seq Full-length No No tailed oligo(dT) priming using the 
CDS primer

~8K Ramsköld et al.[49], 2012

CEL-seq 
(CEL-seq2)

3’-only Yes Yes 8bp-barcoded poly(T) primer ~5K Hashimshony et al.[54,55], 
2012; 2016

Smart-seq2 Full-length No No tailed oligo(dT) priming using the 
CDS primer

~10K Picelli et al.[50,51], 2013; 2014

Quartz-Seq Full-length No No poly(T) primer 5.8-6.3K Sasagawa et al.[60], 2013
DP-seq 3’-only No No hexamer 11K transcripts Bhargava et al.[69], 2013
SCRB-seq 3’ only Yes Yes cell-barcoded UMI-Poly(T) primer 3k transcripts Soumillon et al.[56], 2014
MARS-seq 3’-only Yes Yes barcoded Poly(T) primer ~200-1500 

transcripts 
Jaitin et al.[61], 2014

Drop-seq 3’-only Yes Yes bead-based barcoded UMI-poly(T) 
primer

6-7K genes Macosko et al.[33], 2015

InDrop 3’-only Yes Yes hydrogel sphere encapped cell 
barcoded UMI-poly(T)

29K UMIFM Klein et al.[34], 2015

SUPeR-seq Full-length No No random
(AnchorX-T15N6) primers

~10K Fan et al.[65,186], 2015

CytoSeq 3’-only Yes Yes Illumina universal PCR primer & 
cell UMI-Poly(T)

~100 Fan et al.[65], 2015

SC3-seq 3’ only No No V1(dT)24 4-6K Nakamura et al.[70], 2015
MATQ-seq Full-length Yes Yes GATdT primers; MALBAC primers ~14K Sheng et al.[57], 2017
Chromium 3’-only Yes Yes Gel bead based 14x GEM index-

10x barcoded-poly(T) primer
~500 Zheng et al.[63], 2017

SPLiT-seq 3’-only Yes Yes random hexamer and anchored 
poly(dT)15 barcoded RT primers

4.5.-5.5K Rosenberg et al.[68], 2018

sci-RNA-seq 3’-only Yes Yes 10bp barcoded-8bp UMI- Poly 
(T)30 primer

4-5.5K Cao et al.[67], 2017

Seq-Well 3’-only Yes Yes bead-based 12bp barcoded 8bp 
UMI- Poly(T)30 primer

6-7K Gierahn et al.[64], 2017

DroNC-seq 3’-only Yes Yes bead-based barcoded UMI-poly(T) 
primer

1.7-3.3K Habib et al.[66], 2017

Quartz-Seq2 3’-only Yes Yes cell-barcoded UMI-poly(T) primer 
(v3.1: 73-mer)

8K Sasagawa et al.[187], 2018

STRT-seq: single-cell tagged reverse transcription sequencing; CEL-seq: cell expression by Linear amplification and sequencing; DP-
seq: designed primer-based RNA-sequencing; SCRB-seq: single cell RNA barcoding and sequencing; MARS-seq: MAssively parallel 
RNA single-cell sequencing; MATQ-seq: Multiple annealing and dC-tailing-based quantitative single-cell RNA-seq; SPLiT-seq: split-pool 
ligation-based transcriptome sequencing
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the analysis of single cells or nuclei isolated from methanol-fixed whole organisms (~50,000 cells), with 
3’ coverage and high depth sequencing employing double UMI barcoding[67]. Split-Pool Ligation-based 
Transcriptome sequencing (SPLiT-seq) is an extremely high throughput 3’ coverage method distinct from 
other methods, offering scRNA-seq analysis without single-cell isolation from 1.33% formaldehyde-fixed 
tissues[68]. It employs combinatorial indexing to identify single cells without isolation, by performing three 
successive barcoding steps through in situ reverse transcription on groups of cells and mixing after each 
time, leaving each cell with a unique identifier totaling up to 21 million for downstream data analysis. This 
invention posits potential cost reduction per cell and time effectiveness. 

Not all methods employ UMIs. Designed Primer-based RNA-sequencing (DP-seq) is a 3’ coverage method 
useful for small samples, analyzes at least 50 pg of RNA, and employs random hexamer-based amplification 
and sequencing[69]. The protocol requires knowledge of the intended target’s genome prior to use. SC3-seq 
provides 3’ coverage method for only 3’ end characterization of mRNA, allowing for higher reproducibility 
and reduced noise, thus it is useful for projects not requiring deep sequencing with a low budget[46,70]. 

