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Abstract
As under-constrained systems, four-wheel-independent-drive (4WID) electric vehicles have more driving degrees of
freedom. In this context, reasonable control and distribution of driving or braking torque to each wheel is extremely
important from the vehicle safety perspective. However, it is difficult to provide the optimal wheel torque because of
the time-varying characteristics and typical over-actuated nature of the system. In light of these challenges, a novel
hierarchical control scheme comprising a top- and bottom-level controller is proposed herein. First, for the top-level
controller, a time-varying model-predictive-control (TV-MPC) controller is designed based on an extended 3-degree-
of-freedom (3-DOF) reference vehicle model. The total driving force and additional yaw moment can be obtained
using the TV-MPC. Second, for the bottom-level controller, the torque expression of each wheel is determined using
the equal-adhesion-rate-rule -based algorithm. The co-simulation results obtained herein indicate that the proposed
control scheme can effectively improve vehicle safety.
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1. INTRODUCTION
Worldwide, energy crises and environmental pollution are the fundamental reasons driving the development of
electric vehicles (EVs) [1,2]. For any type of vehicle, vehicle handling stability, which determines driving safety,
is a significant performance measure. Among various types of EVs, four-wheel independent drive (4WID)
EVs come with four in-wheel motors that can simultaneously reduce energy consumption and increase vehicle
stability [3,4]. Given that the use of independent in-wheel motors facilitates independent installation of drive
systems, this approach allows each wheel to regulate its driving force, which provides more possibilities to
enhance vehicle performance in terms of maneuverability and stability [5,6]. However, because of the time-
varying nonlinear characteristics of vehicles, 4WID EV stability and effective torque distribution algorithms
remain suboptimal.

The greatest advantage of 4WID vehicles is that the four hubmotors can be controlled independently, meaning
that the motors can work in their respective high efficient range and optimal attachment range to the extent
possible. Given that vehicle stability is essential for traffic safety, many scholars have focused on the key issues
related to vehicle stability. In this context, the understeer coefficient in quasi-steady-state maneuvers has been
studied extensively, with a focus on typical lateral dynamics controls, such as active front steering and yaw
moment control [7–9]. Lenzo et al. derived a relationship between the understeer coefficient and yaw moment,
and they obtained an apparently surprising result at low speeds: the rear-wheel-drive (RWD) architecture
provided the highest level of understeer, and the yaw moment due to the longitudinal forces of the front tires
was significant under high lateral accelerations and steering angles [10]. Analogously, the concept of relaxed
static stability (RSS) was proposed and utilized to guide the configuration of the 4WID configuration and
to design the overall 4WID vehicle structure with the aim of improving vehicle stability” without affecting
the intended meaning [11]. In Ref. [12], the influences of the electric motor’s output power limit, road friction
coefficient, and torque response of each wheel on stability control were elucidated. Chen et al. used a double-
layer control algorithm to determine the desired yaw moment and longitudinal forces of four tires with the
aim of improving vehicle stability [13]. The authors of [14] added a layer to the aforementioned algorithm [13]

to judge whether a vehicle is in a stable state by implementing the phase plane method before the two layers.
For stability control of 4WID vehicles, sliding mode control and its improved version are the most commonly
used methods [15,16]. An integral sliding mode control (ISMC) approach was proposed for 4WID vehicles to
generate differential drive force to assist the steering process in the absence of adequate lateral tire force [17].
However, sliding mode control tends to oscillate near the sliding surface. Peng et al. proposed a 7-degree-of-
freedom (DoF) model-predictive control (MPC) method to improve vehicle stability [18]. However, in their
case, discrete MPC linearization was slightly rough, which may lead to inaccurate results.

Although a few researchers have drawn attention toward this knowledge, the problems of ensuring vehicle
stability and torque allocation still cannot be solved quickly and accurately for the following reasons: (1) 4WID
EVs are highly nonlinear and time-varying system, and the use of simple processes will reduce the system
accuracy; (2)The four in-wheel motors are not decoupled and need to be coordinated simultaneously; and (3)
Unpredictability of the iteration steps in the traditional optimization algorithm may lead to a scenario where
the torques applied to the four tires do not reach the respective optimal values in real time. In Ref. [16], the
minimum total adhesion rate algorithm was used to allocate torque to each wheel. However, this method may
lead to local optimization or large differences in the adhesion rates of different tires. For this reason, we propose
a hierarchical control algorithm that includes a nonlinear-MPC-based upper algorithm for obtaining the total
longitudinal force and direct yaw moment, and an equal-adhesion-rate-rule-based lower torque allocation
algorithm. Themain contributions of this study are as follows: (1) an extended 3-DOF reference vehicle model
is built that can be integrated with the traditional 2-DOF reference vehicle model; (2) Exact expressions are
derived for the first-order derivatives of TV-MPC; and (3) A torque allocation algorithm based on the equal
adhesion rate rule of the bottom-level controller is proposed to ensure full utilization of the adhesion rate. The
structure of the hierarchical control algorithm proposed herein is illustrated in Figure 1.
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Figure 1. Structure of hierarchical control algorithm proposed herein.

The remainder of this paper is organized as follows. In Section 2, three models related to the vehicle are built.
In Section 3, a time-varying MPC controller is designed. In Section 4 the equal-adhesion-rate-rule-based
torque allocation algorithm is elaborated. In Section 5, the proposed method is demonstrated by conducting
a Carsim–Simulink co-simulation. Finally, our concluding remarks are presented in Section 6.

2. VEHICLE MODEL
By considering the nonlinear and time-varying dynamic characteristics of 4WID EVs and the related control
problems, an extended 3-DOF reference vehicle model and a nonlinear 7-DOF vehicle model are established
in this section. In addition, a magic formula (MF) tire model is developed.

