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Abstract
This study proposes an innovative algorithmbased on a hybrid optimization strategy, integrating the rapidly-exploring
random tree (RRT) and an improved particle swarm optimization (PSO) method to address the time-optimal trajec-
tory planning problem for six-degree-of-freedom robotic arms. The proposed approach emphasizes obstacle avoid-
ance and motion smoothness. RRT is utilized within a dynamic three-dimensional environment to rapidly gener-
ate an initial collision-free path. Subsequently, improved PSO enhances global search performance by introducing a
multi-source chaoticmapping-based population initialization strategy, dynamically adjusted inertia weights, and non-
linear learning factors. These enhancements effectively mitigate the limitations of traditional PSO methods, which
are prone to premature convergence in complex optimization problems. Furthermore, the proposed 3-5-3 polyno-
mial interpolationmethod significantly smooths the trajectory, reducing fluctuations in velocity and acceleration, and
thereby improving the precision and energy efficiency of trajectory planning. Experimental results demonstrate that
the proposed algorithm outperforms existing methods, such as the improved RRT and improved non-dominated sort-
ing genetic algorithm, across multiple metrics. Notable achievements include a reduction of total motion time by
approximately 21%, improved stability in robotic arm motion, and enhanced adaptability to dynamic environments.
Particularly, the method achieves superior trajectory diversity and uniformity through joint optimization of multiple
chaotic sources, overcoming the inherent limitations of single chaotic mappings. This research expands the appli-
cation scenarios of RRT and PSO and provides a novel solution for intelligent control and real-time planning of high-
degree-of-freedom robotic arms.
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1. INTRODUCTION
Industrial robots have been used extensively in automated manufacturing across various sectors, including au-
tomotive and aerospace, as the industry continues to progress. This advancement has led to demands within
the manufacturing industries for improved performance, adaptation to product variations, enhanced safety,
and cost reduction [1–3]. However, standard control methods alone cannot fully meet these requirements. Tra-
jectory planning [4] is fundamental to the motion control of industrial robots, directly influencing their effi-
ciency, motion smoothness, and energy consumption. Thewidespread use ofmulti-degree-of-freedom robotic
arms has significantly enhanced product accuracy and productivity. In many production workshops, robotic
arms need to follow predetermined trajectories to optimize production efficiency by minimizing movement
time. Consequently, reducing the movement time of robotic arms has emerged as a critical research focus.

At present, many researchers are integrating intelligent optimization algorithms to identify the optimal motion
trajectory for robotic arms, aiming to reduce movement time through trajectory optimization. Ji et al. pro-
posed the application of a multi-strategy improved sparrow algorithm for time-optimal trajectory planning of
robotic arms, demonstrating the feasibility of their approach [5]. Wu et al. introduced a time-optimal trajec-
tory planning method based on an improved butterfly algorithm, proving its effectiveness in reducing running
time [6]. Zuo et al. presented an optimal trajectory planning for robotic arms based on an improved adaptive
multi-objective particle swarm algorithm, validating the reliability of the reduced running time [7].

Zhang et al. proposed an obstacle avoidance algorithm for space hyper-redundant manipulators using combi-
nation of rapidly-exploring random tree (RRT) and shape control method, demonstrating the superiority of
the RRT algorithm in target finding [8]. Rybus [9] introduced point-to-point motion planning of a free-floating
space manipulator using the RRT method. The author proves the feasibility of collision-free point-to-point
motion of this method in free floating space. Mizuno et al. proposed enhanced path smoothing based on
conjugate gradient descent for firefighting robots in petrochemical complexes [10]. This involved modifying
the hybrid state A* algorithm and implementing these modifications and smoothing using conjugate gradi-
ent descent to generate smooth paths that meet the robots’ requirements. Hsu et al. developed a real-time
optimal energy-saving walking pattern generator based on the gradient descent method and linear quadratic
control [11]. By minimizing the cost function, the proposed center of gravity (COG) height trajectory opti-
mization method can efficiently generate energy-saving trajectories under joint limit and joint velocity limit
constraints.

As the degrees of freedom (DOF) or the number of joints in a robotic system increase, the control space expands
exponentially. For robots with more joints, state variables such as joint angles, velocities, and accelerations
significantly increase, leading to a substantial rise in the dimensionality of the search space. High-DOF robots
typically involve more motion constraints, including inter-joint relative motion and workspace limitations,
necessitating more sophisticated motion planning and optimization strategies. To address these challenges,
the following approaches can be employed:

For high-DOF robotic arms, path planning and time optimization can be divided into multiple hierarchical
levels. A coarse global path planning phase can be conducted initially, followed by a refined local optimiza-
tion phase to improve the path and minimize motion time. Particle swarm optimization (PSO) with multi-
granularity strategies can be employed to optimize the motion of robotic joints at various granular levels. This
allows for more efficient handling of the increased dimensionality of the search space.

http://dx.doi.org/10.20517/ir.2024.28


Wang et al. Intell Robot 2024;4(4):479-502 I http://dx.doi.org/10.20517/ir.2024.28 Page 481

Figure 1. Coordinate system and model of manipulator connecting rod.

With the increase in DOF, joint constraints (e.g., maximum joint angles and velocity limits) and collision
detection become more complex. These constraints can be incorporated into the fitness function of the PSO
algorithm, ensuring feasible solutions through penalty methods or constraint-handling techniques. Given the
intricate constraints that may arise in high-DOF systems, employing constraint optimization algorithms, such
as modified PSO, can effectively eliminate solutions that fail to satisfy physical constraints.

In this paper, we enhance the obstacle avoidance capability of the robotic arm while optimizing the movement
time, enabling it to complete its movement with only a starting point and an endpoint. Additionally, based on
the 5th-degree polynomial [12], the 3-5-3 polynomial is employed to introduce nonlinearly decreasing adaptive
inertia weights and asynchronous learning factors by improving the PSO algorithm. This approach helps to
avoid the common issue of falling into local optima and ensures a balance between global search capabilities
and local accuracy. Comparative tests on functions and changes in joint positions, velocities, and accelerations
before and after optimization are conducted to demonstrate the innovation, superiority, and stability of the
proposed algorithm.

2.ENVIRONMENT MODELING
2.1.Robot parameters
This study aims to optimize the trajectory planning problem of a six-degree-of-freedom robotic arm in com-
puter numerical control (CNC) machining, enhancing machining precision and enabling the robotic arm to
navigate around obstacles for effective gripping. Utilizing the robotics linkage coordinate system establish-
ment method, the Denavit-Hartenberg (D-H) parameter method is selected to construct the mathematical
model of the articulated six-degree-of-freedom robotic arm. The parameters are shown in Table 1, and the
D-H coordinate system for each joint is illustrated in Figure 1.

