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Abstract
This study investigates the effect of Fiber Reinforced Polymer (FRP) retrofitting on the seismic resilience of low-
ductility reinforced concrete (RC) frame structures. The finite element model for low-ductility RC frame structures
retrofitted with FRP wraps is established using OpenSEES. Fragility functions for low-ductility components before and
after retrofitting are developed. Using the PACT software, the seismic resilience in terms of annual repair costs, re-
pair time, casualties, and carbon emissions is evaluated for low-ductility RC frames w/wo FRP retrofitting. The results
show that FRP retrofitting could improve the seismic resilience of low-ductility RC structures, especially at relatively
low seismic intensities. Due to FRP retrofitting, the average annual repair cost, repair time, and carbon emission are
reduced by 5.32%, 6.90%, and 7.16%, respectively. In addition, the FRP retrofitting would greatly improve human
safety and almost no death would occur. Meanwhile, the annual average number of injuries is reduced by 57.6%.

Keywords: Seismic resilience, low-ductility reinforced concrete (RC) frame structures, FRP retrofitting, fragility func-
tion, seismic risk
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INTRODUCTION
Low-ductility reinforced concrete (RC) structures refer to those primarily designed to withstand vertical loads
without specific seismic design considerations. Many such structures are constructed before 1976 [1]. These
structures are characterized by their limited capacity to deform and usually fail without significant strength
degradation phenomena. They are particularly susceptible to seismic events because they easily cause brittle
failure under earthquakes. Traditionally, low-ductility RC structures are designed without modern seismic
considerations. This leads to inadequate reinforcement detailing that impairs energy dissipation and perfor-
mance under dynamic loading [2].

Fiber Reinforced Polymer (FRP) has been widely applied in seismic retrofitting of concrete structures due to its
advantages such as lightweight, high strength, corrosion resistance, and ease of construction. In recent years,
numerous experimental and analytical studies have demonstrated the benefits of FRP retrofitting in improv-
ing the seismic capacity of RC structures. For example, Wang [3] examined the seismic performance of low-
ductility frame structures reinforced by FRP using shake table tests. The results indicated that FRP retrofitting
significantly reduced the maximum inter-story drift under identical seismic actions, and the retrofitted struc-
ture did not experience severe damage under the maximum considered earthquake (MCE). Yuksel et al. tested
a one-story frame structure with infill walls and retrofittedwith FRP by quasi-static tests [4,5]. The result showed
the FRP-reinforced structures demonstrated significantly increased load-bearing capacity and reduced inter-
story drift. Their study also revealed that FRP retrofitting could shift the structure from a collapse prevention
limit state to a limited safety limit state based on performance-based seismic assessment. Kakaletsis [6] con-
ducted quasi-static tests on a one-story planar frame to compare the carbon fiber-reinforced polymer (CFRP)
retrofitting technique with other seismic retrofitting technologies. The results indicated that CFRP retrofitting
effectively increased the load-bearing capacity and stiffness of the structure. However, CFRP-retrofitted struc-
tures were also prone to premature failure due to concrete and adhesive anchorage failure. Zhu et al. also inves-
tigated the seismic performance of RC frames before and after strengthening by FRP through experiments [7].
The results showed that CFRP-retrofitted frames exhibited excellent hysteretic energy dissipation capacity and
high ductility, indicating superior seismic performance. Wang et al. tested scaled two-bay-two-story RC frame
specimens strengthened using CFRP sheets [8]. The results demonstrated that the strengtheningmethod involv-
ing wrapping CFRP can significantly improve the maximum horizontal bearing capacity, initial stiffness, and
energy dissipation capacity of the low-ductility RC frame structure. Ghobarah and Said [9] conducted tests
on externally strengthened beam-column joints in moment-resisting frames. The GFRP-strengthened joints
showed amoderate improvement in failure load. Additionally, the tests revealed that the strengthened RC joint
exhibited a slower rate of strength deterioration and a 60% higher ductility response. Dai et al. established a
database of FRP-reinforced corroded RC columns [10]. The regression formulas of the nonlinear model pa-
rameters for FRP-reinforced corroded RC columns were developed. Abokwiek et al. tested 15 RC specimens
with varying configurations under concentric and eccentric loading [11]. The results showed the strengthened
specimens had significant increases in load-carrying capacity and ductility, with enhancements of up to 49%
in axial loading and 95% in uniaxial bending. The above studies have demonstrated the superior performance
of FRP materials in improving the seismic capacity of structures [12].

Recently, the assessment of seismic resilience of engineering structures has received significant attention from
scholars worldwide. Several seismic resilience evaluation standards are introduced in various countries, such
as FEMA P-58-1 [13] and MCEER-09-2009 [14] in the United States, and GB/T 38591-2020 in China [15]. Schol-
ars have developed theoretical frameworks for assessing the seismic resilience of individual structures by in-
corporating seismic fragility theory and post-disaster loss assessment methods [16,17]. In structural seismic
retrofitting engineering, incorporating resilience-based assessment methods allows for a comprehensive con-
sideration of the performance of retrofitted structures and the consequences of post-earthquake losses [18]. This
approach helps stakeholders to devise appropriate retrofitting strategies. However, resilience assessment meth-
ods have not been sufficiently addressed in the context of FRP seismic retrofitting projects, resulting in a lack
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of understanding of the effect of FRP retrofitting on structural resilience.

Addressing this gap, this study focuses on the seismic resilience of low-ductility RC frame structures before
and after FRP retrofitting. A low-ductility RC frame structure is designed and constructed, and finite element
models of the structure before and after FRP retrofitting are established usingOpenSEES.The fragility function
of structural components also developed. Using the FEMA P-58 method, the seismic resilience indicators of
the case structure are studied. By comparing multiple seismic performance indicators of the structure before
and after retrofitting, the study identified the characteristics of resilience changes due to FRP retrofitting in
low-ductility RC structures. The results of this study provide guidance for engineers in the seismic retrofitting
of practical engineering projects.