2.1. 3-DOF reference vehicle model
In this study, a single-track vehicle model is used as the 3-DOF reference vehicle model. According to [19], the
actual and desired longitudinal accelerations of the vehicle satisfy the following first-order relationship:

𝑎 =
𝐾

1 + 𝜏𝑠 𝑎𝑑𝑒𝑠 (1)

where 𝑎 and 𝑎𝑑𝑒𝑠 represent the actual and desired longitudinal accelerations of the vehicle, respectively; 𝐾 = 1
is the system gain; and 𝜏 is the time constant that ranges from 0.2 to 0.5. Therefore, the relationship between
the actual and desired longitudinal velocities can be expressed as

𝑣𝑋 =
𝑣𝑋,𝑑𝑒𝑠
1 + 𝜏𝑠 (2)

Here, 𝑣𝑋,𝑑𝑒𝑠 can be calculated as follows:

¤𝑣𝑋,𝑑𝑒𝑠 =
𝐹𝑋 𝑓 + 𝐹𝑋 𝑓 − 𝐹𝑡𝑜𝑡𝑎𝑙

𝑚
(3)
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Figure 2. 7-DOF nonlinear vehicle dynamic model.

where 𝑚 denotes the vehicle mass; 𝐹𝑋 𝑓 and 𝐹𝑋 𝑓 denote the longitudinal front and rear tire forces, respectively;
𝐹𝑡𝑜𝑡𝑎𝑙 is the total resistance force; and 𝑣𝑋,𝑑𝑒𝑠 and 𝑣𝑋,𝑑𝑒𝑠 denote the actual and desired longitudinal vehicle
velocities, respectively. Combined with the traditional 2-DOF linear vehicle model, the transfer function of
the 3-DOF reference vehicle model can be expressed as follows:


𝑣𝑋,𝑟𝑒 𝑓 = 𝑣𝑋,𝑑𝑒𝑠/(1 + 𝜏𝑠)
𝛽𝑟𝑒 𝑓 = 𝐺𝛽,𝑑𝑒𝑠𝛿 𝑓 /(1 + 𝑇𝑠)
𝑟𝑟𝑒 𝑓 = 𝐺𝑟𝑟 ,𝑑𝑒𝑠𝛿 𝑓 /(1 + 𝑇𝑠)

(4)

where



𝐺𝛽,𝑑𝑒𝑠 =
𝐾 𝑓 𝐾𝑟 𝑙𝑟 (𝑙 𝑓 +𝑙𝑟 )+𝑚𝑣2

𝑋,𝑑𝑒𝑠𝐾 𝑓 𝑙 𝑓

𝐾 𝑓 𝐾𝑟 (𝑙 𝑓 +𝑙𝑟 )2+(𝐾 𝑓 𝑙 𝑓 −𝐾𝑟 𝑙𝑟 )𝑚𝑣2
𝑋,𝑑𝑒𝑠

𝐺𝑟,𝑑𝑒𝑠 =
𝐾 𝑓 𝐾𝑟 (𝑙 𝑓 +𝑙𝑟 )𝑣𝑋,𝑑𝑒𝑠

𝐾 𝑓 𝐾𝑟 (𝑙 𝑓 +𝑙𝑟 )2+(𝐾 𝑓 𝑙 𝑓 −𝐾𝑟 𝑙𝑟 )𝑚𝑣2
𝑋,𝑑𝑒𝑠

𝑇 =
𝑚𝑙 𝑓 𝑣𝑋,𝑑𝑒𝑠

𝐾𝑟 (𝑙 𝑓 +𝑙𝑟 ) −
[
𝑚
(
𝐾 𝑓 𝑙

2
𝑓 +𝐾𝑟 𝑙

2
𝑟

)
+𝐼𝑍 (𝐾 𝑓 +𝐾𝑟 )

]
𝑣𝑋,𝑑𝑒𝑠

𝐾 𝑓 𝐾𝑟 (𝑙 𝑓 +𝑙𝑟 )2+(𝐾 𝑓 𝑙 𝑓 −𝐾𝑟 𝑙 𝑓 )𝑚𝑣2
𝑋,𝑑𝑒𝑠

Here, 𝛿 𝑓 is the steering angle of the front wheel; 𝐼𝑍 is the yaw moment of the vehicle inertia; 𝑙 𝑓 and 𝑙𝑟 are the
distances from themass center to the front and rear axles; 𝐾 𝑓 and 𝐾𝑟 denote the front and rear wheel cornering
stiffnesses; 𝛽 and 𝑟 are the sideslip angle and yaw rate of the vehicle, respectively.

2.2. 7-DOF nonlinear vehicle model
To obtain an accurate model for MPC control in the process of predicting the vehicle state, a 7-DOF nonlinear
vehicle model, illustrated in Figure 2, is established, and it allows for free longitudinal motion, lateral motion,
yawmotion, and rotation of the fourwheels. The dynamic equilibrium equations of vehicle longitudinal, lateral,
and yaw motions can be expressed as follows:

http://dx.doi.org/10.20517/ces.2022.50
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𝑚 ( ¤𝑣𝑋 − 𝑟𝛽𝑣𝑋 ) =