In Table 1, 𝑎𝑖 represents the length of the connecting rod, 𝛼𝑖 indicates the torsion angle of the connecting rod,
𝑑𝑖 denotes the connecting rod offset, and 𝜃𝑖 stands for the joint angle.
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Table 1. Robot D-H parameters

Joint 𝑎𝑖 (mm) 𝛼𝑖 (°) 𝑑𝑖 (mm) 𝜃𝑖 (°) Joint range (°)

1 0 -pi/2 0 -pi/2 (-pi/2, pi/2)
2 100 0 0 3*pi/4 (-pi/2, pi)
3 10 -pi/2 20 -pi/4 (-pi/2, pi/2)
4 0 pi/2 100 0 0
5 0 -pi/2 0 0 0
6 0 0 0 0 0

D-H: Denavit-Hartenberg.

2.2. Construction of polynomial function for trajectory planning
To ensure the stability of the entire operational process, the position, angular velocity, and angular acceleration
of each joint must vary continuously throughout the entire duration of operation. While high-order polyno-
mial interpolation [13] can be employed, it often results in increased computational complexity and induces
vibrations at the boundaries of the interpolation regions. To mitigate these challenges, the 3-5-3 polynomial
interpolation method has been adopted in this study for the trajectory planning of the manipulator. Four path
points are selected within the manipulator’s workspace, forming four key points and three trajectories in the
joint space. Subsequently, 3-5-3 polynomial interpolation planning is applied in sequence. The 3-5-3 polyno-
mial is a high-order polynomial whose coefficients are determined based on boundary conditions (e.g., initial
and final positions, velocities, and accelerations) and optimization objectives (e.g., minimizing motion time
or maximizing smoothness). The 3-5-3 spline polynomial can be expressed as:


ℎ 𝑗1 (𝑡) = 𝑎 𝑗13𝑡

3 + 𝑎 𝑗12𝑡
2 + 𝑎 𝑗11𝑡 + 𝑎 𝑗10

ℎ 𝑗2 (𝑡) = 𝑎 𝑗25𝑡
5 + 𝑎 𝑗24𝑡

4 + 𝑎 𝑗23𝑡
3 + 𝑎 𝑗22𝑡

2 + 𝑎 𝑗21𝑡 + 𝑎 𝑗20

ℎ 𝑗3 (𝑡) = 𝑎 𝑗33𝑡
3 + 𝑎 𝑗32𝑡

2 + 𝑎 𝑗31𝑡 + 𝑎 𝑗30

(1)

where the subscript 𝑗 of the ℎ 𝑗𝑖 (𝑡) function term denotes the robotic arm joint number, 𝑖 corresponds to the
trajectory path segment, 𝑡 represents the polynomial interpolation time of the 𝑗 − 𝑡ℎ joint, and 𝑎 denotes the
coefficients to be determined. The subscripts correspond to the joints, trajectories, and polynomial coefficients
serial numbers.

By controlling velocity and acceleration, the 3-5-3 polynomial enables the robotic arm to accelerate rapidly in
regions requiring higher speeds while decelerating gradually as it approaches the endpoint. This avoids unnec-
essary prolonged acceleration and stoppage, thereby optimizing the overall motion time. Sudden changes in
velocity or acceleration during the robotic arm’s movement along the path may lead to system oscillations or
instability. The higher-order terms of the 3-5-3 polynomial, particularly the quintic term, allow it to effectively
describe more complex and smoother motion trajectories. Through precise control of velocity and acceler-
ation, the 3-5-3 polynomial minimizes abrupt changes or oscillations in the trajectory to the greatest extent
possible.

According to the constraints of the hybrid polynomial, including the known initial point 𝜃 𝑗0 of the 𝑗 − 𝑡ℎ joint
angle, the path points 𝜃 𝑗1 and 𝜃 𝑗2, and the endpoint 𝜃 𝑗3, the positions, velocities, and accelerations between the
path points, along with the velocities and accelerations at the initial and final positions, are zero. With these
14 boundary conditions and over-constraints, we can solve for the unknown coefficients in the polynomials,
denoted by 𝑎. Based on these constraints and boundary conditions, we can derive the matrix 𝐴. From the
expression of thematrix, it can be seen that the constraints are only dependent on time 𝑡. The specific derivation
can be given as follows:
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𝐴 =


𝑀11 0 𝑀13
0 𝑀22 𝑀23

𝑀31 𝑀32 𝑀33
𝑀41 𝑀42 𝑀43


(2)

𝑏 =
[
0 𝑋 𝑗3 0 0 𝑋𝐽0 0 0 𝑋 𝑗2 𝑋 𝑗1

]𝑇 (3)

𝑐 =
[
0 0 0 0 0 0

]
(4)

𝑎 = 𝐴−1𝑏 =
[
𝐴1 𝐴2 𝐴3

]
(5)

where

𝑀11 =


𝑡31 𝑡21 𝑡1 1
3𝑡21 2𝑡1 10
6𝑡1 2 0 0

 (6)

𝑀13 =


0 0 −1 0 0 0 0
0 −1 0 0 0 0 0
−2 0 0 0 0 0 0

 (7)

𝑀22 =


𝑡52 𝑡42 𝑡32 𝑡22 𝑡2 1
5𝑡42 4𝑡32 3𝑡22 2𝑡2 1 0
20𝑡32 12𝑡22 6𝑡2 2 0 0

 (8)

𝑀23 =


0 0 0 −1
0 0 −1 0
0 −2 0 0

 (9)

𝑀33 =


𝑡33 𝑡23 𝑡3 1
3𝑡33 2𝑡3 1 0
6𝑡3 2 0 0

 (10)

𝑀41 =



0 0 0 1
0 0 1 0
0 1 0 0
0 0 0 0
0 0 0 0


(11)
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Figure 2. Simulation model of robotic arm initialization.

𝑀43 =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
1 0 0 0 0


(12)

𝐴1 =
[
𝑎 𝑗13 𝑎 𝑗12 𝑎 𝑗11 𝑎 𝑗10

]
(13)

𝐴2 =
[
𝑎 𝑗25 𝑎 𝑗24 𝑎 𝑗23 𝑎 𝑗22 𝑎 𝑗21 𝑎 𝑗20

]
(14)

𝐴3 =
[
𝑎 𝑗33 𝑎 𝑗32 𝑎 𝑗31 𝑎 𝑗30

]
(15)

2.3. Mechanical arm simulation and construction
The six-degree-of-freedom robotic arm simulation model is constructed by calling the PUMA560 model in
the Robotics Toolbox in MATLAB software using the established D-H parameters, as shown in Figure 2.

3. OPTIMIZATION METHODS
3.1. Rapid search randomized tree algorithm
The RRT algorithm [14], proposed by Lavalle in 1998, is a probabilistically complete method for fast path plan-
ning based on random sampling. RRT is an incremental sampling search technique that does not require
parameter tuning in practice, enhancing its usability. One key advantage of the RRT algorithm is that node
expansion does not require preprocessing, allowing it to quickly search for feasible paths based on current
environmental conditions.
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Figure 3. Schematic diagram of RRT algorithm. RRT: Rapidly-exploring random tree.