STRUCTURAL INFORMATION AND FINITE ELEMENT MODEL
Structure information
A four-story RC frame structure has been designed. For the seismic hazard analysis presented later, the struc-
ture is assumed to be located in a site with a seismic fortification intensity of 7 degrees at 0.1g according to
the existing codes [19,20] of China. The seismic design category is Group I, the site category is Class II, and the
ground roughness is classified as C. The floor plan and elevation of the structure are shown in Figure 1. The
structure is divided into ground floor and standard floors. The total construction area of the structure is 1,800
m². The height of the ground floor is 4.8 m, while the height of the standard floors is 4.2 m. The thickness of
the floor and roof slabs is 120 mm. The design values for the dead load and live load of the roof are 6.9 and 2.0
kN/m², respectively. For the standard floors, the dead load and live load are 4.3 and 2.0 kN/m², respectively.
For the corridors, the dead load and live load are 3.8 and 2.5 kN/m², respectively. The concrete strength used
in the design is C30. Due to the low ductility structure usually only considers vertical loads during design,
seismic fortification and wind loads are not considered in this structure. The cross-sectional dimensions and
reinforcement details of the beams and columns in the structure are shown in Figure 2. The column cross-
sectional dimensions are 400 mm × 400 mm, and the beam cross-sectional dimensions are 300 mm × 600 mm.
The longitudinal reinforcement of beams and columns is HRB400. All other reinforcement uses HPB235. A
finite element model is established for one span of the plane structure. The equivalent load distribution of the
structure is illustrated in Figure 3.

Finite element model
Constitutive models of material
(1) Reinforcement steel

The finite element model of the structure is established using the OpenSEES. The reinforcement steel is sim-
ulated using the Steel02 material model. This model represents the uniaxial constitutive behavior of the steel
and includes isotropic hardening under cyclic loading. This allows it to accurately capture the stress-strain
relationship of the steel under repeated loading. The stress-strain constitutive relationship is expressed as:

𝜎∗ = 𝑏𝜀∗ + (1 − 𝑏)𝜀∗

(1 + 𝜀∗𝑅 )1/𝑅 (1)

where 𝜎∗ and 𝜀∗ are the normalized stress and strain, respectively; their calculation expressions are given by

𝜎∗ =
𝜎 − 𝜎𝑟

𝜎0 − 𝜎𝑟
(2)
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Figure 1. Plan and elevation view of structure. (A) Plan view; (B) Elevation view.

Figure 2. Structural reinforcement information. (A) Column; (B) Beam of standard floor; (C) Beam of roof.

𝜀∗ =
𝜀 − 𝜀𝑟
𝜀0 − 𝜀𝑟

(3)

where 𝑅 is a parameter that influences the shape of the transition curve, and its calculation expression is given
by

𝑅 = 𝑅0 −
𝑎1𝜉

𝑎2 + 𝜉
(4)

where 𝑏 is the strain hardening ratio, which is set to 0.00085 in this study. The values of 𝑅0, 𝑎1 and 𝑎2 are taken
as 18, 0.925, and 0.15 according to the recommendations in OpenSEES, respectively.

(2) Concrete

The unconfined concrete regions and the regions confined only by stirrups are simulated using the Concrete01
material model. The peak stress-strain relationship is based on the constitutive model proposed by Scott et
al. [21]. The confining effect of the stirrups on the concrete is accounted for through a confinement factor. The
stress-strain expressions are given by:
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Figure 3. Equivalent load distribution of the structure.

𝜎𝑐 = 𝑓𝑝𝑐

[
2𝜀𝑐
𝜀𝑝𝑐

−
(
𝜀𝑐
𝜀𝑝𝑐

)2
]
,for 0 ≤ 𝜀𝑐 ≤ 𝜀𝑝𝑐 (5)

𝜎𝑐 =
𝑓𝑝𝑐 − 𝑓𝑐𝑢

𝜀𝑝𝑐 − 𝜀𝑐𝑢
(𝜀𝑐 − 𝜀𝑐𝑢),for 𝜀𝑝𝑐 ≤ 𝜀𝑐 ≤ 𝜀𝑐𝑢 (6)

𝜎𝑐 = 𝑓𝑐𝑢 ,for 𝜀𝑐 ≥ 𝜀𝑐𝑢 (7)

where 𝜎𝑐 and 𝜀𝑐 represent the compressive stress and the corresponding compressive strain of the concrete,
respectively; 𝑓𝑝𝑐 and 𝜀𝑝𝑐 are the compressive stress and corresponding strain at the peak point, respectively;
𝑓𝑐𝑢 and 𝜀𝑐𝑢 are the compressive stress and corresponding strain at the ultimate point, respectively.

(3) Stress-strain constitutive model for FRP-reinforced concrete

Themodel proposed in reference [3] is used to account for the confinement effect of FRP on RC square columns.
FRP-confined concrete components typically exhibit three failure modes: strong, moderate, and weak confine-
ment modes. In the strong confinement mode, the failure of a column is characterized by the crushing of the
concrete, immediately followed by the rupture of the FRP material. In the moderate confinement mode, the
concrete is crushed first, and then the FRP material ruptures after undergoing some deformation. The weak
confinementmode occurs when the FRPmaterial fails prematurely due to either an insufficient number of FRP
wrapping layers or adhesive anchorage failure. According to the research in reference [3], when the adhesive is
intact and the number of FRP reinforcement layers exceeds two, the weak failure mode is unlikely to occur in
FRP-confined concrete components. Since the retrofitting scheme discussed later involves at least two layers
of FRP, this paper assumes that all components exhibit strong confinement failure modes. The stress-strain
relationship of concrete before and after FRP confinement is given in Figure 4.

The ultimate stress and strain for concrete confined by FRP are defined as follows:

𝑓𝑐𝑢
𝑓 ′𝑐

= 0.2 + 0.59
(
𝑓1𝑠
𝑓 ′𝑐

)0.20
+ 3.47

(
𝑓1 𝑓

𝑓 ′𝑐

)0.64
(8)
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Figure 4. Stress and strain relationship of concrete before and after FRP confinement.