(
𝐹𝑋 𝑓 𝑙 + 𝐹𝑋 𝑓 𝑖

)
cos 𝛿 𝑓 + 𝐹𝑋𝑟𝑙 + 𝐹𝑋𝑖𝑟 −

(
𝐹𝑌 𝑓 𝑙 + 𝐹𝑌 𝑓 𝑖

)
sin 𝛿 𝑓

𝑚( ¤𝛽 + 𝑟)𝑣𝑋 =
(
𝐹𝑋 𝑓 𝑙 + 𝐹𝑋 𝑓 𝑖

)
sin 𝛿 𝑓 +

(
𝐹𝑌 𝑓 𝑙 + 𝐹𝑌 𝑓 𝑖

)
cos 𝛿 𝑓 + 𝐹𝑌𝑟𝑙 + 𝐹𝑌𝑟𝑟

𝐼𝑍 ¤𝑟 =
(
𝐹𝑋 𝑓 𝑙 + 𝐹𝑋 𝑓 𝑓

)
𝑙 𝑓 sin 𝛿 𝑓 +

[ (
𝐹𝑋 𝑓 𝑖 − 𝐹𝑋 𝑓

)
cos 𝛿 𝑓 + (𝐹𝑋𝑖𝑟 − 𝐹𝑋𝑟𝑙)

] 𝐵𝑤

2
+
(
𝐹𝑌 𝑓 𝑙 + 𝐹𝑌 𝑓 𝑓

)
𝑙 𝑓 cos 𝛿 𝑓 +

(
𝐹𝑌 𝑓 𝑙 − 𝐹𝑌 𝑓 𝑖

) 𝐵𝑤

2 sin 𝛿 𝑓 − (𝐹𝑌𝑟𝑙 + 𝐹𝑌𝑟𝑟 ) 𝑙𝑟

(5)

In this equation, 𝑚 and 𝐼𝑍 denote the vehicle’s sprung mass and its moment of inertia around the Z axis,
respectively; 𝐵𝑤 is the vehicle’s wheelbase; 𝛿 𝑓 is the steering angle of the front axle, and it can be approximated
as 𝛿𝑙 = 𝛿𝑟 = 𝛿 𝑓 ; 𝐹𝑋𝑖 𝑗 and 𝐹𝑌𝑖 𝑗 denote longitudinal and lateral tire forces (where 𝑖 = 𝑓 or 𝑟 , 𝑗 = 𝑙 or 𝑟 ; 𝑓 𝑙 means
front left, 𝑓 𝑟 means front right, 𝑟𝑙 means rear left, and 𝑟𝑟 means rear right), respectively. The meanings of the
other parameters are given in Section 2.1.

The rotational dynamic equilibrium equation of each wheel is expressed as follows:

𝐼𝑤 ¤𝜔𝑖 𝑗 = 𝑇𝑖 𝑗 − 𝐹𝑋𝑖 𝑗𝑅𝑤 (𝑖 = 𝑓 , 𝑟 𝑗 = 𝑙, 𝑟) (6)

where 𝐼𝑤 is the moment of wheel inertia around each axis of rotation, 𝑅𝑤 is the effective radius of each wheel,
𝜔𝑖 𝑗 denotes the rotation rate of each wheel, and 𝑇𝑖 𝑗 is the driving torque 𝑇𝑑𝑖 𝑗 or braking torque 𝑇𝑏𝑖 𝑗 of each
in-wheel motor.

2.3. MF tire model
The general form of the MF tire model [20] is as follows:

𝑌 (𝑥) = 𝐷 sin{𝐶 arctan[𝐵𝑥 − 𝐸 (𝐵𝑥 − arctan(𝐵𝑥))]} (7)

where 𝑥 is either the longitudinal slip ratio 𝜆𝑖 𝑗 or lateral slip angle 𝛼𝑖 𝑗 . 𝐵, 𝐶, 𝐷, and 𝐸 denote the stiffness
factor, shape factor, peak value, and curvature factor, respectively. The tire longitudinal slip ratio of each wheel
is expressed as follows:

𝜆𝑖 𝑗 =


𝜔𝑖 𝑗𝑅−𝑣𝑋𝑖 𝑗
𝜔𝑖 𝑗𝑅𝑤

Driving Conditon
𝑣𝑋𝑖 𝑗−𝜔𝑖 𝑗𝑅

𝑣𝑋𝑖 𝑗
Braking Conditon

(𝑖 = 𝑓 , 𝑟 𝑗 = 𝑙, 𝑟) (8)

where 𝑣𝑋𝑥𝑦 denotes the longitudinal translational velocity of each wheel, which can be calculated as follows:


𝑣𝑋 𝑓 𝑖 = (𝑣𝑋 − 𝑟𝐵𝑤/2) cos 𝛿 𝑓 +

(
𝑣𝑋 𝛽 + 𝑟𝑙 𝑓

)
sin 𝛿 𝑓

𝑣𝑋 𝑓 𝑟 = (𝑣𝑋 + 𝑟𝐵𝑤/2) cos 𝛿 𝑓 +
(
𝑣𝑋 𝛽 + 𝑟𝑙 𝑓

)
sin 𝛿 𝑓

𝑣𝑋𝑟𝑙 = 𝑣𝑋 − 𝑟𝐵𝑤/2
𝑣𝑋𝑟𝑟 = 𝑣𝑋 + 𝑟𝐵𝑤/2

(9)

The tire lateral sideslip angle of each wheel can be expressed as follows:

http://dx.doi.org/10.20517/ces.2022.50
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Table 1. MF tire model parameters 𝑎0–𝑎8 and 𝑏0–𝑏6

Parameter 𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8

Value 1.37 -0.0039 8.78 0.0076 5.1 -0.00016 0 0.0001 0.3
Parameter 𝑏0 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6

