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Abstract
Inclusion and investigation of technical controls in microbiome sequencing studies is important for understanding 
technical biases and errors. Here, we present chkMocks, a general R-based tool that allows researchers to compare 
the composition of mock communities that are processed along with samples to their theoretical composition. A 
visual comparison between experimental and theoretical community composition and their correlation is provided 
for researchers to assess the quality of their sample processing workflows.
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INTRODUCTION
Microbiota profiling of diverse environments is widely done using 16S rRNA gene sequencing. Preparation 
of samples for microbiota profiling consists of sampling, storage, DNA extraction, PCR, library preparation, 
sequencing, and downstream bioinformatics analysis[1-4]. At every step, technical variability is a major factor 
that can ultimately affect the observed microbiota profiles[5-8]. Including negative and positive controls, 
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especially mock communities with known microbial composition, is suggested to help identify technical 
variability and improve protocols if required[9]. Mock communities with known composition can be 
included at the step of DNA extraction (mixture of different cells) or at the PCR step (mixture of DNA from 
different cells). This allows for evaluating where technical variation is introduced. For example, it is known 
that DNA extraction methods can differently bias certain cell types, e.g., Gram-positive and Gram-negative 
bacteria, and that primer choice at the PCR step can neglect or favor some organisms[5,8]. In addition, these 
mock communities allow for identifying potential reagent contamination, well-to-well contamination, and 
to some extent, cross-sample contamination[10-13]. Therefore, every microbiota profiling study should include 
both positive and negative controls during sample processing.

Analyzing the mock community profiles and comparing them to the theoretical composition is, however, 
not straightforward, especially for novice microbiome scientists. A very limited number of tools are 
available for analyzing and comparing mock communities. The QIIME2 consists of a plugin called q2-
quality-control[14,15]. The ZymoBIOMICS research team provides a tool called FIGARO for 
ZymoBIOMICSTM Microbial Community Standard[16]. Here, we present an R-based tool, chkMocks, 
specifically designed for outputs from the R-based dada2 pipeline. The chkMocks R package provides a 
slightly different approach for investigating mock communities (see below). This tool provides support for 
ZymoBIOMICSTM Microbial Community Standard and offers the ability to use it for custom mock 
communities.

IMPLEMENTATION AND FEATURES
The chkMocks tool is implemented in R and depends on the following R packages/tools: dada2, 
DECIPHER, tidyverse tools, microbiome, phyloseq and patchwork[17-22]. An overview of the workflow/steps is 
depicted in Figure 1. The chkMocks tool requires data that completed the dada2 workflow, from raw reads 
to obtaining the taxonomy assigned phyloseq object. The phyloseq object should have sequences of variants 
as taxa names and not be converted to text ID’s like ASV:1, etc. The chkMocks tool can be used by two 
different approaches, distinguished by the type of mock sample that is used. If users have sequenced the 
ZymoBIOMICS™ Microbial Community Standard (Catalog No. D6300), they can use the default 
checkZymoBiomics. For this, we have created a taxonomic training set using the FASTA files for full-length 
16S rRNA gene sequences of expected microbes provided by ZymoBiomics. To demonstrate the chkMocks 
utility, we used data from a study investigating reagent contamination using the ZymoBIOMICS™ Microbial 
Community Standard[10]. Here, the Microbial Community Standard was subjected to 8 series of a 3-fold 
dilution (D0 to D8) and processed for 16S rRNA gene-based microbiota profiling. The outputs of 
checkZymoBiomics are (a) A phyloseq object with input ASVs, their abundances and taxonomic 
assignments; (b) A phyloseq object with input ASVs aggregated to species level and their abundances; and 
(c) A correlation table with Spearman’s correlation (rho) values of positive controls compared to theoretical 
composition. The user can simply plot the results with plotZymoDefault; this function visualizes the 
composition of positive controls and theoretical composition as a stacked bar plot [Figure 2A]. This is 
accompanied by a bar plot of Spearman’s correlation (rho) between positive controls and theoretical 
composition [Figure 2B]. The user can also compare the abundances of individual taxa for a clearer 
understanding of biases towards specific taxa [Figure 2C and D]. Here, the percentage of ‘unknown’ taxa, 
i.e., not matching any of the expected taxa included in the mock community, increases as dilution increases 
and is in agreement with values reported by the original study. All these plots provide first-hand insights to 
the user about the quality of their sample processing by directly comparing positive controls with expected 
observations.
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Figure 1. Overview of the workflow for comparing experimental mock samples with the theoretically expected composition.

Figure 2. Overview of the key results generated by chkMocks. (A) Community composition of positive controls and expected 
composition of ZymoBIOMICSTM Microbial Community Standard; (B) spearman’s correlation (rho) values of positive controls compared 
to theoretical composition; (C) percent abundances of individual taxa; (D) percent abundances of “unknown” taxa, i.e., not matching any 
of the standard expected taxa.

For researchers using a custom mock community or mock communities from a different vendor, we 
provide a step-by-step guide on preparing the training set as a FASTA file for full-length 16S rRNA gene 
sequences of expected microbes using the DECIPHER R/BioC package. To this end, the taxonomic 
assignment can be done using the assignTaxonomyCustomMock. We provide this tutorial on the package 
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website (https://microsud.github.io/chkMocks/) and include an example of how to compare the custom 
mocks with their theoretical composition. Of note, we rely on the DECIPHER:IdTaxa function for 
taxonomic assignments and chkMocks only supports bacteria and archaea[23].

To demonstrate the application for custom mock communities, we used data from a study investigating an 
ASV profiling tool, NG-Tax[24] and experimental samples from a previous synthetic microbiome study[25]. 
Additionally, we also provide training sets for the ZymoBIOMICSTM Microbial Community Standard 
(Catalog No. D6331) which consists of 19 of the 21 microbes. The two fungi, Candida albicans and 
Saccharomyces cerevisiae, are excluded from this training set.

CONCLUSION
The chkMocks was developed for the comparison of experimental mock communities with their expected 
compositions. The wet-lab protocols are often standardized depending on the target ecosystem that is 
investigated. Standardization requires analysis of positive controls, which are often microbial communities 
of known composition. Furthermore, a comparison of mock communities between batches when 
processing a large number of samples can help identify any technical variability. We developed a simple-to-
use R package to ease the process of standardization and general quality check.
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