The fundamental concept of the RRT algorithm involves starting with an initial point as the root node and
progressively expanding outward to generate child nodes. Once the random tree reaches a point where there
are no obstacles between it and the endpoint, the algorithm connects to the endpoint to complete the path
search. The sampling and searching process of the random tree is illustrated in Figure 3.

The advantage of the traditional RRT algorithm is that it does not require complex processing of the environ-
ment model for path planning. However, its disadvantage lies in the fact that the path is generated through
random sampling, resulting in a tortuous path that is usually not optimal and can be time-consuming.

We designed an experiment to demonstrate the powerful obstacle-avoidance capabilities of RRT: A 3D space
was configured with multiple rectangular obstacles of varying sizes. The start and end points were placed
diagonally opposite in the 3D space, requiring the path to navigate around the obstacles multiple times. The
3D space had dimensions of 1,000 * 1,000 * 1,000, with the start and end points located at (0, 0, 0) and (1,000,
1,000, 1,000), respectively.

Using random sampling, RRT generated an initial path that avoided the obstacles, consisting of several key path
points. Blue line segments represented the tree expansion paths generated by RRT through random sampling
and connection, which gradually extended until reaching the target point. The green line segment indicated
the final obstacle-avoiding path, representing the optimal route segment between the start and end points.
The red regions corresponded to obstacle zones distributed within the 3D space, which the path successfully
navigated around. The results are shown in Figure 4.

The RRT tree incrementally expands by randomly sampling points, generating numerous blue line segments
that cover most of the feasible search space. Through random sampling and collision detection, RRT ensures
that the path completely avoids all obstacles. In a complex 3D environment, the algorithm can quickly identify
a path from the start point to the endpoint. The initial blue path successfully avoids all obstacles, while the green
path represents the shortest route, further demonstrating the effectiveness of the RRT algorithm. However,
the overall path is relatively long and exhibits noticeable jagged characteristics, indicating the need for further
smoothing to optimize the trajectory.

3.2. Rapid search randomized tree algorithm
PSO algorithm [15] is an evolutionary computation technique known for its simplicity and ease of implemen-
tation, requiring minimal parameter adjustments and offering fast convergence. PSO has been widely applied
in function optimization, neural network training, fuzzy system control, and other applications traditionally
tackled by genetic algorithms. It boasts advantages such as rapid convergence, fewer parameters, and straight-
forward implementation (particularly in high-dimensional optimization problems, where it converges to the
optimal solution faster than genetic algorithms). However, PSO also has the drawback of potentially falling
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Figure 4. RRT algorithm in three-dimensional space. RRT: Rapidly-exploring random tree.

into local optima, making it highly dependent on effective initialization.

The PSO algorithm originates from studying bird flocking behavior. The basic principle is to find the optimal
solution through information sharing and collaborative screening among individuals in the population. Par-
ticles have two main attributes: velocity and position. Velocity is a vector that includes both magnitude and
direction, while position indicates the coordinates where the particle is currently located. The optimization
problem is represented by the positions of the particles in the search space. Each particle has its position and
velocity, which determine its current position, distance, and flight direction. Through continuous evaluation
of fitness, particles iteratively search for the optimal position.

The particle velocity and position update are calculated using:

𝑣𝑘+1
𝑖𝑑 = 𝑤𝑣𝑘𝑖𝑑 + 𝑐1𝑟1

(
𝑝𝑘𝑖𝑑,𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑘𝑖𝑑

)
+ 𝑐2𝑟2

(
𝑝𝑘𝑑,𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑘𝑖𝑑

)
(16)

𝑥𝑘+1
𝑖𝑑 = 𝑥𝑘𝑖𝑑 + 𝑣𝑘+1

𝑖𝑑 (17)

where 𝑘 represents the number of iterations, 𝑖 indicates the particle serial number, and 𝑑 means the particle
dimension. 𝑤 stands for the inertia weight, 𝑐1 is the individual learning factor, 𝑐2 points to the population
learning factor, and 𝑟1, 𝑟2 are random numbers in the interval [0, 1] to increase the randomness of the search.
𝑥 represents the position vector, and 𝑣 corresponds to the velocity vector. 𝑝𝑘𝑖𝑑,𝑝𝑏𝑒𝑠𝑡 indicates the historical
optimal position of particle 𝑖 in the 𝑑 − 𝑡ℎ dimension in the 𝑘 − 𝑡ℎ iteration, i.e., the optimal solution obtained
by the search of the 𝑖− 𝑡ℎ particle after the 𝑘 − 𝑡ℎ iteration. 𝑝𝑘𝑑,𝑔𝑏𝑒𝑠𝑡 represents the historical optimal position of
the population in the 𝑑−𝑡ℎ dimension in the 𝑘−𝑡ℎ iteration, i.e., the optimal solution for the whole population
of particles after the 𝑘 − 𝑡ℎ iteration.
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3.3. Improved PSO algorithm
3.3.1 Initialization of chaotic sequence
The choice of initialization strategy determines the distribution of the initial population in the solution space.
In the traditional particle swarm algorithm, the initial population is generated randomly. While this method
is simple and easy to implement, it does not ensure a uniform distribution of individuals in the search space,
which can negatively affect the algorithm’s search speed and optimization performance. Therefore, chaotic
sequences are introduced during the initialization phase to ensure a uniformdistribution of the initial solutions.

Key parameters in chaotic mappings play a crucial role in determining the system’s dynamic behavior, and
their selection directly influences the distribution of the initial population. Specifically:

Control Parameter (𝑟): For the proposed composite chaotic system, the value of 𝑟 governs the chaotic behavior
of the system. Lower 𝑟 (𝑟 < 0.5) values generally lead to periodic behavior in the chaotic mapping. When a
smaller 𝑟 is chosen, the generated sequences cluster within a limited search space region, thereby diminishing
the algorithm’s exploratory potential. In contrast, higher 𝑟 (𝑟 > 0.8) values promote chaotic behavior, facili-
tating the generation of more widely dispersed initial solutions. This dispersion enhances the diversity of the
initial population, thereby improving the algorithm’s global search capability.

Initial Value (𝑥0): To achieve a well-distributed initial population, an appropriate initial value (𝑥0) must be
carefully selected. It is imperative to ensure that 𝑥0 is uniformly distributed across the entire search space to
maximize the coverage and effectiveness of the algorithm.

Chaotic systems exhibit ergodicity, meaning they can cover nearly all states within a certain range. By intro-
ducing chaotic sequences during the population initialization phase of the improved PSO [sine-tent-cosine
particle swarm optimization (SPSO)] algorithm, more uniformly distributed initial particles can be generated.
This uniformity and diversity improve the algorithm’s ability to cover the search space, addressing the problem
of unexplored regions. In high-dimensional optimization problems, chaotic sequences help prevent the clus-
tering or insufficient coverage of local regions often caused by traditional random methods. A more evenly
distributed population lays a solid foundation for subsequent global searches. The pseudo-randomness and
sensitivity to initial conditions inherent in chaotic systems enhance the ability of the particles to “jump” during
the global search phase. In multi-modal problems, chaotic sequences assist particles in escaping local optima,
thereby strengthening global search capabilities.