𝜀𝑐𝑢
𝜀𝑐0

= 2 + 5.06
(
𝑓1𝑠
𝑓 ′𝑐

)0.03
+ 73.31

(
𝑓1 𝑓

𝑓 ′𝑐

)1.07
(9)

where 𝑓 ′𝑐 and 𝜀𝑐0 are the peak stress and peak strain of unconfined concrete, respectively; 𝑓𝑐𝑢 and 𝜀𝑐𝑢 are the
ultimate compressive stress and the peak compressive strain of FRP-confined concrete, respectively; 𝑓𝑙𝑠 and
𝑓𝑙 𝑓 are the effective lateral confining forces provided by stirrups and FRP, respectively.

The peak stress and strain of FRP-confined RC square columns are given by:

𝑓𝑐𝑐 = 𝑓 ′𝑐
(
1 + 0.35𝜆 𝑓 + 0.50𝜆ℎ + 0.85𝜆1

)
(10)

𝜀𝑐𝑐 = 𝜀𝑐0
(
1 + 2.0𝜆 𝑓 + 2.5𝜆ℎ

)
(11)

𝜆 𝑓 =
𝜅𝑎𝜌 𝑓 𝑓 𝑓

𝑓 ′𝑐
(12)

𝜆ℎ =
𝜌𝑠𝑡 𝑓𝑦𝑡

𝑓 ′𝑐
(13)

𝜆1 =
𝜌𝑔 𝑓 𝑓

𝑓 ′𝑐
(14)

where 𝑓𝑐𝑐 and 𝜀𝑐𝑐 are the peak compressive stress and strain of FRP-confined concrete, respectively; 𝜅𝑎 is
the shape factor, defined as the ratio of the effective confined area to the total cross-sectional area; 𝜆 𝑓 is the
characteristic value of the FRP confinement; 𝜆ℎ is the characteristic value of the stirrup confinement; 𝜆𝑙 is the
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Figure 5. Finite element model.

characteristic value of the longitudinal reinforcement; 𝜌𝑔 is the longitudinal reinforcement ratio, excluding the
radius of the chamfer; 𝜌𝑠𝑡 is the volumetric stirrup reinforcement ratio; 𝜌 𝑓 is the volumetric reinforcement
ratio provided by transverse FRP; 𝑓 𝑓 is the ultimate strength of the FRP, and 𝑓𝑦𝑡 is the yield strength of the
stirrups.

Sections and elements
The finite element of structure is established using the distributed plasticity nonlinear beam-column elements
in OpenSEES, as shown in Figure 5. For unreinforced beams and columns, only one element is needed. They
are simulated using a fiber section element. For FRP-reinforced RC beams and columns, each component is
simulated with three displacement-based nonlinear beam-column elements. These elements represent three
regions, including the two ends, which are the plastic hinge reinforced zones and themiddle unreinforced zone.
Each of these regions is simulated with one nonlinear beam-column element considering distributed plasticity.
The number of integration points along the element is 10. Zero-length section elements are used at the roots
of beams and columns, and Bond-SP01 material is adopted to consider bond-slip between reinforcement steel
and concrete. The element for the unreinforced middle zone is modeled using a fiber section. The number
of fibers over a geometric cross-section is 400. The elements for the reinforced zones use the stress-strain
constitutive model of FRP-RC. Therefore, the OpenSEES material named FRPConfinedConcrete [3] material
is used. The hysteresis rule of FRPConfinedConcrete material in this paper could accurately reflect the stress-
strain relationship and the deterioration of concrete under cyclic compression. It is determined based on cyclic
compression tests of FRP-confined concrete columns. This is a significant improvement when compared to
Concrete01 material models, which only modified the backbone curve for monotonic compression, while the
hysteresis rule is developed by the test of normal concrete. For a detailed comparison, see the literature [3]. It
should be noted that the unloading curve is simplified using a two-segment approximation, while the rest of
the envelope curve, residual strain, and other aspects are consistent with the relationship described in Section
“Constitutive models of material”. During the dynamic analysis, the base of the structure is considered rigid,
and the convergence tolerance is set to 1.0 × 10−8. In addition, since this paper is concerned with the seismic
performance of the structure as a whole, local geometric imperfection is not considered.

Model validation
The modeling method described above is validated using specimens S1H2C0N2 and S1H1C4N2 from ref-
erence [22]. Both specimens are column components with an axial compression ratio (ACR) of 0.45. The
S1H2C0N2 specimen is a low-ductility specimen, while the S1H1C4N2 has the same design details as the
S1H2C0N2. The difference is S1H1C4N2 specimen is reinforced with four layers of CFRP compared to
S1H2C0N2. Figure 6 compares the experimental result with the predicted result, showing that the simulation
method employed in this study effectively captures the degradation characteristics of low-ductility columns
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Figure 6. Test and predict result for low-ductility column and FRP reinforced low-ductility column. (A) Low-ductility column; (B) Low-
ductility column reinforced with CFRP.

and the seismic performance improvements brought by FRP retrofitting.

Retrofitting scheme
The Pushover analysis of the low-ductility structure model shows that the maximum inter-story displacement
occurs in the lower-middle floors, with a noticeable stiffness discontinuity in the middle floors. Therefore, the
bottom two floors are identified as the weak stories under seismic loads. According to existing standards [23,24],
the components in weak stories are reinforced with four layers of FRP confinement. For the non-weak story
components, two layers of FRP confinement are applied to prevent the stiffness of the bottom two floors from
becoming excessively strong compared to the upper floors after FRP retrofitting [23]. Considering the moment
above, the following FRP retrofitting schemes are proposed, as illustrated in Figure 7. In Figure 7, the bottom
two floors (1-2 floors) have columns reinforced at their ends by wrapping FRP. The retrofitting height is 1.5
times the column cross-section height. The beam ends are wrapped with four layers of FRP laterally and two
layers of FRP longitudinally, with a retrofitting length of two times the column cross-section height. Themiddle
span of the beams is full-length reinforced. The top two floors (3-4 floors) are reinforced in the same positions
as the 1 and 2 floors but with half the number of FRP layers. This study assumes the use of a unidirectional
CFRP fabric with a weight of 300 g/m² for retrofitting the structure. Each layer has a thickness of 0.167 mm,
an elastic modulus of 244 GPa, an ultimate tensile strength of 4,340 MPa, and an ultimate tensile strain of
0.018. For ease of description later, the unreinforced low-ductility structure is named Case-1, while the FRP-
reinforced low-ductility structure is named Case-2.