Attempts have been made to evaluate diverse scRNA-seq protocols using systematic comparisons[71]. Six 
commonly used methods - CEL-seq2, Drop-seq, MARS-seq, SCRB-seq, Smart-seq, and Smart-seq2 - 
were performed side by side using mouse embryonic stem cells. Overall, Smart-seq2 detected the most 
genes per cell, while the other methods displayed less amplification noise due to the use of UMIs. Power 
analysis showed that Drop-seq provides a less costly option for a larger number of cells analyzed, whereas 
MARS-seq, SCRB-seq, and Smart-seq2 were suitable for fewer cells. To evaluate sensitivity and accuracy 
as performance metrices for 15 different methods, in silico power analysis of External RNA Controls 
Consortium spike-in standards was performed in those scRNA-seq studies[72]. The vast majority of methods 
displayed high accuracy. The exceptions were CEL-seq and MARS-seq data, which show more variations 
among cells. Better sensitivity appeared in SMARTer (C1), CEL-Seq2 (C1), STRT-Seq, and InDrop-seq that 
could detect digital copies of spike-ins; however, the sensitivity was sequencing depth-dependent. For the 
droplet-based high-throughput platforms (InDrop, Drop-seq, and 10x Genomics Chromium), a thorough 
comparative study revealed insights regarding their efficacy and limits[73]. The 10X Genomics Chromium 
protocol was maturely developed with a higher cost and delivered high degree of sensitivity and accuracy 
with less technical noise. Drop-seq provided similar data quality with fewer cells, but a more affordable 
cost. InDrop is also less expensive with high compatibility with other protocols, such as Smart-seq2. In 
a large-scale validation of 13 protocols by multi-centered collaboration effort using mixed human and 
murine cells, CEL-seq2, Quartz-seq2, SMAR-seq2, and Chromium platforms were superior in producing 
high-resolution transcriptomic profiles[74]. 

PROCESSING OF NEXT GENERATION SEQUENCING DATA OF SCRNA-SEQ
Synthesized and amplified cDNAs are subsequently subject to library preparation and NGS to generate 
massive sequencing short reads, as depicted in Figure 2. The current state-of-the-art computational tools 
and algorithms widely used in bulk RNA-seq analysis can be extended for processing scRNA-seq data. 
However, the transcriptome at single-cell resolution presents specific analytical challenges, which requires 
dedicated analytical power and specific packages. Some of the key challenges encountered during single-
cell transcriptional data analysis includes greater dimensionality, high level of noise, absence of biological 
replicates, and data sparsity[44,75]. However, major efforts in the development of advanced algorithms 
and computational strategies as well as adaptations of existing workflows have shown great promise for 
comprehensive and detailed analysis of scRNA-seq data [Table 2]. Several programming- (R- or Python-
based) and web interface-based toolkits have been proposed to facilitate systematic analysis that can be 
scaled up as per requirements[75,76]. Seurat[77,78] and Single Cell ANalysis in PYthon[79] are the two most 
comprehensive packages that can, respectively, integrate scRNA-seq data with other single-cell data and 
enable scaling-up to simultaneously analyze millions of cells at the same time. Of note, the core analysis 
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pipelines show higher resemblance with the bulk RNA-seq and can be broadly categorized in the following: 
(1) quality control; (2) read alignment and generation of counts; (3) removal of confounding factors; and 
(4) normalization and annotation of cell types and cellular states. The quality of individual single-cell 
libraries needs to be carefully assessed to abolish the underlying noise as downstream interpretation relies 

Figure 2. Schematic illustration of scRNA-seq analysis
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heavily on the preprocessing steps. Generic quality control (QC) metrics including FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/), High-Throughput Quality Control[80], or Kraken[81] provide 
insights into overall quality of raw sequence files. Characterization of heterogeneity is one of the primary 
purposes of performing single-cell analysis, however not all outliers contribute to unique cell populations. 
Single-cell specific quality evaluation tools such as SinQC[82], SCell[83], and Celloline[84] enable identification 
of technical artifacts that interfere with gene expression patterns. Mapping sequencing reads to a reference 

Table 2. NGS data analysis tools and software for scRNA-seq

Category Tools Software Ref.
Quality 
control

MultiQC http://multiqc.info Ewels et al.[188], 2016
SinQC http://www.morgridge.net/SinQC.html Jiang et al.[82], 2016
SCell https://github.com/diazlab/SCell Diaz et al.[83], 2016
Celloline https://github.com/Teichlab/celloline Ilicic et al.[84], 2016
Kraken http://ccb.jhu.edu/software/kraken/ Wood and Salzberg[81] 2014
HTQC https://sourceforge.net/projects/htqc/ Yang et al.[80], 2013
FastQC https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 2010