Value 1.388 -0.049 99.7 2,311 8.97 0.662 -1,323

{
𝛼 𝑓 𝑙 =

𝛽𝑣𝑋+𝑟𝑙 𝑓
𝑣𝑋−𝑟𝐵𝑤/2 − 𝛿 𝑓 𝛼𝑟𝑙 =

𝛽𝑣𝑋−𝑟𝑙𝑟
𝑣𝑋−𝑟𝐵𝑤/2

𝛼 𝑓 𝑟 =
𝛽𝑣𝑋+𝑟𝑙 𝑓
𝑣𝑋+𝑟𝐵𝑤/2 − 𝛿 𝑓 𝛼𝑟𝑟 =

𝛽𝑣𝑋−𝑟𝑙𝑟
𝑣𝑋+𝑟𝐵𝑤/2

(10)

The parameters 𝐵, 𝐶, 𝐷, and 𝐸 in the longitudinal MF tire model are given as follows:

𝐶 = 𝑎0, 𝐷 = 𝜇
(
𝑎1𝐹

2
𝑍 + 𝑎2𝐹𝑍

)
, 𝐵 =

(
𝑎3𝐹

2
𝑍 + 𝑎4𝐹𝑍

)
𝑒𝜎5𝐹𝑧/(𝐶𝐷), 𝐸 = 𝑎6𝐹

2
𝑍 + 𝑎7𝐹𝑍 + 𝑎8

The parameters 𝐵, 𝐶, 𝐷, and 𝐸 in the lateral MF tire model are given as follows:

𝐶 = 𝑏0, 𝐷 = 𝜇
(
𝑏1𝐹

2
𝑍 + 𝑏2𝐹𝑍

)
, 𝐵 = 𝑏3 sin [2 arctan (𝐹𝑍/𝑏4)] /(𝐶𝐷), 𝐸 = 𝑏5𝐹𝑍 + 𝑏6

where 𝑎0–𝑎8 and 𝑏0–𝑏6 can be calibrated by conducting tire force tests, and their values are listed in Table 1.

𝐹𝑍 is the tire vertical force, and the vertical force of each tire can be expressed as follows:


𝐹𝑍 𝑓 𝑙 = 𝑚𝑤𝑔 + 𝑚𝑔𝑙𝑟/

(
𝑙 𝑓 + 𝑙𝑟

)
− 𝑚 ¤𝑣𝑋ℎ/

(
𝑙 𝑓 + 𝑙𝑟

)
− 𝑚(𝑟 + ¤𝛽)𝑣𝑋ℎ𝑙𝑟/

[
𝐵𝑤

(
𝑙 𝑓 + 𝑙𝑟

) ]
𝐹𝑍 𝑓 𝑟 = 𝑚𝑤𝑔 + 𝑚𝑔𝑙𝑟/

(
𝑙 𝑓 + 𝑙𝑟

)
− 𝑚 ¤𝑣𝑋ℎ/

(
𝑙 𝑓 + 𝑙𝑟

)
+ 𝑚(𝑟 + ¤𝛽)𝑣𝑋ℎ𝑙𝑟/

[
𝐵𝑤

(
𝑙 𝑓 + 𝑙𝑟

) ]
𝐹𝑍𝑟𝑙 = 𝑚𝑤𝑔 + 𝑚𝑔𝑙 𝑓 /

(
𝑙 𝑓 + 𝑙𝑟

)
+ 𝑚 ¤𝑣𝑋ℎ/

(
𝑙 𝑓 + 𝑙𝑟

)
− 𝑚(𝑟 + ¤𝛽)𝑣𝑋ℎ𝑙 𝑓 /

[
𝐵𝑤

(
𝑙 𝑓 + 𝑙𝑟

) ]
𝐹𝑍𝑟𝑟 = 𝑚𝑤𝑔 + 𝑚𝑔𝑙 𝑓 /

(
𝑙 𝑓 + 𝑙𝑟

)
+ 𝑚 ¤𝑣𝑋ℎ/

(
𝑙 𝑓 + 𝑙𝑟

)
+ 𝑚(𝑟 + ¤𝛽)𝑣𝑋ℎ𝑙 𝑓 /

[
𝐵𝑤

(
𝑙 𝑓 + 𝑙𝑟

) ] (11)

where 𝑚𝑤 denotes tire mass, and 𝑔 denotes gravitational acceleration. ℎ is the distance between the roll center
and sprung mass center. The longitudinal and lateral tire forces are limited in the adhesion ellipse. Therefore,
the tire force calculated using the MF model can be modified using the following expressions:


𝐹𝑋 = |𝜎𝑋 |

𝜎 𝑌 (𝜆) 𝐹𝑌 = |𝜎𝑌 |
𝜎 𝑌 (𝛼)

𝐾𝑋 = 𝜕𝐹𝑋
𝜕𝜆 𝐾𝑌 = 𝜕𝐹𝑌

𝜕𝛼

𝜎𝑋 = 𝜆
1+𝜆 𝜎𝑌 = tan𝛼

1+𝜆 𝜎 =
√
𝜎2
𝑋 + 𝜎2

𝑌

(12)

3. TIME-VARYING MPC
Model accuracy is the basis and key advantage of the MPC control method. To reflect the accuracy of the
vehicle model to the extent possible, we utilize the nonlinear 7-DOF vehicle model developed in Section 2 as
the basis of our MPC control strategy.