The fitness function value of the random numbers generated using chaotic mapping shows significant im-
provement compared to those generated by conventional uniformly distributed random number generators.
Replacing the conventional method with chaotic mapping yields better results, especially when the search
space contains many local optima, making it easier to find the global optimal solution. Chaotic mapping
enhances the randomness and diversity of particles.

Chaos mapping is used to generate chaotic sequences, which are sequences of randomness produced by simple
deterministic systems. These sequences describe complex chaotic phenomena that are sensitive to initial condi-
tions, non-periodic, and internally stochastic, generated by deterministic nonlinear systems. In optimization,
chaotic mapping can serve as an alternative to pseudo-random number generators to produce chaotic num-
bers between 0 and 1. Experimental results have demonstrated that using chaotic sequences for population
initialization, selection, crossover, and mutation influences the algorithm process and often achieves better
results than pseudo-random numbers.

Chaotic systems [16] can be classified into low- and high-dimensional categories. High-dimensional systems
are more complex, with numerous control parameters and greater computational demands. In contrast, low-
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dimensional systems are simpler, require fewer control parameters and are easy to implement. Nevertheless,
certain limitations are inherent to low-dimensional systems, such as constrained chaotic behavior, discontin-
uous chaotic intervals, and non-uniform data distribution within the generated chaotic sequences.

To develop chaotic systems with better performance, Sine, Tent, and Cosine chaotic mappings are combined to
form a new composite chaotic system. This system effectively overcomes the shortcomings of low-dimensional
chaos and is less complex and easier to implement than high-dimensional chaos, which is calculated by :

𝑥(𝑖 + 1) =
{

cos (𝜋 (𝑟 sin (𝜋𝑥(𝑖)) + 2(1 − 𝑟)𝑥(𝑖) − 0.5)) , if 𝑥(𝑖) < 0.5
cos (𝜋 (𝑟 sin (𝜋𝑥(𝑖)) + 2(1 − 𝑟)(1 − 𝑥(𝑖)) − 0.5)) , else

(18)

where 𝑟 = 0.7, 𝑥(𝑖) and 𝑥(𝑖 + 1) represent the state variables before and after the chaotic mapping, respectively.

To verify whether the chaotic mapping used in this study generates sequences with sufficient uniformity, we
evaluated its ability to initialize particle positions reasonably within the search space.

Themost commonly used chaotic initializationmethods include logistic, circle, and singermappings. However,
the hybrid combination of Sine, Tent, and Cosine chaotic mappings enhances randomness, which introduces
diversity during the population initialization phase. This helps the algorithm explore a broader solution space
and reduces the likelihood of being trapped in local optima.

Based on the characteristics of the hybrid chaotic mapping, chaotic sequences are generated in the range of [0,
1]. These sequences are then scaled to match the upper and lower bounds of the search space, completing the
population initialization.

The logistic chaotic mapping is expressed as follows:

𝑥𝑖+1 = 𝑎𝑥𝑖 (1 − 𝑥𝑖) (19)

Where 𝑎 is the control parameter, taking values in the range (0, 4]. The chaotic behavior becomes more pro-
nounced as 𝑎 increases, reaching a state of full chaos when 𝑎 = 4.

The Circle chaotic mapping is expressed as follows:

𝑥𝑖+1 = mod
(
𝑥𝑖 + 𝑏 −

( 𝑎

2𝜋

)
sin (2𝜋𝑥𝑖) , 1

)
(20)

Where 𝑎 and 𝑏 are control parameters, with commonly used values of 𝑎 = 0.5 and 𝑏 = 0.2. The mod function
represents the modulus operation, ensuring that the output remains within the interval [0, 1].

The Singer chaotic mapping is expressed as follows:

𝑥𝑖+1 = 𝑎
(
7.86𝑥𝑖 − 23.31𝑥2

𝑖 + 28.75𝑥3
𝑖 − 13.3028275𝑥4

𝑖

)
(21)
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Where 𝑎 is the control parameter, taking values in the range [0.9, 1.08]. This range ensures themapping exhibits
chaotic behavior suitable for complex optimization tasks.

To verify that the hybrid chaotic mapping initialization method produces results with better randomness and
diversity, as well as more uniform distribution compared to logistic chaotic mapping, circle chaotic mapping,
singer chaotic mapping, and random initialization, a comparison was conducted using frequency distribution
histograms and scatter plots.

The settings for the experiment were: 𝑙𝑏 = 0, 𝑢𝑏 = 1, and 𝑁𝑃 = 1,000. The interval [0, 1] was divided into
ten equal-length subintervals, and the population distribution frequency for each interval was calculated. The
results are shown in Figure 5.

The frequency histogram demonstrates that the sequences generated by the hybrid chaotic mapping are more
uniformly distributed within the interval [0, 1] compared to other mappings, such as Logistic, Circle, and
Singer. The frequency distribution closely aligns with the theoretical values. The scatter plot further validates
that the points generated by the hybrid chaotic mapping exhibit no significant clustering and uniformly cover
the entire search space, effectively enhancing population diversity during the initialization phase. In contrast,
Logistic mapping shows data clustering in certain intervals, which increases the likelihood of searching only
local regions. Circle and Singer mappings produce sequences with uneven distribution near the boundaries,
potentially limiting global exploration capabilities. Hybrid chaotic mapping combines the advantages of mul-
tiple mappings, achieving the best uniformity in distribution and avoiding the limitations of individual chaotic
mappings.

By introducing hybrid chaotic mapping as the initialization method, population diversity is significantly im-
proved, enhancing the algorithm’s global search capability and reducing the risk of being trapped in local
optima.

3.3.2 Improved inertia weights and learning factors
The values of inertia weights [17] 𝑤𝑤𝑤 and learning factors 𝑐𝑐𝑐 in the PSO algorithm directly affect its con-
vergence performance. Addressing the shortcomings of the basic particle swarm algorithm - specifically its
slow convergence speed for complex functions and low optimization accuracy - larger weights [18] enhance the
algorithm’s global search capability, while smaller weights improve local search ability.