SEISMIC RESILIENCE ANALYSIS MODELS
Assessment framework
The FEMA P-58 methodology, combined with the PACT software, is used to conduct a time-based perfor-
mance assessment of low-ductility structure (Case-1) and FRP-reinforced low-ductility structure (Case-2).
This assessment method evaluates the seismic performance indicators of the building structure under all pos-
sible seismic intensities over a specified period (50 years in this study) to determine the annual exceedance
frequency and the annual average value of the building performance indicators during its service life.

Building replacement model
Replacement cost model
Assume the structure is located inWeihai, China, and its intended use is as an office building. The construction
cost of the structure is set as the replacement cost. According to the China Construction Engineering Network
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Figure 7. Retrofitting scheme. (A) Case-1; (B) Case-2.

(CCEN) [25], the replacement cost for Case-1 is calculated to be $558,000. For Case-2, the FRP retrofitting cost
is determined by combining the seismic retrofitting pricing norms of Sichuan Province [26] and current prices
for FRP materials and labor in China. The retrofitting cost is about $135,000. This retrofitting cost is added to
the replacement cost of Case-1 to obtain the total cost for Case-2. As noted in FEMA P-58 [13], many property
owners prefer to replace structures when the estimated repair costs surpass approximately 40% to 50% of the
replacement cost [27]. Therefore, a repair limit coefficient of 0.5 is set. When repair costs reach the repair cost
limit, no further repairs will be made to the structure, and the repair costs will be considered replacement
costs.

Replacement time model
The building replacement time is estimated based on the method proposed by Zhu [28], assuming the structure
is a typical civilian building. The construction period for the part of the building below zero elevation can be
set to 25 days when the land is labeled as Class II, with no basement and a ground floor area of less than 500
m2. For the part above zero elevation, according to the stories (4 stories), occupy (office building), and the
area (less than 3,000 m²), the construction period for the above-ground part is calculated to be 230 days. After
considering a standard 7-day period for building demolition, the total replacement time for this four-story
building is 262 days.

Carbon emissions model
According to GB/T 51366-2019 [29], the carbon emissions from building replacement are equivalent to the
carbon emissions during the production stage. This includes the total carbon emissions from the production
and transportation processes of building materials (concrete, steel, CFRP fabric). The calculation methods are
given in

𝐸 𝑝𝑟𝑜 = 𝐸𝑚𝑎𝑡 + 𝐸 𝑡𝑟𝑎 (15)

𝐸𝑚𝑎𝑡 =
∑
𝑖

𝑄𝑚𝑎𝑡
𝑖 𝐸𝐹𝑚

𝑖 (16)
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𝐸 𝑡𝑟𝑎 = 10−3
∑
𝑘

∑
𝑖

𝑄𝑡𝑟𝑎
𝑖𝑘 𝐸𝐹 𝑡

𝑘 (17)

where 𝐸𝑚𝑎𝑡 is the carbon emissions from the production process of materials; 𝐸 𝑡𝑟𝑎 is the carbon emissions
from the transportation process ofmaterials;𝑄𝑚𝑎𝑡

𝑖 is the consumption quantity ofmaterial 𝑖; 𝐸𝐹𝑚
𝑖 is the carbon

emission factor for material 𝑖;𝑄𝑡𝑟𝑎
𝑖𝑘 is the freight volume of material 𝑖 transported bymode 𝑘 ; 𝐸𝐹 𝑡

𝑘 is the carbon
emission factor per unit freight volume for transportation mode 𝑘 .

Assume the transportation distances from production to use are 40 km for concrete, 500 km for steel, and 500
km for CFRP fabric. The calculated carbon emissions are presented in Table 1, with the total carbon emissions
for Case-1 and Case-2 being 2111.56 tCO2𝑒 and 2183.91 tCO2𝑒 , respectively.

Structural occupancy and population density model
According to GB 50189-2015 [30], a model is developed in this study to reflect the variation of office occupancy
over time. This model considers China’s population density and office habits, as shown in Figure 8.

Component and structural fragility functions
In the process of structural resilience analysis, it is essential to determine the fragility functions of both compo-
nents and structures. The fragility functions for components can be defined by specifying the repair methods
and cost information corresponding to different damage states. This allows for assessing the direct economic
losses needed for repairing earthquake-damaged buildings and the indirect economic losses resulting from
using different retrofitting methods. Meanwhile, the majority of casualties result from partial or complete
building collapse. To estimate potential casualties, defining the probability of structural collapse as a function
of ground motion intensity is essential. These probabilities are typically represented through collapse fragility
functions.

Component fragility functions
(1) Beam-column components

The PACT software provides an extensive database of fragility functions for structural components, including
structural components, non-structural components, and internal financial units. However, the fragility func-
tions of the structural components are established from statistical test information on ductile components. Due
to the significant difference in the failure characteristics and the deformation capacity corresponding to the
performance points of ductile and non-ductile components, using the fragility functions of ductile structural
components for low-ductility RC frame structures resilience assessment would underestimate the deformation
damage and structural losses caused by earthquakes. According to existing research [22], insufficient stirrup
configuration is the primary cause of low ductility for RC components. Current standards [19,20] specify that
the volumetric stirrup ratio in confined regions of column components must exceed 0.4% to ensure the suffi-
cient ductility of RC components under earthquake actions. Therefore, components with a volumetric stirrup
ratio of less than 0.4% are defined as low-ductility components. A database containing 46 low-ductility com-
ponents and 113 FRP-reinforced low-ductility components has been established to predict structural losses
more accurately. Detailed information can be seen in reference [31].