The longitudinal speed, sideslip angle, and yaw rate of the vehicle are set as the state variables of the pre-
dictive state space equation, which is expressed as 𝑥 = [𝑣𝑋 , 𝛽, 𝑟]𝑇 . The longitudinal total force and the yaw
moment due to differences between the longitudinal forces of the four tires are set as the control variables:
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𝑢 = [𝐹𝑋 ,Δ𝑀𝑍 ]𝑇 . The output variables of this system are the same as the state variables, that is, 𝑦 = [𝑣𝑋 , 𝛽, 𝑟]𝑇 .
The two control variables can be expressed approximately in terms of the longitudinal force of each tire, as
follows:

{
𝐹𝑋 = 𝐹𝑋 𝑓 𝑙 + 𝐹𝑋 𝑓 𝑟 + 𝐹𝑋𝑟𝑙 + 𝐹𝑋𝑟𝑟
Δ𝑀𝑍 =

(
𝐹𝑋 𝑓 𝑟 − 𝐹𝑋 𝑓 𝑙 + 𝐹𝑋𝑟𝑟 − 𝐹𝑋𝑟𝑙

)
𝐵𝑤/2

(13)

According to Eq. (5), the state-space representation of this control system is as follows:

¤𝑥 = 𝑓 (𝑥, 𝑢) (14)

To reduce computational cost, the system state-space equation is linearized as follows:

{
¤𝑥 = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥

(15)

where 𝐴 = 𝜕 𝑓 (𝑥,𝑢)
𝜕𝑥 =

[
𝜕 𝑓
𝜕𝑣𝑋

𝜕 𝑓
𝜕𝛽

𝜕 𝑓
𝜕𝑟

]
, 𝐵 = 𝜕 𝑓 (𝑥,𝑢)

𝜕𝑢 =

[
1/𝑚 0 0

0 0 1/𝐼𝑧

]𝑇
, 𝐶 = diag(1, 1, 1)

𝜕 𝑓

𝜕𝑣𝑋
=



𝑟𝛽 + 1
𝑚

[(
𝜕𝐹𝑋 𝑓 𝑙

𝜕𝑣𝑋
+ 𝜕𝐹𝑋 𝑓 𝑟

𝜕𝑣𝑋

)
cos 𝛿 𝑓 + 𝜕𝐹𝑋𝑟𝑙

𝜕𝑣𝑋
+ 𝜕𝐹𝑋𝑟𝑟

𝜕𝑣𝑋
−
(
𝜕𝐹𝑌 𝑓 𝑙

𝜕𝑣𝑋
+ 𝜕𝐹𝑌 𝑓 𝑟

𝜕𝑣𝑋

)
sin 𝛿 𝑓

]
;

1
𝑚𝑣𝑋

[(
𝜕𝐹𝑋 𝑓 𝑙

𝜕𝑣𝑋
+ 𝜕𝐹𝑋 𝑓 𝑟

𝜕𝑣𝑋

)
sin 𝛿 𝑓 +

(
𝜕𝐹𝑌 𝑓 𝑙

𝜕𝑣𝑋
+ 𝜕𝐹𝑌 𝑓 𝑟

𝜕𝑣𝑋

)
cos 𝛿 𝑓 + 𝜕𝐹𝑌𝑟𝑙

𝜕𝑣𝑋
+ 𝜕𝐹𝑌𝑟𝑟

𝜕𝑣𝑋

]
− 1
𝑚𝑣2

𝑋

[ (
𝐹𝑋 𝑓 𝑙 + 𝐹𝑋 𝑓 𝑟

)
sin 𝛿 𝑓 +

(
𝐹𝑌 𝑓 𝑙 + 𝐹𝑌 𝑓 𝑟

)
cos 𝛿 𝑓 + 𝐹𝑌𝑟𝑙 + 𝐹𝑌𝑟𝑟

]
;

1
𝐼𝑍

[(
𝜕𝐹𝑋 𝑓 𝑙

𝜕𝑣𝑋
+ 𝜕𝐹𝑋 𝑓 𝑟

𝜕𝑣𝑋

)
𝑙 𝑓 sin 𝛿 𝑓 +

[(
𝜕𝐹𝑋 𝑓 𝑟

𝜕𝑣𝑋
− 𝜕𝐹𝑋 𝑓 𝑙

𝜕𝑣𝑋

)
cos 𝛿 𝑓 +

(
𝜕𝐹𝑋𝑟𝑟
𝜕𝑣𝑋

− 𝜕𝐹𝑋𝑟𝑙
𝜕𝑣𝑋

)]
𝐵𝑤

2

]
+ 1
𝐼𝑍

[(
𝜕𝐹𝑌 𝑓 𝑙

𝜕𝑣𝑋
+ 𝜕𝐹𝑌 𝑓 𝑟

𝜕𝑣𝑋

)
𝑙 𝑓 cos 𝛿 𝑓 +

(
𝜕𝐹𝑌 𝑓 𝑙

𝜕𝑣𝑋
− 𝜕𝐹𝑌 𝑓 𝑟

𝜕𝑣𝑋

)
𝐵𝑤

2 sin 𝛿 𝑓 −
(
𝜕𝐹𝑌𝑟𝑙
𝜕𝑣𝑋

+ 𝜕𝐹𝑌𝑟𝑟
𝜕𝑣𝑋

)
𝑙𝑟

]


(16a)

𝜕 𝑓

𝜕𝛽
=



𝑟𝑣𝑋 + 1
𝑚

[(
𝜕𝐹𝑋 𝑓 𝑙

𝜕𝛽 + 𝜕𝐹𝑋 𝑓 𝑟

𝜕𝛽

)
cos 𝛿 𝑓 + 𝜕𝐹𝑋𝑟𝑙

𝜕𝛽 + 𝜕𝐹𝑋𝑟𝑟
𝜕𝛽 −

(
𝜕𝐹𝑌 𝑓 𝑙

𝜕𝛽 + 𝜕𝐹𝑌 𝑓 𝑟

𝜕𝛽

)
sin 𝛿 𝑓

]
;