To improve these aspects, this paper introduces adaptive inertia weights in the global search stage, which
decrease nonlinearly with the number of evolutionary generations. This approach enhances global searching
ability in the early stages and ensures particle diversity in the latter stages by obtaining smaller random values,
thus improving the solution’s accuracy. The proposed inertia weight function is expressed as follows:


𝑤 =

1[
(𝑡 + 1) (𝛼+𝛽)

]3 ·
(
𝛼 · 𝑡𝛼 + 𝛽 · 𝑡𝛽

𝑇max

)
𝑡 ⩽ 0.6𝑇max

𝑤 = (𝑤max − 𝑤min) + 0.1 · 𝑟𝑎𝑛𝑑 𝑡 > 0.6𝑇max

(22)

where 𝛼 = 3, 𝛽 = 5, 𝑤𝑚𝑎𝑥 is the maximum inertia weight, 𝑤𝑚𝑖𝑛 is the minimum inertia weight, 𝑡 is the current
number of iterations of the particle, 𝑇𝑚𝑎𝑥 is the maximum number of iterations, and 𝑟𝑎𝑛𝑑 is a random number
between (0, 1).

The learning factors 𝑐1 and 𝑐2 of the traditional PSO algorithm are fixed values, which can affect its opti-
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Figure 5. Comparison of various chaotic mappings.

mization speed and solving accuracy. The factor 𝑐1 represents the particle’s self-learning and summarization
ability, reflecting the individual’s self-perception, while 𝑐2 represents the particle’s ability to learn from better-
performing particles, reflecting the particle’s social perception.

Since a larger 𝑐1 improves global search capability and a larger 𝑐2 enhances local search ability, it is advanta-
geous to set 𝑐1 large and 𝑐2 small in the pre-search stage, and 𝑐1 small and 𝑐2 large in the post-search stage.
Therefore, 𝑐1 is set to decrease linearly with the number of iterations, while 𝑐2 increases linearly. This intro-
duces asynchronous learning factors, defined by:
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
𝑐1 = 𝑐1,𝑠𝑡𝑎𝑟𝑡 +

(
𝑐1,𝑒𝑛𝑑 − 𝑐1,𝑠𝑡𝑎𝑟𝑡

) 𝑡

𝑇max

𝑐2 = 𝑐2,𝑠𝑡𝑎𝑟𝑡 +
(
𝑐2,𝑒𝑛𝑑 − 𝑐2,𝑠𝑡𝑎𝑟𝑡

) 𝑡

𝑇max

(23)

Where 𝑐1,𝑠𝑡𝑎𝑟𝑡 = 2.5, 𝑐1,𝑒𝑛𝑑 = 0.5, 𝑐2,𝑠𝑡𝑎𝑟𝑡 = 0.5, 𝑐2,𝑒𝑛𝑑 = 2.5, and 𝑡 and 𝑇𝑚𝑎𝑥 represent the number of current
iterations and total iterations, respectively.

3.4. Time-optimal trajectory planning
In the time-optimal trajectory planning of a robotic arm, choosing the appropriate time interval is key for
success. Under the premise of satisfying speed constraints, the RRT algorithm is used to obtain the trajectory
of the robotic arm. Subsequently, the SPSO algorithm is employed to determine the optimal interpolation time.
This process solves the unknown coefficients of the polynomials, enabling the robotic arm to achieve obstacle
avoidance and a time-optimized trajectory. By optimizing each joint of the robotic arm, the maximum value
of the interpolation time interval is selected to ensure that each joint reaches the target angle.

Four joint angle values are selected: one at the end of the RRT algorithm, one intermediate value between this
point and the start point, and the start and end points. This paper aims to enhance the obstacle avoidance
capability, efficiency, and smooth operation of the robotic arm, ensuring the shortest possible time for all joint
movements. The optimization objective is to satisfy all constraints while minimizing the joint movement time,
as determined by:

𝑓 (𝑡) = min
𝑛∑
𝑖=1

(𝑡𝑖1 + 𝑡𝑖2 + 𝑡𝑖3) (24)


max ( |𝑉𝑖1 |) ⩽ 𝑉max

max ( |𝑉𝑖2 |) ⩽ 𝑉max

max ( |𝑉𝑖3 |) ⩽ 𝑉max

(25)

Where 𝑡𝑖, 𝑗 represents the 𝑗 th interpolation time under the 𝑖 th joint, 𝑉𝑖, 𝑗 indicates the actual value of the
velocity of the 𝑖 th joint, and 𝑉𝑚𝑎𝑥 is the maximum value of the velocity of the joint. The flowchart of the
optimal planning of the robotic arm time incorporating the RRT and SPSO algorithms is shown in Figure 6.

3.5. Algorithm performance test
3.5.1 Compare objects and test functions
To evaluate the performance of the proposed SPSO algorithm, it is compared with the elementary PSO, swal-
low tern algorithm (STOA) [19], and Sine Cosine algorithm (SCA) [20]. All algorithms were implemented in
MATLAB 2023a and executed on a Windows 11 system with 16 GB of memory. For each algorithm, the pop-
ulation size was set to 30, and the number of iterations was 1,000. The minimum (min), mean, maximum
(max), standard deviation (std), optimal value, and running time of each algorithm were recorded to assess
their ability to find the optimal value.

In this paper, six benchmark test functions are selected to evaluate the performance of the proposed SPSO
algorithm. Each algorithm is run independently 30 times on these functions, as listed in Table 2. The exper-
iments tracked the minimum (min), mean, maximum (max), standard deviation (std), optimal value (value),
and running time (time) of each algorithm. These metrics are used to evaluate the optimization capabilities of
the algorithms. The results are summarized in Table 3.
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Figure 6. Flow chart of fusion RRT algorithm and SPSO algorithm. RRT: Rapidly-exploring random tree; SPSO: sine-tent-cosine particle
swarm optimization.

Table 2. Benchmark function test

Type Function Range

F1 ∑𝑛−1
𝑖=1

[
100(𝑥𝑖+1 − 𝑥2

𝑖 )2 + (𝑥𝑖 − 1)2 ] [−30, 30]𝑛

F2 ∑𝑛
𝑖=1 ( ⌊𝑥𝑖 + 0.5⌋ )2 [−100, 100]𝑛

F3 −20 exp
(
−0.2

√
1
𝑛

∑𝑛
𝑖=1 𝑥

2
𝑖

)
− exp

(
1
𝑛

∑𝑛
𝑖=1 cos(2𝜋𝑥𝑖 )

)
+ 20 + 𝑒 [−32, 32]𝑛

F4 1
4000

∑𝑛
𝑖=1 𝑥

2
𝑖 − ∏𝑛

𝑖=1 cos
(
𝑥𝑖√
𝑖

)
+ 1 [−600, 600]𝑛

F5
[

1
500 +∑25

𝑗=1
1

𝑗+∑2
𝑖=1 (𝑥𝑖−𝑎𝑖 )6

]−1
[−65, 65]𝑛

F6 ∑11
𝑖=1

[
𝑎𝑖 −

𝑥1 (𝑏2
𝑖 +𝑏𝑖 𝑥2 )

𝑏2
𝑖 +𝑏𝑖 𝑥3+𝑥4

]2
[−5, 5]𝑛

As can be seen from Table 3, functions F1-F3 are multidimensional test functions with multiple local opti-
mal solutions. These functions simulate the complexity of many real-world problems and test the algorithm’s
balance between global exploration and local exploitation. Specifically, they assess how well the algorithm
avoids falling into local optima and finds global optima during the search process. Functions F4-F6 are hybrid
functions, designed to test the algorithm’s ability to handle complex hybrid optimization problems. These
functions may contain locally optimal solutions of varying shapes, sizes, and distributions, thereby increasing
the challenge for the algorithm. The design of these hybrid functions ensures a balance between global and
local optima, comprehensively assessing the algorithm’s global and local search capabilities.