According to reference [32], the damage states of RC columns are categorized into six levels, including slight
damage, minor damage, moderate damage, slight severe damage, severe damage, and collapse. These damage
states are labeled as DS1 to DS6, respectively. The damage phenomena and repair methods corresponding to
each state are detailed in reference [33,34]. The performance points are obtained from the column’s backbone
curve, as shown in Figure 9. Points B and C represent the nominal yield point (𝑀𝑦 = 0.8𝑀𝑝) and peak
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Table 1. Carbon emissions result for case structures

Material
Type Concrete Steel CFRP fabric
Unit m3 t m2

Consumption 399.24 35.43 301.44
Transportation distance / km 40 500 500
Carbon emission factor (tCO2𝑒/unit) 0.316 2.34 0.14
Production carbon emissions (tCO2𝑒) 169.69 1,852.39 42.2
Transportation carbon emissions (tCO2𝑒) 10.31 79.16 30.14

Total carbon emissions (tCO2𝑒)
2,111.56 for case-1
2,183.91 for case-2
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Figure 8. Population density model for office building in China.
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point of the backbone curve, respectively. Points D and E correspond to a 15% and 25% reduction from the
peak moment, respectively. IO (Immediate Occupancy) is defined as the midpoint of the displacement angle
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between points B and C, LS (Life Safety) is the midpoint between points C and D, and the state beyond point
E is defined as collapse.

Since there is significant variability in the fragility function of the components at different ACRs, the fragility
functions of the components are established by considering the factor of ACR. With an ACR of 0.3 as the
boundary, specimens with ACR less than or equal to 0.3 are classified as low-ACR specimens, while those
with ACR greater than 0.3 are classified as high-ACR specimens. Based on the ACR and FRP retrofitting
characteristics, all specimens in the database are divided into four groups, including low-ACR low-ductility
(LAND) group, high-ACR low-ductility (HAND) group, low-ACR FRP-reinforced low-ductility (LAFND)
group, and high-ACR FRP-reinforced low-ductility (HAFND) group.

The characteristic points of the backbone curves for each group of specimens are extracted in Figure 9. After
removing outliers using the Peirce criterion, the parameters of the fragility functions are calculated using

𝜃𝑖 = 𝑒

(
1
𝑀

∑𝑀
𝑗=1 ln(𝑑 𝑗 )

)
(18)

𝛽𝑖 =
√
𝛽2
𝑟,𝑖 + 𝛽2

𝑢,𝑖 (19)

where 𝜃𝑖 and 𝛽𝑖 are the median value and logarithmic standard deviation of the fragility function.

The parameters of the fragility functions for low-ductility RC columns and FRP-reinforced low-ductility RC
columns with different ACRs are shown in Table 2.

Table 2 shows that the median value 𝜃 of the fragility functions for low ACR columns is always higher than that
for high ACR columns. This indicates that low ACR columns have significantly greater deformation capacity
than high ACR columns. Furthermore, comparing the low-ductility columns before and after FRP retrofitting
under the same damage states, it is evident that FRP reinforced substantially enhances the deformation ca-
pacity of the components. Additionally, it should be noted that for components reinforced with FRP, it is
only worthwhile to be repaired if it is in a state of minor damage. The repair cost will exceed the replacement
cost if the damage is severe. This study does not consider repair in such cases and will directly proceed with
component replacement. Therefore, the low-ductility columns reinforced with FRP are irreparable in damage
states DS4, DS5, and DS6. Consequently, the repair costs, repair time, and carbon emissions of these states are
accounted for as complete replacements.

(2) Component categories and fragility function numbers

Referring to the fragility categories of components defined in PACT, the number of components in the four-
story structure is calculated based on different directions and floors. The results are presented in Table 3.

Collapse fragility curve and casualties
The seismic fragility analysis of the structure before and after FRP retrofitting is conducted using 22 sets of
far-field ground motions recommended by FEMA P695 [35]. For each set of ground motions, a random direc-
tion is selected as the seismic input. The selected ground motion response spectra are shown in Figure 10.
Subsequently, incremental dynamic analysis (IDA) is performed to assess the collapse fragility of the structure.
According to the method defined in FEMA 350 [36], a structure is considered to have collapsed when the tan-
gent stiffness of the IDA curve drops to 20% of the initial elastic stiffness or when themaximum inter-story drift
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Table 2. Fragility functions for low-ductility RC columns before and after FRP retrofitting

Component type Damage state Group 𝜽 (%) 𝜷 Group 𝜽 (%) 𝜷

Low-ductility RC columns
B1041.000a(b)

DS1

LAND

0.574 0.533

HAND

0.413 0.778
DS2 0.971 0.549 0.732 0.628
DS3 1.353 0.574 1.039 0.597
DS4 1.634 0.594 1.31 0.486
DS5 1.923 0.619 1.636 0.45
DS6 1.937 0.58 1.596 0.381

FRP-reinforced low-ductility RC columns
B1041.010a(b)

DS1

LAFND

0.682 0.686

HAFND

0.622 0.838
DS2 1.431 0.78 0.961 0.787
DS3 2.193 0.825 1.445 0.811
DS4 2.897 0.792 2.005 0.758
DS5 3.954 0.7 2.523 0.744
DS6 4.498 0.659 3.304 0.815

Table 3. Component categories and fragility function numbers

Direction Component type Fragility number Unit
Numbers of floor
Floor 1 Floor 2-4 Roof

X direction

Structural components

Beam-column components
(select one)

B1041.000
(low-ductility)

pcs 24 24 —

B1041.010
(FRP-reinforced)

pcs 24 24 —

Non-structural components
Non-structural exterior walls B1052.001 9.29 m2 15.5 13.56 —
Non-structural interior walls C1011.001a 120.77 m2 2.38 2.09 —
Exterior wall finishes C3011.002a 83.61 m2 1.72 1.51 —
Interior wall finishes C3011.001a 83.61 m2 6.89 6.03 —