1
𝑚𝑣𝑋

[(
𝜕𝐹𝑋 𝑓 𝑙

𝜕𝛽 + 𝜕𝐹𝑋 𝑓 𝑟

𝜕𝛽

)
sin 𝛿 𝑓 +

(
𝜕𝐹𝑌 𝑓 𝑙

𝜕𝛽 + 𝜕𝐹𝑌 𝑓 𝑟

𝜕𝛽

)
cos 𝛿 𝑓 + 𝜕𝐹𝑌𝑟𝑙

𝜕𝛽 + 𝜕𝐹𝑌𝑟𝑟
𝜕𝛽

]
;

1
𝐼𝑧

[(
𝜕𝐹𝑋 𝑓 𝑙

𝜕𝛽 + 𝜕𝐹𝑋 𝑓 𝑟

𝜕𝛽

)
𝑙 𝑓 sin 𝛿 𝑓 +

[(
𝜕𝐹𝑋 𝑓 𝑟

𝜕𝛽 − 𝜕𝐹𝑋 𝑓 𝑙

𝜕𝛽

)
cos 𝛿 𝑓 +

(
𝜕𝐹𝑋𝑟𝑟
𝜕𝛽 − 𝜕𝐹𝑋𝑟𝑙

𝜕𝛽

)]
𝐵𝑤

2

]
+ 1
𝐼𝑧

[(
𝜕𝐹𝑌 𝑓 𝑙

𝜕𝛽 + 𝜕𝐹𝑌 𝑓 𝑟

𝜕𝛽

)
𝑙 𝑓 cos 𝛿 𝑓 +

(
𝜕𝐹𝑌 𝑓 𝑙

𝜕𝛽 − 𝜕𝐹𝑌 𝑓 𝑟

𝜕𝛽

)
𝐵𝑤

2 sin 𝛿 𝑓 −
(
𝜕𝐹𝑌𝑟𝑙
𝜕𝛽 + 𝜕𝐹𝑌𝑟𝑟

𝜕𝛽

)
𝑙𝑟

]


𝜕 𝑓

𝜕𝑟
=



𝛽𝑣𝑋 + 1
𝑚

[(
𝜕𝐹𝑋 𝑓 𝑙

𝜕𝑟 + 𝜕𝐹𝑋 𝑓 𝑟

𝜕𝑟

)
cos 𝛿 𝑓 + 𝜕𝐹𝑋𝑟𝑙

𝜕𝑟 + 𝜕𝐹𝑋𝑟𝑟
𝜕𝑟 −

(
𝜕𝐹𝑌 𝑓 𝑙

𝜕𝑟 + 𝜕𝐹𝑌 𝑓 𝑟

𝜕𝑟

)
sin 𝛿 𝑓

]
;

−1 + 1
𝑚𝑣𝑋

[(
𝜕𝐹𝑋 𝑓 𝑙

𝜕𝑟 + 𝜕𝐹𝑋 𝑓 𝑟

𝜕𝑟

)
sin 𝛿 𝑓 +

(
𝜕𝐹𝑌 𝑓 𝑙

𝜕𝑟 + 𝜕𝐹𝑌 𝑓 𝑟

𝜕𝑟

)
cos 𝛿 𝑓 + 𝜕𝐹𝑌𝑟𝑙

𝜕𝑟 + 𝜕𝐹𝑌𝑟𝑟
𝜕𝑟

]
;

1
𝐼𝑧

[(
𝜕𝐹𝑋 𝑓 𝑙

𝜕𝑟 + 𝜕𝐹𝑋 𝑓 𝑟

𝜕𝑟

)
𝑙 𝑓 sin 𝛿 𝑓 +

[(
𝜕𝐹𝑋 𝑓 𝑟

𝜕𝑟 − 𝜕𝐹𝑋 𝑓 𝑙

𝜕𝑟

)
cos 𝛿 𝑓 +

(
𝜕𝐹𝑋𝑟𝑟
𝜕𝑟 − 𝜕𝐹𝑋𝑟𝑙

𝜕𝑟

)]
𝐵𝑤

2

]
+ 1
𝐼𝑍

[(
𝜕𝐹𝑌 𝑓 𝑙

𝜕𝑟 + 𝜕𝐹𝑌 𝑓 𝑟

𝜕𝑟

)
𝑙 𝑓 cos 𝛿 𝑓 +

(
𝜕𝐹𝑌 𝑓 𝑙

𝜕𝑟 − 𝜕𝐹𝑌 𝑓 𝑟

𝜕𝑟

)
𝐵𝑤

2 sin 𝛿 𝑓 −
(
𝜕𝐹𝑌𝑟𝑙
𝜕𝑟 + 𝜕𝐹𝑌𝑟𝑟

𝜕𝑟

)
𝑙𝑟

]


(16b)

(16c)
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The partial derivative in Eq. (15) can be calculated as follows:

[
𝜕𝐹𝑋𝑖 𝑗

𝜕𝑣𝑋

𝜕𝐹𝑋𝑖 𝑗

𝜕𝛽

𝜕𝐹𝑋𝑖 𝑗

𝜕𝑟

]
= 𝐾𝑋𝑖 𝑗

[ ¤𝜆𝑋𝑖 𝑗
¤𝑣𝑋

¤𝜆𝑋𝑖 𝑗
¤𝛽

¤𝜆𝑋𝑖 𝑗
¤𝑟

]
(17a)