From Table 3, it is evident that among the multidimensional test functions, F1 is characterized by multiple
peaks, making it difficult to find the optimal solution. This causes the SPSO algorithm to converge with less
than ideal accuracy during certain iterations, although it still ranks second relative to other algorithms. F1
is a multi-modal function with multiple local optima, simulating the complexity of real-world optimization
problems. In the case of the F1 function, SPSO demonstrates the best performance, with the smallest value
and optimal solution closest to the global optimum, while also requiring less runtime. In contrast, PSO per-

http://dx.doi.org/10.20517/ir.2024.28


Wang et al. Intell Robot 2024;4(4):479-502 I http://dx.doi.org/10.20517/ir.2024.28 Page 493

Table 3. Test results of different algorithms

Function Indicators STOA SCA PSO SPSO

min 2.6964e+01 2.8587e+01 7.6570e+04 2.3475e+01
mean 2.8042e+01 8.6948e+02 1.9469e+05 1.3225e+02

F1 max 2.8831e+01 6.0236e+03 2.7335e+05 4.1647e+02
std 6.4460e-01 1.7838e+03 4.8347e+04 1.0090e+02
value 2.8025e+01 2.8657e+01 1.3243e+05 2.9172e+01
time 1.0046e-01 1.0682e-01 5.2805e-02 5.0901e-02
min 1.2693e+00 3.9519e+00 1.1089e+02 5.4567e-05
mean 2.4177e+00 4.5292e+00 1.4866e+02 1.3594e-02

F2 max 3.2625e+00 5.8863e+00 1.8546e+02 7.7506e-02
std 4.8232e-01 4.8477e-01 2.0573e+01 2.1178e-02
value 2.5012e+00 4.4582e+00 1.7588e+02 5.8475e-03
time 8.2215e-02 8.7004e-02 3.8469e-02 3.8137e-02
min 1.9955e+01 1.2653e-03 8.2444e+00 2.1259e+00
mean 1.9959e+01 1.5570e+01 8.9821e+00 4.0529e+00

F3 max 1.9961e+01 2.0250e+01 9.5201e+00 7.6328e+00
std 1.6446e-03 8.4171e+00 3.1175e-01 1.3053e+00
value 1.9958e+01 2.0194e+01 9.1735e+00 4.5723e+00
time 9.8262e-02 1.1170e-01 5.9892e-02 4.9187e-02
min 0 2.5287e-04 1.0250e+00 1.3754e-02
mean 1.4992e-02 2.3515e-01 1.0368e+00 1.0752e-02

F4 max 6.2563e-02 8.6754e-01 1.0442e+00 3.1040e-01
std 1.8722e-02 2.6758e-01 4.5081e-03 8.8390e-02
value 1.0335e-01 1.6372e-01 1.0366e+00 5.0236e-00
time 1.0979e-01 1.1771e-01 6.3239e-02 5.5914e-02
min 9.9800e-01 9.9800e-01 9.9800e-01 9.9800e-01
mean 1.8831e+00 1.5933e+00 4.4893e+00 2.9710e+00

F5 max 1.0763e+01 9.9821e+00 1.1719e+01 7.8740e+00
std 2.2412e+00 9.3277e-01 3.1922e+00 2.4106e+00
value 2.9821e+00 9.9806e-01 5.9288e+00 9.9800e-01
time 4.2101e-01 4.2298e-01 4.0591e-01 3.9334e-01
min 4.0428e-04 3.8921e-04 9.3239e-04 3.0749e-04
mean 1.1839e-03 9.9477e-04 1.2723e-03 5.0467e-04

F6 max 1.2302e-03 1.5386e-03 1.9476e-03 1.3368e-03
std 1.8350e-04 3.6076e-04 2.9019e-04 3.5338e-04
value 1.2403e-03 7.1507e-04 1.1581e-03 3.0749e-04
time 2.3222e-02 2.8757e-02 1.2793e-02 1.0753e-02

Bold indicates that the optimized value is different from others.
STOA: Swallow tern algorithm; SCA: Sine Cosine algorithm; PSO: par-
ticle swarm optimization; SPSO: sine-tent-cosine particle swarm op-
timization.

forms poorly, yielding significantly higher minimum values. Such problems challenge the algorithm’s ability
to balance global exploration and local exploitation, particularly in avoiding entrapment in local optima. As
shown in Table 3 and Figure 7, when optimizing the F1 function, SPSO achieves the optimal fitness value of
23.475 in only 400 iterations, while STOA and SCA require approximately 800 iterations, and PSO takes 1,000
iterations. The optimal fitness value achieved by SPSO is significantly better than those of the other algorithms,
indicating its superior global search capability. The F1 function is characterized by a multi-peak distribution,
which often leads traditional algorithms to become trapped in local optima. However, SPSO effectively avoids
this issue through the use of chaotic sequences and dynamic inertia weights.

In the F2 test function, the SPSO algorithm finds the optimal value faster than other algorithms, with the small-
est standard deviation and highest stability. F2 is a nonlinear optimization function characterized by complex
nonlinear relationships and constraints. It evaluates the algorithm’s capability to optimize high-dimensional
nonlinear problems, focusing on efficiency and stability in large-scale complex scenarios. For the F2 function,
SPSO not only finds the smallest minimum value but also exhibits the lowest standard deviation, indicating
the highest stability. Additionally, SPSO achieves the shortest runtime, reflecting its high efficiency. For the F2
function, SPSO finds the optimal solution (fitness value of 0.000054567) in only 300 iterations, outperforming
other algorithms in both the number of iterations and the quality of the optimal solution. The F2 function
requires high search efficiency, and SPSO achieves rapid convergence by dynamically adjusting the weights of
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global and local search through adaptive learning factors.

F3 is a function with multiple local optima, designed to test an algorithm’s performance in multi-local optima
scenarios. This function requires optimization algorithms to avoid local optima and successfully locate the
global optimum. On the F3 function, SPSO achieves a balanced performance, finding a smaller optimal value
with a lower standard deviation and shorter runtime. This highlights its high stability and efficiency in multi-
local optima problems. When optimizing the F3 function, SPSO reaches a fitness value of 2.1259 after 400
iterations, whereas PSO achieves a suboptimal fitness value only after 600 iterations. SPSO also outperforms
SCA and STOA in this scenario.