Alignment Kallisto https://github.com/pachterlab/kallisto Bray et al.[88], 2016
HISAT https://github.com/infphilo/hisat Kim et al.[87], 2015
TopHat2 https://github.com/infphilo/tophat Kim et al.[189], 2013
STAR https://code.google.com/archive/p/rna-star/ Dobin et al.[86], 2013
GSNAP https://bioinformaticshome.com/tools/rna-seq/descriptions/GSNAP.html Wu et al.[190], 2010
MapSplice http://www.netlab.uky.edu/p/bioinfo/MapSplice Wang et al.[191], 2010

Quantification StringTie http://ccb.jhu.edu/software/stringtie/ Pertea et al.[192], 2015
HTSeq https://htseq.readthedocs.io/en/master/ Anders et al.[193], 2014
FeatureCounts http://subread.sourceforge.net Liao et al.[194], 2013
RSEM http://deweylab.github.io/RSEM/ Li and Dewey[195], 2011
Cufflinks http://cole-trapnell-lab.github.io/cufflinks/ Trapnell et al.[196], 2010

Normalization sctransform https://github.com/ChristophH/sctransform Hafemeister and Satija[92], 
2019

SCnorm https://github.com/rhondabacher/SCnorm Batcher et al.[97], 2017
Linnorm http://www.jjwanglab.org/linnorm Yip et al.[98], 2017
SCran https://rdrr.io/bioc/scran/ Lun et al.[96], 2016
BASiCS https://github.com/catavallejos/BASiCS Vallejos et al.[94], 2015
GRM http://wanglab.ucsd.edu/star/GRM/ Ding et al.[95], 2015
SAMstrt https://github.com/shka/R-SAMstrt Katayama et al.[93], 2013

Analysis 
pipeline

Seurat https://github.com/satijalab/seurat Butler et al.[77], 2018
SCANPY https://github.com/theislab/Scanpy Wolf et al.[79], 2018
Scater https://rdrr.io/github/davismcc/scater/ McCarthy et al.[197], 2017
Granatum https://github.com/lanagarmire/Granatum Zhu et al.[198], 2017
ASAP https://github.com/DeplanckeLab/ASAP Gardeux et al.[199], 2017
SCran https://rdrr.io/bioc/scran/ Lun et al.[96], 2016
SINCERA https://research.cchmc.org/pbge/sincera.html Guo et al.[135], 2015

Batch 
correction

Seurat 3 https://github.com/satijalab/seurat Stuart et al.[112], 2019
Harmony https://github.com/immunogenomics/harmony Korsunsky et al.[113], 2019
scGEN https://github.com/theislab/scgen Lotfollahi et al.[200], 2019
scMerge https://sydneybiox.github.io/scMerge/ Lin et al.[114], 2019
MNN Correct https://github.com/MarioniLab/MNN2017/ Haghverdi et al.[111], 2018 

Alternative 
splicing

Expedition https://github.com/YeoLab/Expedition Song et al.[201], 2017
BRIE https://github.com/huangyh09/brie Huang and Sanguinetti[202], 

2017
Census https://github.com/cole-trapnell-lab/monocle-release Qiu et al.[203], 2017
SingleSplice https://github.com/jw156605/SingleSplice Welch et al.[204], 2016

Other 
cofounding 
factor removal

ccRemover https://cran.r-project.org/web/packages/ccRemover/index.html Barron and Li[116], 2016
scLVM https://github.com/PMBio/scLVM Buettner et al.[115], 2015
COMBAT https://github.com/Jfortin1/ComBatHarmonization Johnson et al.[205], 2007

HTQC: high-throughput quality control; HISAT: hierarchical indexing for spliced alignment of transcripts; BASiCS: bayesian analysis of 
single-cell sequencing ; GRM: gamma regression model; SCANPY: single cell analysis in python; SINCERA: SINgle cell RNA-seq profiling 
analysis; MNN: mutual nearest neighbors; scLVM: single-cell latent variable mode
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genome or transcriptome allows identification of the specific location from which the transcripts originate 
and subsequent quantification. Although dedicated mappers for scRNA-seq are not available, existing 
aligners such as TopHat[85], STAR[86], and Hierarchical Indexing for Spliced Alignment of Transcripts[87] 
have shown considerable precision and accuracy. Recently, two pseudo-alignment tools, Kallisto [88] and 
Salmon[89], have been proposed which pseudo-align splicing isoforms to a reference transcriptome and 
overcome the requirement of significant amount of computational power and time to process the reads. An 
improved Salmon with Selective Alignment and expanded decoy sequences was introduced recently and 
significantly reduced false mappings[90]. However, careful consideration should be made while implementing 
pseudo-alignment with scRNA-seq data since the data themselves can have lower depth in the first place 
and 3’ coverage bias. Another important step in the analysis pipeline is normalization of the expression 
data, which is particularly important in single-cell analysis as many technical parameters including cell 
capture efficiency, drop out events, read depth, and coverage bias can induce variation[91,92]. Tagging 
individual RNA molecules using UMIs enables absolute quantification of the transcripts from each cell. In 
the cases without the use of UMIs, external spike-in RNAs (i.e., ERCCs) can be used as internal controls. 
Additionally, several single-cell specific normalization approaches including SAMstrt[93], Bayesian Analysis 
of Single-Cell Sequencing (BASiCS)[94], Gamma Regression Model[95], sctransform[92], Scran[96], SCnorm[97], 
and Linnorm[98] can be utilized, of which the last three do not require incorporation of additional spike-ins. 
Eight commonly applied normalization methods (trimmed mean of M-values[99], count-per-million[100], and 
DESeq2[101], as well as others tailored for scRNA-seq, namely scone, BASiCS, SCnorm, Linnorm, and scran) 
were subject to benchmarking[102]. Data show that scRNA-seq normalization methods outperformed bulk 
RNA-seq counterparts. However, a bulk RNA-seq normalization method using Differentially Expressed 
Genes Elimination Strategy is competitive with scRNA-seq normalization methods[103,104]. Three scRNA-
seq imputation methods, namely K-Nearest Neighbor smoothing (kNN-smoothing)[105], DrImpute[106], and 
Single-cell Analysis Via Expression Recovery (SAVER)[107], were evaluated for their capacity to tackle the 
zero-inflation issue either derived from a technical contribution or a normal distribution[102,108,109] [Table 2]. 
Both kNN-smoothing and DrImpute analysis gave more reliable results compared with SAVER. 