𝜕𝐹𝑌 𝑓 𝑙

𝜕𝑣𝑋

𝜕𝐹𝑌 𝑓 𝑙

𝜕𝛽

𝜕𝐹𝑌 𝑓 𝑙

𝜕𝑟
𝜕𝐹𝑌 𝑓 𝑟

𝜕𝑣𝑋

𝜕𝐹𝑌 𝑓 𝑟

𝜕𝛽

𝜕𝐹𝑌 𝑓 𝑟

𝜕𝑟
𝜕𝐹𝑌𝑟𝑙
𝜕𝑣𝑋

𝜕𝐹𝑌𝑟𝑙
𝜕𝛽

𝜕𝐹𝑌𝑟𝑙
𝜕𝑟

𝜕𝐹𝑌𝑟𝑟
𝜕𝑣𝑋

𝜕𝐹𝑌𝑟𝑟
𝜕𝛽

𝜕𝐹𝑌𝑟𝑟
𝜕𝑟


=



𝐾𝑌 𝑓 𝑙
−𝑟 (𝛽𝐵𝑤/2+𝑙 𝑓 )
(𝑣𝑋−𝑟𝐵𝑤/2)2

𝐾𝑌 𝑓 𝑙
𝑣𝑋

𝑣𝑋−𝑟𝐵𝑤/2 𝐾𝑌 𝑓 𝑙
𝑣𝑋 𝑙 𝑓 +𝛽𝑣𝑋𝐵𝑤/2
(𝑣𝑋−𝑟𝐵𝑤/2)2

𝐾𝑌 𝑓 𝑟
𝑟 (𝛽𝐵𝑤/2−𝑙 𝑓 )
(𝑣𝑋+𝑟𝐵𝑤/2)2

𝐾𝑌 𝑓 𝑟
𝑣𝑋

𝑣𝑋+𝑟𝐵𝑤/2 𝐾𝑌 𝑓 𝑟
𝑣𝑋 𝑙 𝑓 −𝛽𝑣𝑋𝐵𝑤/2
(𝑣𝑋+𝑟𝐵𝑤/2)2

𝐾𝑌 𝑓 𝑙
−𝑟 (𝛽𝐵𝑤/2−𝑙 𝑓 )
(𝑣𝑋−𝑟𝐵𝑤/2)2

𝐾𝑌 𝑓 𝑙
𝑣𝑋

𝑣𝑋−𝑟𝐵𝑤/2 𝐾𝑌 𝑓 𝑙
−𝑣𝑋 𝑙𝑟+𝛽𝑣𝑋𝐵𝑤/2
(𝑣𝑋−𝑟𝐵𝑤/2)2

𝐾𝑌 𝑓 𝑙
𝑟 (𝛽𝐵𝑤/2+𝑙 𝑓 )
(𝑣𝑋+𝑟𝐵𝑤/2)2

𝐾𝑌 𝑓 𝑙
𝑣𝑋

𝑣𝑋+𝑟𝐵𝑤/2 𝐾𝑌 𝑓 𝑙
−𝑣𝑋 𝑙 𝑓 −𝛽𝑣𝑋𝐵𝑤/2
(𝑣𝑋+𝑟𝐵𝑤/2)2


The parameters 𝐾𝑋𝑖 𝑗 and 𝐾𝑌𝑖 𝑗 can be obtained from the MF tire model by using Eq. (12). The parameters in
matrix 𝐴, which is detailed in Eqs. (16) and (17), can be expressed using the results of the 𝑘-th step. Then, Eq.
(15) can be discretized as follows:

{
𝑥(𝑘 + 1) = 𝐺 (𝑘)𝑥(𝑘) + 𝐻 (𝑇)𝑢(𝑘)
𝑦(𝑘) = 𝐶𝑥(𝑘) (18)

where {
𝐺 (𝑘) = 𝑒𝐴(𝑘)𝑇 ≈ 𝑇𝐴(𝑘) + 𝐼
𝐻 (𝑇) =

∫ 𝑇
0 𝑒𝐴𝑇𝑑𝑡 · 𝐵 ≈ 𝑇𝐵

The discrete linear equation for MPC control can be rewritten in the following form:

{
Δ𝑥(𝑘 + 1) = 𝐺 (𝑘)Δ𝑥(𝑘) + 𝐻Δ𝑢(𝑘)
𝑦(𝑘) = 𝑦(𝑘 − 1) + 𝐶Δ𝑥(𝑘) (19)

where Δ𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑘 − 1), and Δ𝑥(𝑘) = 𝑥(𝑘) − 𝑥(𝑘 − 1). The predictive time domain of this system is
composed of 𝑛𝑝 steps, control time domain of this system is composed of 𝑛𝑐 steps, and the relationship 𝑛𝑐 ≤ 𝑛𝑝
holds. In this work, 𝑛𝑝 and 𝑛𝑐 are set to 8 and 3, respectively. The 𝑛𝑐-step control input vector and 𝑛𝑝-step
predictive output vector can be expressed as follows:

{
Δ𝑈 (𝑘) =

[
Δ𝑢(𝑘) Δ𝑢(𝑘 + 1) · · · Δ𝑢(𝑘 + 𝑛𝑐 − 1)

]𝑇
𝑌 (𝑘) =

[
𝑦(𝑘 + 1) 𝑦(𝑘 + 2) · · · 𝑦(𝑘 + 𝑛𝑐) · · · 𝑦(𝑘 + 𝑛𝑝)

]𝑇 (20)

Therefore, the output vector of each future predictive 𝑛𝑝 steps is given as follows:

(17b)
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𝑌 (𝑘) = 𝑆𝑥 (𝑘)𝑥(𝑘) + 𝐼𝑦𝑦(𝑘) + 𝑆𝑢 (𝑘)Δ𝑈 (𝑘) (21)

where 𝑆𝑥 (𝑘) =



𝐶𝐺
2∑
𝑖=1
𝐶𝐺𝑖

...
𝑛𝑝∑
𝑖=1
𝐶𝐺𝑖

 (𝑘)
, 𝐼𝑦 =


𝐼𝑛𝑐×𝑛𝑐
𝐼𝑛𝑐×𝑛𝑐
...