F4 is a hybrid function that combines a global optimum with multiple local optima. Its objective is to evaluate
howwell an algorithm balances local search and global search in complex optimization spaces. SPSO performs
exceptionally well on the F4 function, achieving a minimum value close to the global optimumwith the lowest
standard deviation, indicating its strong capability in solving hybrid optimization problems. For the F4 func-
tion, SPSO identifies the optimal solution (fitness value of 0.013754) in approximately 500 iterations. Although
the optimal values obtained by STOA and SCA are similar, SPSO requires significantly fewer iterations. For
the F4 hybrid function, the global search capability of SPSO proves particularly advantageous, as its dynamic
parameter adjustment effectively prevents premature convergence to local optima.

F5 is a relatively simple optimization problem, typically with a single global optimum. This function tests the
algorithm’s performance in simpler optimization scenarios. SPSO demonstrates exceptional stability on the F5
function, achieving a minimum value close to the global optimum with shorter runtime and higher stability.
For the F5 function, SPSO, SCA, and STOA all eventually converge to a fitness value of 0.998. However, SPSO
reaches this value in fewer than 100 iterations, while SCA requires approximately 150 iterations, and STOA
takes about 700 iterations.

F6 is a near-optimal solution problem, containing solutions close to the global optimum. It evaluates how
quickly an algorithm can converge to near-optimal solutions and handle minor errors. SPSO outperforms
other algorithms on the F6 function, achieving the smallest minimum value with shorter runtime, indicat-
ing its strong capability in solving near-optimal solution problems. For the F6 chaotic characteristic function,
SPSO finds the optimal solution in approximately 300 iterations, achieving a fitness value of 0.000307, which
outperforms the other algorithms. This function places high demands on randomness and distribution, and
SPSO’s chaotic sequence initialization strategy significantly enhances the randomness and coverage of the
search process.

In testing hybrid functions, SPSO ranks in the top two overall when solving complex functions. In sum-
mary, whether facing multi-peak or hybrid functions, SPSO ranks first overall, demonstrating the shortest
time, greater stability, and smallest standard deviation.

In this paper, the optimization curve of the test function is plotted based on the number of iterations and the
adaptation size, as shown in Figure 7. From the convergence curves of functions F1 to F6, it is evident that
SPSO exhibits fast convergence speed and strong optimization capabilities. Specifically, for the F1 function,
SPSO reaches the optimal value in approximately 400 iterations, whereas STOA reaches the optimal value
in about 800 iterations. For the F5 function, all the algorithms eventually stabilize, but the SPSO algorithm
converges faster and achieves better results compared to the other algorithms.
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Figure 7. Comparison of various chaotic mappings.

Figure 8. Comparison of various chaotic mappings.

4. SIMULATION EXPERIMENT AND ANALYSIS
To verify the obstacle avoidance capability of the RRT-SPSO algorithm and its time-saving potential, the
PUMA560 robotic arm is used as the research object in this study. Simulation experiments are conducted
in MATLAB. Initially, the start and target points are determined in the Cartesian space. The RRT algorithm is
employed to avoid obstacles in this space, resulting in a path that reaches the target from the initial point, as
illustrated in Figure 8.
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Table 4. Joint position information corresponding to each path point

Waypoint Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

Path point 1 3.7851 2.2724 0.1196 3.1416 2.3920 -0.6435
Path point 2 3.4906 2.0046 -0.2843 3.1416 1.7203 -0.3490
Path point 3 2.8927 1.9561 -0.6257 3.1416 1.3303 0.2489
Path point 4 2.3663 2.1315 0.3768 3.1416 2.5083 0.7753

Table 5. Joint position information corresponding to each path point

Initialization Joint 1 2 3 4 5 6

1 Time 1 (s) 0.29569 0.26779 0.51552 0.1 0.75865 0.29774
1 Time 2 (s) 0.23916 0.1 0.4297 0.1 0.41572 0.21682
1 Time 3 (s) 0.51522 0.16749 1.177 0.1 1.2283 0.5132
3 Total time t (s) 1.0501 0.53528 2.1222 0.3 2.4027 1.0278

In the resulting path, trajectory planning for the robotic arm is performed in Cartesian space to determine the
four path nodes through which the end of the robotic arm passes. These four points include the initial point,
the target point, the point at which the RRT algorithm ends, and an intermediate node between the initial
point and the endpoint of the RRT algorithm. They are then converted to the corresponding angle values for
each joint in the joint space using inverse kinematics, as shown in Table 4.

Subsequently, the SPSO algorithm in RRT-SPSO is simulated in MATLAB for each joint to perform the time-
optimal solution under the conditions of robotic armmotion. The variation of each time period, the total time
variation, and the number of iterations for each joint after optimization are shown in Figure 9.

As illustrated in Figure 9, the SPSO algorithm reaches the optimal value after 20 iterations, and all times are
reduced compared to the original values. The optimal movement times of all the joints of the robotic arm at
various stages are obtained, as shown in Table 5.

To ensure the smooth operation of the robotic arm joints and complete the corresponding movement tasks,
the movement times of each joint should be synchronized. Although the required motion times for each
joint differ, selecting the maximum time value for each segment ensures that all six joints complete their mo-
tions simultaneously. This synchronization effectively prevents motion-induced vibrations or errors caused
by asynchrony between joints. After optimization, the time discrepancies among the joints are significantly re-
duced, resulting in a more uniform time distribution and noticeably improved synchronization and efficiency
of the robotic arm. In particular, joints with longer motion times (e.g., Joint 5) are significantly optimized,
enhancing overall efficiency. The total motion time is reduced by nearly 20%, demonstrating the effectiveness
of the proposed method in minimizing the robotic arm’s motion time and improving operational efficiency.
The improved trajectory planning uses 3-5-3 polynomial interpolation to smooth the motion trajectory. The
smoothed curves reduce vibrations during the robotic arm’s motion, contributing to greater load stability. Be-
fore optimization, the motion curves (velocity and acceleration) exhibited abrupt changes, potentially causing
arm instability and jitter. After optimization, the motion curves are smoother, with continuous velocity and
acceleration transitions, free of abrupt changes. Therefore, the maximum time value of the six joints in each
section of the trajectory is selected. As shown in Table 4, the times for the three phases are 𝑡1 = 0.75865, 𝑡2 =
0.4297, and 𝑡3 = 1.2283, with a total time of 𝑡 = 2.41665. Compared to the initial value, the time is reduced by
0.58338 s, approximately 19% shorter, demonstrating that SPSO can effectively improve the working efficiency
of the robotic arm. During trajectory planning, the displacement, velocity, and acceleration of each joint can
be determined based on the time, as shown in Figure 10.

The RRT algorithm generates an initial path through random sampling in obstacle-laden environments, en-
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Figure 9. Optimal particle position iteration.

suring path feasibility in complex scenarios. While the initial path avoids obstacles, it is often longer and less
smooth, necessitating further optimization. RRT provides a foundational obstacle-avoiding path that reduces
the computational burden for subsequent path optimization. This foundation allows the SPSO algorithm to
focus on refining a feasible path rather than exploring the entire search space from scratch.