Single-cell RNA isolation at different time points or in different laboratories can induce systemic variations 
and batch effects which may compromise biologically meaningful interpretation of signals[110,111]. Batch 
correcting algorithms such as Mutual Nearest Neighbors Correct[111], Seurat 3[112], Harmony[113], scGen, 
and scMerge[114], among many others, can compensate the discrepancy. In unsynchronized cells, cell-cycle 
variation can also mask other important physiological variations, which can be overcome by eliminating 
cell-cycle factors using packages such as single-cell Latent Variable Model (scLVM)[115] and ccRemover[116]. 
Drop-out, high number of zero counts, sparsity, and multimodality are some of the unique events 
encountered in single-cell expression analysis which demand more sophisticated algorithms for identifying 
differentially expressed genes (DEGs)[117]. 

Algorithms for scRNA-seq data analysis
Algorithms for scRNA-seq data analysis have been developed recently in different computer languages, 
such as R program or Python, and few are designed as a website interface or software package [Table 3]. 
scRNA-seq data are high-dimensional datasets among a great number of cells. Therefore, application of 
appropriate algorithms is necessary to have better analysis and visualization of scRNA-seq data. After 
QC and normalization, scRNA-seq data can be processed using diverse algorithms according to variant 
purposes, such as investigation of DEGs, identification of cell subpopulations, and cell fate trajectories 
(pseudotime analysis), which are the most common methods to process scRNA-seq data. Visualizations 
of scRNA-seq data are also diverse. The heatmap is the most common method to present DEGs between 
groups or within different cell types. Heatmaps are generated by most algorithms for DEGs analysis. 
T-distributed stochastic neighbor embedding (tSNE), scatter plot, and uniform manifold approximation, 
and projection (UMAP) are used for visualization of dimension reduction results in cell clustering or cell 
subpopulations[118-120]. 
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CELL CLUSTERING AND SUBPOPULATION IDENTIFICATION
Cell clustering and cell type identification are critical features of scRNA-seq and, unlike bulk cell RNA-
seq, can reveal heterogeneous cell types using entire transcriptomes from an enormous quantity of 
cells[25,44,121]. Recently, many software algorithms have been developed to achieve cell clustering and cell type 
identification [Table 3] through unsupervised dimensionality reduction based on principal component 
analysis (PCA), tSNE, or diffusion maps[28,122]. Based on an unsupervised clustering method, such as Seurat 
or Monocle 3, novel cell types or populations might be revealed with scRNA-seq data[77,78,123]. Recently, cell 
type identification of scRNA-seq data has been exponentially applied to studies in developmental biology, 
neurology, cancer biology, and immunology and can provide the type, quantity, and gene signature of 
different cell populations[124-129]. 