Y direction

Structural components

Beam-column components
(select one)

B1041.000
(low-ductility)

pcs 24 24 —

B1041.010
(FRP-reinforced)

pcs 24 24 —

Non-structural components
Non-structural exterior walls B1052.001 9.29 m2 31 27.13 —
Non-structural interior walls C1011.001a 120.77 m2 2.38 2.09 —
Exterior wall finishes C3011.002a 83.61 m2 3.44 3.01 —
Interior wall finishes C3011.001a 83.61 m2 6.89 6.03 —

Non-directional

Other components
Ceiling C3032.003b 55.74 m2 8.07 8.07 —
HVAC pipes D3041.011a 30.48 m 6.89 6.89 —
Firefighting pipes D4011.021a 30.48 m 6.89 6.89 —
Roof B3011.013 9.29 m2 — — 48.44
Chiller D3031.013h pcs — — 1
Air handling unit D3052.013k pcs — — 1

exceeds the limit of 0.1. According to reference [37], the collapse points are fitted to a lognormal distribution
using the maximum likelihood estimation method.

The collapse fragility curves for Case-1 (unreinforced) and Case-2 (FRP-reinforced) structures are shown in
Figure 11. The median and logarithmic standard deviation of the fragility function for Case-1 are 0.744 and
0.602, respectively, while for Case-2, they are 0.828 and 0.541, respectively. This indicates that FRP retrofitting
reduces the probability of structural collapse. Assuming that the building collapses with the sidesway fail-
ure, the fatality rate and injury rate for the collapse of RC frame structures are assumed to be 15% and 85%,
respectively according to reference [38].

Residual drift
Residual drift fragility represents the probability that a structure can be repaired when residual inter-story
drift is present after an earthquake. If the building cannot be repaired, the repair costs, repair time, carbon
emissions, and energy consumption are assumed to equal those of complete replacement. According to the
residual drift fragility function provided in FEMA P-58 [13], the median value is 1%, and the standard deviation
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Figure 10. Response spectrum and median value.

Figure 11. Collapse fragility curves.

is 0.3. The calculation method for structural residual drift is given by:

Δ𝑟 = 0 Δ ≤ Δ𝑦

Δ𝑟 = 0.3(Δ − Δ𝑦) Δ𝑦 < Δ < 4Δ𝑦

Δ𝑟 = Δ − 3Δ𝑦 Δ ≥ 4Δ𝑦

(20)

where Δ is the inter-story drift obtained through numerical simulation; Δ𝑦 is the inter-story drift calculated at
the yield point of the structure, which corresponds to the maximum inter-story drift at the yield point on the
pushover curve; Δ𝑟 is the overall residual drift of the structure.

Seismic hazard curve
Using the seismic hazard analysis function proposed by Cornell [39], the hazard function 𝐻 (𝑥) can be approxi-
mated by an exponential form, as

𝐻 (𝑥) ≈ 𝑘0𝑥
−𝑘 (21)
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where 𝐻 (𝑥) is the annual exceedance probability of a certain intensity earthquake occurring at the design site;
𝑘0 and 𝑘 are parameters related to the design site and other factors.

According to reference [40] and Chinese seismic code [19], 𝑘0 and 𝑘 can be calculated as follows:

𝑘 =
ln(𝜆𝐷/𝜆𝑀 )
ln(𝐼𝑀/𝐼𝐷)

(22)

ln(𝑘0) = ln
[
𝜆𝐷 (𝐼𝑀𝐷 )𝑘

]
=

ln(𝐼𝑀𝐷 ) · ln(𝜆𝑀 ) − ln(𝐼𝑀 ) · ln(𝜆𝐷)
ln

(
𝐼𝑀𝐷/𝐼𝑀

) (23)

where 𝜆𝐷 and 𝜆𝑀 are the annual exceedance probabilities for the design-based earthquake (DBE) and theMCE,
respectively. These probabilities can be calculated based on their return periods, 𝜆𝐷 = 1/475 = 0.0021 and
𝜆𝑀 = 1/2475 = 0.0004; 𝐼𝑀𝐷 and 𝐼𝑀𝑀 are the seismic intensity parameters corresponding to the DBE and
MCE in the seismic code, with spectral acceleration Sa being used in this study. Substituting into Equations
(22) and (23) yields 𝑘 = 1.84 and 𝑘0 = 1.35 × 10−5.

According to reference [13], eight seismic intensities are selected for structural resilience assessment. The 22
ground motions above are amplitude-modulated to these eight seismic intensities, followed by the structural
resilience assessment based on the dynamic time-history analysis data. The selected seismic intensities and
the calculated annual exceedance rate are shown in Table 4. The seismic hazard curve for the structure’s site is
presented in Figure 12.

RESULT ANALYSIS
Retrofitting impact factor (RIF)
This study introduces the retrofitting impact factor (RIF) as an indicator to quantify the extent to which FRP
retrofitting affects the seismic resilience of low-ductility structures, which is calculated by:

𝛿 =
𝐷𝑁𝐷 − 𝐷 (𝑁𝐷−𝐶)

𝐷𝑁𝐷
× 100% (24)

where 𝐷𝑁𝐷 represents the resilience indicators (replacement costs, replacement time, casualties, 𝑒𝑡𝑐.) for
the low-ductility structure; 𝐷𝑁𝐷−𝐶 indicates the resilience indicators (replacement costs, replacement time,
casualties, 𝑒𝑡𝑐.) for the low-ductility structure after FRP retrofitting.