Once the RRT algorithm generates the preliminary path, SPSO is employed to optimize the path duration. By
optimizing the interpolation of the path, SPSO reduces unnecessary turns, smooths the path, and minimizes
the robotic arm’s motion time, thereby enhancing operational efficiency. Specifically, SPSO optimizes the time
interpolation of the path, enabling each joint of the robotic arm to complete its assigned task in the shortest
possible time. Through joint-specific motion optimization, appropriate time intervals are selected to minimize
motion time while ensuring efficient task completion. To prevent the robotic arm from operating too slowly
or quickly at certain stages, the time intervals are fine-tuned using SPSO, further reducing time consumption.
Time optimization is performed with a focus on synchronizing the motion times of all joints. The slowest joint
is selected as the controlling time for the entire robotic arm, avoiding time wastage caused by unsynchronized
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Figure 10. Comparison chart before and after optimization.

joint motions.

A 3-5-3 polynomial interpolation method, comprising cubic, quintic, and cubic polynomials, is employed for
trajectory planning. This approach ensures trajectory smoothness, enabling continuous variations in joint
angles, velocities, and accelerations. The use of 3-5-3 polynomial interpolation avoids the oscillatory effects
often associated with higher-order polynomial interpolation, thereby reducing energy waste and unnecessary
time consumption during motion.

As shown in Figure 10, the joint movements before optimization are erratic, causing significant jitter dur-
ing operation and abrupt speed changes. This can lead to the robotic arm dropping objects during handling.
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Table 6. Total time comparison for different algorithms

Total time t (s)

Initialization 3
Improved RRT 2.0718
RRT-SPSO 2.21675
NSGA-II 2.38035

RRT: Rapidly-exploring
random tree; SPSO:
sine-tent-cosine parti-
cle swarm optimization.

Figure 11. Comparison of various algorithms.

However, after optimization using the RRT-SPSO algorithm, the joint movements, velocity, and acceleration
curves of the robotic arm become smooth and continuous without sudden changes. This reduces joint jitter
and ensures the robotic arm maintains good stability during trajectory planning and movement.

Recent studies from the past few years were selected for comparison to validate the superiority of the pro-
posed algorithm. The first reference focuses on the trajectory and runtime of an improved RRT (IRRT) [21]

algorithm in a 3D space, while the second reference employs an improved non-dominated sorting genetic
algorithm (NSGA-II) [22] to optimize time-optimal trajectory planning for robotic arms. Both studies involve
time-optimal trajectory planning for point-to-point motion in a 3D space, which closely aligns with the scope
of this paper. Therefore, these two references were selected for comparison.

The first comparison involves runtime. A unified experimental environment was set up to evaluate the time
required to move from one point to another in a 3D space. The experiment aims to optimize the robotic arm’s
motion time and assess the performance of each algorithm in terms of trajectory smoothness and dynamic
characteristics in 3D space. The results for Joint 1 are presented in Table 6.

Below are the displacement, velocity, and acceleration profiles for Joint 1, as shown in Figure 11.

The IRRT demonstrated excellent performance in terms of total runtime (2.0718 s), reducing the time by
approximately 31% compared to the initial approach. The runtime of the algorithm proposed in this paper is
2.21675 s, which, although slightly less efficient than the IRRT, outperforms NSGA-II and shows advantages
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in several performance metrics.

From the experimental graphs, it can be observed that the displacement curves of RRT-SPSO and NSGA-II
are more continuous, with fewer path turning points, indicating superior path optimization by these two al-
gorithms. Additionally, the velocity curves of RRT-SPSO and NSGA-II are smoother, demonstrating better
stability in maintaining the robotic arm’s motion dynamics. In contrast, the velocity curve of the IRRT ex-
hibits more noticeable fluctuations, likely due to its strong local exploitation capabilities but insufficient global
smoothness.

Furthermore, an analysis of the acceleration curves shows that RRT-SPSO andNSGA-II achieve the smoothest
profiles, with minimal abrupt changes, highlighting their superior trajectory optimization effectiveness.

Overall, the proposed algorithm achieves a good balance between real-time performance and smoothness,
addressing issues in the IRRT such as path irregularities and abrupt velocity and acceleration changes. By
applying trajectory smoothing techniques (e.g., 3-5-3 polynomial interpolation), RRT-SPSO effectively reduces
velocity and acceleration fluctuations.

In addition, compared to the limitation of NSGA-II, which requires manual path input, the proposed algo-
rithm demonstrates greater autonomy by automatically avoiding obstacles, optimizing the path, and achieving
time-optimal solutions. This autonomy makes the proposed algorithm more suitable and reliable in dynamic
obstacle environments.

5. CONCLUSION
In this study, a six-degree-of-freedom robotic arm is taken as the research object, employing the RRT algo-
rithm for trajectory planning and an SPSO algorithm based on 3-5-3 polynomials for time-optimal trajectory
planning. The following conclusions are drawn from the simulation experiments:

Obstacle Avoidance: The RRT algorithm effectively avoids obstacles encountered during the operation of the
robotic arm, deriving a feasible path.

Enhanced PSO Algorithm: The introduction of chaotic mapping enhances the randomness and diversity of
particles, ensuring a uniform distribution of the initial solution. Additionally, the use of nonlinearly decreas-
ing adaptive inertia weights and asynchronous learning factors further refines the algorithm. These adaptive
weights are divided into two parts: the first enhances global searching ability, while the second improves local
search accuracy. This approach mitigates the issues of slow convergence and susceptibility to local optima in
traditional PSO algorithms.

Optimization Results: The goal of shortening trajectory planning time is achieved, with simulation experi-
ments demonstrating a 19% reduction in time. The use of 3-5-3 polynomials ensures a smooth trajectory,
preventing sudden changes in velocity and acceleration during motion.

These findings highlight the effectiveness of the RRT-SPSO algorithm in improving the efficiency and stability
of robotic arm trajectory planning, making it a promising approach for industrial applications.

Industrial scenarios in real-world applications are often characterized by uncertainties. Robots may encounter
various dynamic factors during task execution, such as changes in the operational environment, adjustments
to task parameters, or external disturbances. In some industrial applications, multiple robots may be required
to work collaboratively (e.g., cooperative handling, assembly line operations). In such cases, beyond the path
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planning and time optimization for individual robots, coordination and collaboration among robots must also
be addressed.

For instance, multiple robots need to avoid mutual collisions while efficiently completing their tasks. Robust
optimization techniques can be employed to ensure that the algorithm remains effective even under environ-
mental changes or uncertainties. This involves incorporating the dynamic changes of the model into con-
sideration or employing optimization algorithms with fault-tolerant mechanisms. Moreover, multi-objective
optimization and cooperative optimization strategies can be introduced to address inter-robot collaboration.
The optimization problems of multiple robots can be formulated as a large-scale multi-objective optimization
problem, which can then be solved using an SPSO algorithm for joint optimization.
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