DIFFERENTIAL EXPRESSION ANALYSIS
Differential expression analysis can reveal significant DEGs to identify novel pathways or biological 
functions in different cell types or treatments. Identification of DEGs can be performed by comparing 
gene expression between two predetermined groups or treatments. For example, Horning et al.[130] 
identified a group of cell-cycle genes upregulated in a subpopulation which had an attenuated androgen 
response using Single Cell Differential Expression (SCDE) algorithm in R program. DEGs can also be 
identified among different cell types in a tissue or organ based on unsupervised algorithms, such as Seurat 
or Monocle 3. Wang et al.[131] identified single-cell transcriptome profiling of cardiopharyngeal lineages 
and characterized their cell fate using Seurat package in R program. SCDE[132], PAthway and Gene[133] set 
OverDispersion Analysis (PAGODA), Model-based Analysis of Single-cell Transcriptomics, Monocle, and 
SigEMD[134] algorithms and SINgle CEll RNA-seq profiling Analysis[135] workflows have addressed some 
common challenges to some extent and improved sensitivity in calling DEGs. Since each single cell has the 
potential to behave as a unique entity, oftentimes the curse of high dimensionality can impose restrictions 
in clustering and data visualization[122]. UMAP, Zero Inflated Factor Analysis, Single-cell Interpretation via 
Multikernel LeaRning, and scvis belong to recent dimensionality reduction techniques that can address 
the underlying confounding factors and enable proper visualization of diverse expression patterns over 
conventional PCA analysis[120,136,137]. With the advent of automated advanced tools and packages including 

Table 3. Software/packages for single-cell RNA-seq analysis: differential expression, subpopulation identification, 
clustering, and peudotime projection

Software/package Differential 
expression

Clustering cell 
type

Cell fate 
trajectories Language Programing skill Ref.

PAGODA Yes Yes No R +++ [133]
SCDE Yes No No R +++ [132]
Seurat Yes Yes No R +++ [77,112]
SCENIC Yes Yes No R or Python +++ [132]
Destiny No Yes Yes R ++ [206]
TSCAN Yes no Yes R or website 

interface
+ [147]

Monocle 3 Yes Yes Yes R +++ [123]
Waterfall Yes no Yes R +++ [150]
Wishbone No No Yes Python +++ [29]
GrandPrix No Yes Yes Python +++ [207]
DPT No No Yes R or Python +++ [144]
SCUBA No Yes Yes MATLAB + [151]
STREAM No Yes Yes Python +++ [145]
Slingshot Yes Yes Yes R +++ [148]
CellRouter Yes Yes Yes R +++ [208]

PAGODA: pathway and gene set overdispersion analysis; SCDE: single cell differential expression; TSCAN: tools for single cell analysis; 
DPT: diffusion pseudotime; SCUBA: single-cell clustering using bifurcation analysis; STREAM: single-cell trajectories reconstruction, 
exploration and mapping
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SingleR and scMatch, cell-type annotations have significantly improved, leading to the identification of 
rare events or specific cell populations with the ability to scale-up[138-140]. Cell BLAST is a cell type query 
algorithm for the analysis of new scRNA-seq data. It utilizes a neural network-based generative model to 
extract low-dimensional cell-to-cell relationships from high-dimensional transcriptomic data and predicts 
cell types via batch correction with a large-scale curated reference cell type database[141]. 

CELL LINEAGE AND CELL FATE RECONSTRUCTION 
Following cell type identification, cell fate trajectory is the next step to uncover how different cell types 
coordinate in many aspects of biology including the developmental process or cancer progression[142,143]. 
Based on transcriptome information, some algorithms provide a pseudotime scale and cell fate branches 
within all the cells to reveal potential progression or direction of cell types based on cell phenotypic 
clusters[123,144]. Cell fate trajectory analysis provides an opportunity to investigate the dynamic processes 
of large-scale cells in developmental processes, cellular differentiation, or drug responses[145,146]. Several 
software packages can perform trajectory inference. Monocle 3[123], Diffusion PseudoTime[144], and Single-
cell Trajectories Reconstruction, Exploration And Mapping[145] are well-developed algorithms to perform 
cell fate trajectory prediction but require a mastery of computer programming skills. Tools for Single Cell 
ANalysis (TSCAN) provides a friendly webpage interface to access and perform cell fate trajectory[147]. 

Of note, transcriptional dynamics represent an important feature of single-cell analysis which enables 
the analysis of gene expression in given time series such that the output can generate biological signals 
inferring potential cellular lineages. Seurat[77,78], Slingshot[148], Monocle 2[149], Waterfall[150], Single-cell 
Clustering Using Bifurcation Analysis[151], and TSCAN[147] can allow construction of pseudotime trajectory 
and assessment of expression kinetics that can provide novel insights into cellular differentiation of stem 
cells as well as oncogenic progression during tumor development. Tian et al.[102] evaluated five trajectory 
analysis methods in a thorough combination of normalization and imputation of four independent scRNA-
seq datasets and found that Slingshot and Monocle 2 led to more robust results. Integration of single-cell 
transcriptome profiling with other single-cell or bulk analysis and spatial measurements can significantly 
enhance our understanding of molecular basis of cellular heterogeneity[77] and crosstalk among cellular 
populations in in-vivo studies[152,153].