Repair cost
Based on 1000 Monte Carlo simulations, the average repair costs for the case structure under eight different
seismic intensities are obtained, as shown in Table 5. The table indicates that FRP retrofitting can reduce the
repair costs by up to 9.26% at Intensity 1. However, as the seismic intensity increases, the effectiveness of
FRP retrofitting in reducing repair costs gradually decreases. This is because, at very high seismic intensities,
although the collapse probability of Case-2 is lower than that of Case-1, a significant number of structural com-
ponents in Case-2 reach or exceed DS4. As a result, most simulation results indicate a complete replacement
of the structure. Additionally, the repair cost calculations for Case-2 include the costs of FRP retrofitting. This
results in a negative 𝛿 in some cases, indicating that FRP retrofitting is ineffective.
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Table 4. Seismic intensities and the corresponding annual rate of exceedance

Number Intensity 1 Intensity 2 Intensity 3 Intensity 4 Intensity 5 Intensity 6 Intensity 7 Intensity 8
Sa 0.052 0.088 0.124 0.16 0.196 0.231 0.267 0.303
Annual exceedance rate (10−4) 44 13.3 6.57 3.97 2.73 2 1.54 1.18

Table 5. Repair cost and RIF

Repair cost
Intensity 1 Intensity 2 Intensity 3 Intensity 4 Intensity 5 Intensity 6 Intensity 7 Intensity 8

(×104 dollar)

Case-1 17.78 35.44 44.75 50.98 53.65 54.18 54.72 55.32
Case-2 16.14 33.22 44.28 51.08 53.41 54.42 55.13 55.77
RIF 𝛿 (%) 9.26 6.26 1.05 -0.2 0.44 -0.45 -0.75 -0.8

Figure 12. Seismic hazard curve.

Based on the classification of component fragility, the structure’s repair costs are divided into three categories,
including exterior components, interior components, and service systems. The proportion of total repair costs
for these categories under eight seismic intensities is shown in Figure 13. It is clear that the proportion of losses
attributed to interior components and service systems grows with seismic intensity for both Case-1 and Case-2.
This is due to the increased damage to non-structural components such as partition walls, pipes, and ceilings,
as well as service systems, resulting in a higher proportion of their repair costs in the total repair costs. This
implies that FRP seismic retrofitting does not significantly decrease the damage levels of interior components
and service systems.

By combining the site’s seismic hazard, the time-based method is further used to assess the seismic resilience
of the structure. The annual repair cost probability distribution is shown in Figure 14. It can be observed that
the average annual repair costs before and after FRP retrofitting are $1,520.81 and $1,439.84, respectively. This
indicates that FRP retrofitting can reduce the average annual repair costs of low-ductility structures by 5.32%.

Repair time
Based on Monte Carlo simulations and considering the total replacement time of the structure, the average
repair times for the case structure under eight different seismic intensities are obtained, as shown in Table 6.
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Figure 13. Repair cost for three categories. (A) Case-1; (B) Case-2.

Figure 14. Annual repair cost probability distribution. (A) Case-1; (B) Case-2.

Table 6. Repair time and RIF

Repair time (days) Intensity 1 Intensity 2 Intensity 3 Intensity 4 Intensity 5 Intensity 6 Intensity 7 Intensity 8
Case-1 60.61 117.08 155.49 186.02 209.78 219.16 231.79 234.96
Case-2 55.8 107.63 148.98 180.75 201.24 211.77 226.25 234.94
RIF 𝛿 (%) 7.94 8.07 4.19 2.84 4.07 3.37 2.39 0.01

From Table 6, it is evident that FRP retrofitting consistently reduces the repair time across all intensity levels.
Notably, for the Case-2 structure at intensity level 2, the repair time is reduced by up to 8.07%. However, at
very high seismic intensities, many structural components in Case-2 reach or exceed DS4, rendering them
irreparable and causing the repair time to approach the total replacement time. In such cases, FRP retrofitting
becomes ineffective in reducing repair time.

The distribution of repair time across different floors of the case structures under eight seismic intensities is
shown in Figure 15. For both case structures, the repair time for the first floor is the highest, accounting for
approximately 30%, while the repair times for the other three floors are relatively similar.

The time-based evaluation method is further used to assess the seismic resilience of the structure, resulting
in the annual repair time probability distribution shown in Figure 16. The calculations reveal that the average
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Table 7. Number of fatalities and RIF

Number of fatalities Intensity 1 Intensity 2 Intensity 3 Intensity 4 Intensity 5 Intensity 6 Intensity 7 Intensity 8
Case-1 0 0.0245 0.0099 0.0114 0.1407 0.2114 0.4927 0.6937
Case-2 0 0 0 0 0 0.101 0.2405 0.3242
RIF 𝛿(%) - 100 100 100 100 52.2 51.19 53.26

Table 8. Number of injuries and RIF

Number of injuries Intensity 1 Intensity 2 Intensity 3 Intensity 4 Intensity 5 Intensity 6 Intensity 7 Intensity 8
Case-1 0.0016 0.1397 0.0592 0.0876 0.8239 1.2328 2.8967 4.0142
Case-2 0 0.0006 0.0039 0.0276 0.286 0.6095 1.5244 1.9492
RIF 𝛿 (%) 100 99.6 93.41 68.44 65.28 50.56 47.37 51.44

Table 9. Carbon emissions and RIF

Carbon emissions (×104 kg) Intensity 1 Intensity 2 Intensity 3 Intensity 4 Intensity 5 Intensity 6 Intensity 7 Intensity
8 Case-1 23.83 56.86 85.96 108.53 131.69 143.53 160.5 164.02
Case-2 21.34 53.69 84.09 109.9 128.8 141.99 161.1 171.06
RIF 𝛿 (%) 10.43 5.57 2.17 -1.26 2.2 1.07 -0.38 -4.29

Figure 15. Repair time for different floors. (A) Case-1; (B) Case-2.

annual repair time for Case-1 is 0.2393 days, whereas for Case-2, it is 0.2228 days. This indicates that FRP
retrofitting reduces the average annual repair time of low-ductility structures by 6.90%.