APPLICATIONS OF SCRNA-SEQ
Heterogeneity of cell fate determination in embryogenesis
In the last decade, cumulative efforts have been undertaken to explore the uncharted territory of cellular 
heterogeneity in different species, organs, tissues, developmental stages, and microenvironments. The first 
attempt was to interrogate the transitional transcription profiles in the formation of pluripotent embryonic 
stem cells (ESCs) in early embryogenesis[17]. The differentiational modulation from the inner cell mass to 
blastocysts and ESCs was not fully understood based on bulk cell studies, but they provided a good initial 
model for scRNA-seq analysis[17,154]. DEGs showed self-renewal and pluripotency signals with high gene 
expression variations, particularly for genes with medium expression levels. While epigenetic repressor 
expression was increased, a suppressive transcription became apparent during the development. A group 
of miRNAs targeting early differentiation genes and pluripotency genes plays a role in transcriptional 
alterations. Meanwhile, many spliced forms were discovered for the first time. The same approach was 
also applied to profile the transcriptional dynamics of earlier embryonic stages, preimplantation human 
embryos, using 124 cells from oocyte to blastocyst stage[155]. Previous bulk studies have shown that the 
expressions of ~1900 genes were mainly transcriptionally suppressed during the stages. In this study, about 
2,495 and 2,675 genes were significantly up- and downregulated between the four- and eight-cell stages. 
Splicing isoforms of 4,822 transcripts were enriched in different stages and 20% of transcripts displayed 
more than two splicing variants. FOXP1 with exon 18b transcripts, ESC-specific splicing species, are 25-fold 
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more abundant than those with exon 18a in undifferentiated ESCs. From the 90 single embryonic cells 
analyzed, 64% of the total known human lncRNAs (28,640) were found to be expressed. Another study 
using Smart-seq method with deep sequencing analyzed the cell fate determination between two- and 
four-cell embryos and later stage blastomeres[156]. However, this scRNA-seq study discovered that dozens 
of protein-encoding genes, including Gadd45a, showed significant differential bimodal expression between 
blastomeres at two- and four-cell embryonic stages. Differential monoallelic expression in 24% genes was 
clearly observed to be independently regulated in early embryonic development using scRNA-seq[157]. In 
later embryonic developmental stages within 5-7 days, X-chromosome dose compensation was found 
in single-cell transcriptomes of 1,529 individual cells from 88 human preimplantation embryos[158]. The 
cell lineage expression patterns were concurrent as an intermediate status before the establishment of 
the trophectoderm, epiblast, and primitive endoderm lineages that are contemporary with blastocyst 
formation. Linnarson’s group studied the differential expression between mouse embryonic stem cells 
and fibroblasts with a high throughput scRNA-seq method[18]. Nematode embryogenesis between two- 
and eight-cell stage was dissected with CEL-seq with RNA linear amplification by scoring single-cell 
transcriptomes[54]. Seventeen genes had significant two-fold mean difference between AB and P1 cells. EMS 
had more genes expressed compared to P2 cells, while P3 had fewer new genes expressed than C lineage. 
Taken together, the single-cell transcriptome data map the cell fates in early embryonic differentiation and 
ESC pluripotency establishment. 

Heterogeneity in complex differentiated tissues and systems 
With multiplexing and high throughputs improvements, scRNA-seq has served as a molecular scalpel 
directed at the heterogeneity of cells in much more complex tissues, systems, and organisms. The 
immune system is a complex of bone-marrow-derived differentiated cells. More and more scRNA-
seq technologies are adopted for exploring transcriptomes and functional relevance in this biological 
system[159]. Dendric cells (DCs) are a group of highly heterogeneous antigen-presenting cells and important 
for pathogen recognition and immune defense[160]. The bulk RNA-seq of marker-sorted subpopulations 
did not sufficiently capture their complex functions and led to great controversy[161]. An unbiased global 
transcriptomic mapping of 18 bone-marrow-derived DCs exposed to lipopolysacharrides (LPS)[162] using 
Smart-seq revealed hundreds of genes expressed in high variability and unique bimodal profiles that were 
similarly observed during early mammalian embryogenesis[13,156]. Among them, 137 genes are anti-virus 
genes. The spleen is the largest lymphatic organ in the human body. The heterogeneity of 1,536 splenic 
cells was explored using massively parallel MART-seq with low-depth RNA sampling[61]. From them, the 
method coupled with a probabilistic mixture model demonstrated sensitive cell classification for distinct 
identification of B cells, natural killer cells, macrophages, monocytes, and plasmacytoid DCs. In DCs, four 
subpopulations were found either significantly linked or supported by internal combinatorial marker gene 
expressions. After exposure to LPS, 1,536 spleen cells’ scRNA-seq displayed the heterogeneity in DCs with 
enriched CD11c expression and their response to LPS. In the adaptive immune system, differentiation 
of naïve T cells into T helper 2 (Th2) cells is a feedback loop to restrain immune overreaction[163]. From 
91 single Th2 cells acquired post infection of naïve T cells, scRNA-seq revealed unique subpopulations 
with transcriptional profiles and changes in transcription factors, cytokines, surface receptors, and other 
pathways[115,164]. 

Mining efforts on heterogeneity of other tissues are ongoing in muscle, lung, intestine, testis, pancreas, 
and the nervous system. The sci-RNA-seq was applied to profile nearly 50,000 cells from nematodes 
(Caenorhabditis elegans) with more than 50-fold somatic cellular coverage at the L2 larval stage[67]. From 
the data, consensus expression profiles for 27 cell types were defined and rare neuronal cell types with 
one or two cells were sensitively recovered. The global view of regulatory networks for human skeletal 
muscle myoblast differentiation has been masked by the low resolution of bulk genomic data[149]. ScRNA-
seq coupled with a nonlinear MONOCLE pseudotime trajectory prediction model discovered dynamic 
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expression in 1,061 genes that clustered in gene regulatory groups responsible for activation and suppression 
at three time points after differentiation initiation. During Embryonic Days 16.5-18.5, murine lung cell 
lineages at respiratory airway tips are developed from columnar epithelial progenitor cells into flat alveolar 
type 1 (AT1) or cuboidal type 2 (AT2) cells for gas exchange or surfactant secretion, respectively[165]. A 
few markers have been identified for four cell types but the global transcriptomic dynamics during the 
transition is unknown[166]. Microfluidic scRNA-seq of 196 cells have delineated transcriptional signatures 
for an intermediate bipotential progenitor cells that precede AT1 and AT2 cells, in addition to Clara 
and ciliated cells[167]. CEL-seq of 238 randomly selected cells from intestinal organoids composed of 
major intestinal cell lineages brought a better understanding of diversity in intestinal differentiation[168]. 
Hierarchical clustering of gene expression correlation and rare cell identification method identified the 
major intestinal cell lineages and 10 clusters as novel diverse subtypes of cells. Spermatogenesis in testes is 
a complicated and highly orchestrated process including the differentiation of diploid spermatogonia into 
haploid sperm[169]. The whole picture of spermatogenesis is still far from complete. Two research groups 
have run scRNA-seq on thousands of dissociated cells from testis samples using Drop-seq and STAR[170,171]. 
A conserved continuous temporal trajectory of transcriptional dynamics was consistent in both murine and 
monkey reproductive models. Novel subpopulations were identified in several time points of differentiation 
and displayed unique transcriptional regulators and signatures. Based on CEL-seq2 data of pancreatic islet 
cells from four deceased patients, cell clusters by t-distributed Stochastic Neighbor Embedding (t-SNE) 
analysis showed the classical pancreatic cell types with marker genes and additional novel markers that 
have not been reported previously[172].

The central nervous system is composed of large amounts of neuronal and glial cells with numerous types, 
and the classical methods to identify them with some molecular markers were limited and not definitive[173]. 
Single-cell transcripts of ~3000 cells from mouse somatosensory S1 cortex and hippocampus Cornu 
Ammonis (CA) were analyzed by STRT/C1[174]. Cell type classification identified nine major classes and 47 
molecularly distinct subclasses. scRNA-seq of 30,000 nuclei from mouse and human archived brain tissues 
from hippocampus and prefrontal cortex was carried out by DroNc-seq[66]. With fewer genes detected, cell 
clustering analysis still identified novel cell types along with well-known cell types.

In other independent studies, there were more than 100 subclasses of cells found in mouse brain and 
spinal cord[68,175]. Ribosomes And Intact Single Nucleus (RAISIN) RNA-seq and MIning RAre Cells 
sequencingMIRACL-seq processed transcriptomes of thousands of neurons in mouse and human enteric 
nervous system for species-specific transcription signatures and dozens of neuronal subtypes[176]. From 
44,808 mouse retinal cells, 39 transcriptionally distinct cell populations were identified, creating an atlas of 
gene expression for the classification of retinal cells and novel rare subtypes[33].

Heterogeneity in cancers
The transcriptomic heterogeneity of tumors evolves temporospatially during tumor progression with 
genetic, epigenetic, and tumor immune microenvironmental fluctuations[5,7,177]. ScRNA-seq is a powerful 
tool to address the tumoral heterogeneity, particularly for rare cells and previously unrecognizable 
subpopulations[128]. Smart-seq was applied to stratify heterogenous cell subpopulations in 672 cells from 
five glioblastoma tumors[14]. Despite apparent cell-to-cell variability, unbiased cell hierarchical clustering 
showed four meta-signatures comprised of cell-cycle, hypoxia, complement/immune response, and 
oligodendritic function. Gene expression profiling of 4,347 cells from six Isocitrate dehydrogenase 
1(IDH1) or IDH2 mutant human oligodendrogliomas displayed distinct expression signatures [178]. With 
bulk exome sequencing and copy number variation estimation, a hierarchical cell lineage map with 
variant stem/progenitor cell components was delineated in each tumor. Noncanonical WNT activation 
signaling was noted in retrospective analysis of 77 circulating tumor cells from 13 prostate cancer (PCa) 
patients following tumor progression compared with stable counterparts undergoing androgen deprivation 
therapy[179]. This study indicated a potential novel therapeutic target and predictive biomarker for PCa.