Casualties
The average numbers of fatalities and injuries under eight different seismic intensities are shown in Tables 7
and 8. Tables 7 and 8 show that as the intensity level rises, the number of fatalities and injuries in the structure
gradually increases. Compared to the low-ductility structure, the number of fatalities and injuries in the FRP-
reinforced structure is significantly reduced. Comparing the two case structures at different intensities, the
Case-1 structure shows potential fatalities and injuries at intensity levels 1 and 2. In contrast, the Case-2
structure exhibits fatalities and injuries only at intensity levels 2 and 6, respectively. This indicates that FRP
retrofitting can significantly reduce the casualty rate for occupants. Furthermore, it can be observed that as the
intensity level increases, the value of 𝛿 gradually decreases. At intensity level 8, 𝛿 decreases to approximately
50%. This suggests that the benefits of FRP retrofitting in terms of casualty reduction diminish at higher
intensity levels. However, it is noteworthy that as the intensity level grows, the reduction in casualties for
Case-2 compared to Case-1 progressively increases.

Figures 17 and 18 present the probability distributions of the annual average fatalities and injuries for the
example structure. From these figures, it can be seen that the estimated annual average number of fatalities for
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Figure 16. Annual repair time probability distribution. (A) Case-1; (B) Case-2.

Figure 17. Annual number of fatalities probability distribution. (A) Case-1; (B) Case-2.

Figure 18. Annual number of injuries probability distribution. (A) Case-1; (B) Case-2.

the Case-1 structure is 0.0002, while after FRP retrofitting, the annual average number of fatalities decreases to
nearly zero. Additionally, comparing the annual average number of injuries for the two structures, it is evident
that FRP retrofitting significantly reduces the probability of injuries, with the annual average number of injuries
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Figure 19. Carbon emissions for three categories. (A) Case-1; (B) Case-2.

decreasing from 0.0033 in the low-ductility structure to 0.0014 in the FRP-reinforced structure. The reduction
reaches 57.6%. These results highlight the effectiveness of FRP retrofitting in enhancing the seismic resilience
of structures and reducing casualties, particularly in terms of significantly lowering the annual average number
of injuries and fatalities.

Carbon emissions
Theaverage carbon emissions for Case-1 andCase-2 under eight different seismic intensities are shown in Table
9. The table shows that Case-2 can reduce structural carbon emissions by 10.43% at intensity level 1 compared
to Case-1. Additionally, at intensity levels 2, 3, 5, and 6, FRP retrofitting also reduces the carbon emissions of
the structure. At higher seismic intensities, numerous components in the Case-2 structure experience severe
damage, leading to repair costs that surpass the replacement cost for much of the structure. Additionally, since
the carbon emissions associated with Case-2 include the FRP retrofitting process, this results in a negative
reduction efficiency (𝛿) at certain intensity levels.

The proportion of carbon emissions from the replacement of exterior components, interior components, and
service systems for the two cases is shown in Figure 19. For the Case-1 structure, the proportion of carbon
emissions from interior components and service systems increases with seismic intensity, but the growth trend
is not significant. Interior components account for approximately 52%, while service systems reach up to 4%.
Compared to Case 1, the carbon emissions required to repair exterior components in the Case-2 structure
are higher, exceeding 60%. Conversely, the carbon emissions for repairing interior components in Case-2 are
significantly lower, ranging from 30% to 40%. This is because the carbon emissions from steel used in repairs
are much higher than those from concrete and FRP fabric. Meanwhile, a large number of non-structural
components and wall finishes in interior components do not require a significant amount of steel. Therefore,
the carbon emissions during structural repairs are primarily due to exterior components.

Considering seismic hazard, the probability distribution of the annual carbon emissions of the structure is
shown in Figure 20. The calculations show that the average annual carbon emissions for the Case-1 structure
are 3,050.17 kg, while for Case-2, it is 2,831.89 kg. This indicates that FRP retrofitting can reduce the average
annual carbon emissions of low-ductility structures by 7.16%.
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Figure 20. Annual number of fatalities probability distribution. (A) Case-1; (B) Case-2.

CONCLUSION
This study investigates the effect of FRP retrofitting on the resilience of low-ductility structures. The finite
element models of low-ductility frame structures and FRP-reinforced low-ductility frame structures are es-
tablished. Fragility functions for low-ductility structural components before and after FRP retrofitting are
developed. Using PACT software, the time-based assessment process is applied to analyze resilience indica-
tors such as repair costs, repair time, casualties, and carbon emissions before and after retrofitting. The main
conclusions are as follows:

(1) The study established fragility functions for both low-ductility RC components and FRP-reinforced low-
ductility RC components. For low-ductility RC components, the median values of the fragility functions
ranged from 0.413 to 1.937, with logarithmic standard deviations between 0.381 and 0.619. In contrast, the
median values for FRP-reinforced low-ductility RC components are significantly higher, ranging from 0.622
to 4.498, with logarithmic standard deviations between 0.659 and 0.838;

(2) The benefits of FRP retrofitting are most pronounced at lower seismic intensities. At these levels, FRP
retrofitting significantly enhances structural resilience, leading to substantial reductions in repair costs, re-
pair times, and casualty rates. As the seismic intensity increases, the relative effectiveness of FRP retrofitting
diminishes;

(3) A detailed quantitative analysis demonstrated that FRP retrofitting significantly reduces the annual ex-
ceedance probabilities for repair costs, repair times, casualties, and carbon emissions. The average annual re-
pair costs are reduced by 5.32%, while the average annual repair time decreased by 6.90%. Most notably, FRP
retrofitting nearly eliminated the annual average number of fatalities and reduced the annual average number
of injuries by 57.6%, highlighting a substantial improvement in safety. Additionally, the average annual carbon
emissions are reduced by 7.16%, indicating the environmental benefits of FRP retrofitting alongside enhanced
structural resilience.

It should be noted that although a preliminary study on the effect of FRP retrofitting on low-ductility structures
has been conducted in this paper, further investigation is required due to the limited research sample. Firstly,
only a four-story structure designed for a seismic intensity of seven degrees in a type II site class is considered.
Further discussion is needed to determinewhether higher seismic fortification levels and different story heights
affect the structure. Secondly, the lossmodel for the structure did not account for the economic development of
the regionwhere the structure is located. Thismay potentially lead to an underestimation of losses in developed
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areas. Additionally, the significant impact of the post-earthquake repair path on structural resilience requires
further discussion in future studies.
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