Page 14                          Lieberman et al. J Transl Genet Genom 2021;5:1-21  I  http://dx.doi.org/10.20517/jtgg.2020.51

From multicellular ecosystem of metastatic melanoma, 4,645 single cells isolated from 19 patients were 
subject to analysis for profiling malignant, immune, stromal, and endothelial cells[180]. The principle 
component analysis of scRNA-seq data showed that the transcriptomic expression could discern malignant 
cells from tumor and nonmalignant cells (immune cells, stromal cells, endothelial cells, and fibroblasts) 
independent of biopsy sites. The transcriptional signatures for malignant cells consist of a core set of cell-
cycle genes and a set of immediate early-activation transcription factors that displayed spatial difference. 
Meanwhile, a drug-resistant subpopulation with high AXL or MITF signals was present in treatment-
naive tumors. Treatment-naïve tumors are usually sensitive to initial therapy and generally respond to 
first-line therapy. However, most advanced tumors acquire drug resistance and lead to poor survival 
outcomes. Androgen deprivation therapy[8] is effective for the majority of PCa but biochemical recurrence 
occurs in 30% of patients subject to treatment, and there is a limited understanding of the underlying 
mechanisms. From 144 cells treated or untreated with androgen, subpopulations of heterogeneous LNCaP 
cells were revealed and exhibited high levels of ten cell-cycle-related genes using Smart-seq2 analysis[130]. 
The subpopulations of cells showed cancer stemness phenotype and became resistant to cell-cycle targeting 
agents. ScRNA-seq and imaging found transcriptional variation and a pre-adapted subpopulation that 
exhibited resistance to endocrine therapy[181]. ScRNA-seq identified a stem-like subpopulation of PCa cells 
from monolayer and organoid culture[182].

Smart-seq2 was deployed to sequence single cells derived from treatment naïve, residual disease, and 
progressive disease following tyrosine kinase inhibitor (TKI)-based therapies in tumor derived from non-
small cell lung cancer patients for mapping transcriptional alterations unique to drug-sensitive and drug-
resistant tumor cell populations[183]. The scRNA-seq data of 23,261 cells from 49 samples show high-
power resolution of high cellular heterogeneity and that residual disease tumors have fewer proliferative 
markers and increased alveolar cell markers. In TKI-resistant tumors, the upregulated genes were related to 
oncogenesis and inflammation. Moreover, progressive disease had increased infiltration of immune cells, 
predominant MF2 macrophages, and suppressive T cells in tumor microenvironments.

Melanoma-associated immune and stromal cells were isolated and analyzed by Smart-seq2 at three time 
points during tumor development[184]. The three temporal subpopulations of stromal cells displayed unique 
functional signatures. The lymphocytes from lymph nodes underwent activation and clonal expansion in 
tumors. To map the heterogeneity in the immune cells within hepatocellular carcinoma tumors, scRNA-
seq methods were used to study CD45+ cells isolated from tumors and four immune-relevant sites of 
16 treatment-naïve liver cancer patients[129]. it was found that LAMP3+ dendric cells contain unique 
transcriptional features affecting other immune cell types and show the ability to migrate to lymph nodes. 
Exhibiting distinct transcriptional states, tumor-associated macrophages were associated with poor 
prognosis[185]. The inflammatory roles of SLC40A1 and GPNMB were clearly demonstrated in these cells. 

CONCLUSION
Cell heterogeneity has been more appreciated under the light of a new paradigm due to the advances 
of scRNA-seq and other single-cell analysis technologies. Since its induction, scRNA-seq has been well 
received and undergone fast-paced technical advances in uniform cDNA amplification, length coverage, 
rare copy detection, multiplexing, high throughput, processing of metadata, DEG calling, cell clustering, 
subpopulation identification, and cell fate trajectory predictions. Along with the new technology progress 
with higher sensitivity and accuracy, our understanding about the extent of cellular heterogeneity has been 
swiftly updated and repeatedly brought to another level. The discovery of new cell subpopulations and rare 
cell types with transcriptomic signatures posit new mechanisms for cell functions and defects that lead to 
novel biomedical applications and rising therapeutic venues. 
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