𝐼𝑛𝑐×𝑛𝑐

𝑛𝑝×1

,

𝑆𝑢 (𝑘) =



𝐶𝐻 0 0 · · · 0
2∑
𝑖=1
𝐶𝐺𝑖−1𝐻 𝐶𝐻 0 · · · 0

...
...

...
. . .

...
𝑛𝑐∑
𝑖=1
𝐶𝐺𝑖−1𝐻

𝑛𝑐−1∑
𝑖=1

𝐶𝐺𝑖−1𝐻 · · · · · · 𝐶𝐻

...
...

...
. . .

...
𝑛𝑝∑
𝑖=1
𝐶𝐺𝑖−1𝐻

𝑛𝑝−1∑
𝑖=1

𝐶𝐺𝑖−1𝐻 · · · · · ·
𝑛𝑝−𝑛𝑐+1∑
𝑖=1

𝐶𝐺𝑖−1𝐻

 (𝑘)
To track the reference vehicle model as well as possible, a 3-DOF vehicle model is designed as the reference
model. According to Eq. (4), the reference discrete output vector can be obtained as follows:

𝑦𝑟 (𝑘) = 𝐺𝑟 (𝑇)𝑦𝑟 (𝑘 − 1) + 𝐻𝑟 (𝑇)𝑢𝑟 (𝑘 − 1) (22)

where 𝑢𝑟 (𝑘) =
[
𝑣𝑋,𝑑𝑒𝑠 (𝑘) 𝛽𝑑𝑒𝑠 (𝑘) 𝑟𝑑𝑒𝑠 (𝑘)

]𝑇
, 𝑦𝑟 (𝑘) =

[
𝑣𝑋,𝑟𝑒 𝑓 (𝑘) 𝛽𝑟𝑒 𝑓 (𝑘) 𝑟𝑟𝑒 𝑓 (𝑘)

]𝑇 ,
𝐴𝑟 = 𝑑𝑖𝑎𝑔(1/𝜏, 1/𝑇, 1/𝑇), 𝐺𝑟 (𝑇) = 𝐼 − 𝑇𝐴𝑟 , and 𝐻𝑟 (𝑇) = 𝑇𝐴𝑟 . The 𝑛𝑝-step predictive output vector of the
reference system can be expressed as follows:

𝑌𝑟 (𝑘) =
[
𝑦𝑟 (𝑘 + 1) 𝑦𝑟 (𝑘 + 2) · · · 𝑦𝑟 (𝑘 + 𝑛𝑐) · · · 𝑦𝑟 (𝑘 + 𝑛𝑝)

]𝑇 (23)

Accordingly, the output vector of each future predictive 𝑛𝑝 steps of the reference system is given as follows:

𝑌𝑟 (𝑘) = 𝑊𝑦𝑟 𝑦𝑟 (𝑘) +𝑊𝑢𝑟𝑢𝑟 (𝑘) (24)

where𝑊𝑦𝑟 =
[
𝐺𝑟 𝐺2

𝑟 · · · 𝐺
𝑛𝑝
𝑟

]𝑇 , and𝑊𝑢𝑟 =

[
𝐻𝑟

2∑
𝑖−1

𝐺𝑖−1
𝑟 𝐻 · · ·

𝑛𝑝∑
𝑖−1

𝐺𝑖−1
𝑟 𝐻

]𝑇
. In addition, the

following relationship 𝑢𝑟 (𝑘 + 1/𝑘) = 𝑢𝑟 (𝑘)(𝑖 = 1, 2 · · · 𝑛𝑝) holds.
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The objective function of this MPC strategy has the following quadratic form:

𝐽 (𝑘) =
𝑛𝑝∑
𝑖=1

‖𝑦(𝑘 + 𝑖) − 𝑦𝑟 (𝑘 + 𝑖)‖2
𝑄𝑖

+
𝑛𝑒∑
𝑖=1

‖Δ𝑢(𝑘 + 𝑖 − 1)‖2
𝑅𝑖
+ Θ (25)

where 𝑄𝑖 and 𝑅𝑖 are the weighting matrices of the first and second items, respectively. Θ represents a positive
relaxation factor. The objective of this function is to follow the ideal model smoothly and accurately. The first
term of this function describes the ability of the actual vehicle model to track the reference model. The second
term indicates the change in the input vector, which can restrict changes to the input variables. Meanwhile,
the input, input increment, and output variables are constrained in a domain that can be expressed as follows:


𝑢min(𝑘 + 𝑖) ≤ 𝑢(𝑘 + 𝑖) ≤ 𝑢max(𝑘 + 𝑖) (𝑖 = 0, 1, · · · , 𝑛𝑐 − 1)
Δ𝑢min(𝑘 + 𝑖) ≤ Δ𝑢(𝑘 + 𝑖) ≤ Δ𝑢max(𝑘 + 𝑖) (𝑖 = 0, 1, · · · , 𝑛𝑐 − 1)
𝑦min(𝑘 + 𝑖) ≤ 𝑦(𝑘 + 𝑖) ≤ 𝑦max(𝑘 + 𝑖)

(
𝑖 = 0, 1, · · · , 𝑛𝑝 − 1

) (26)

Because of constraints, it is generally impossible to obtain the analytical solution to this problem. For this
reason, it is necessary to transform it into a quadratic programming (QP) problem to obtain a numerical
solution. Therefore, we convert the above constraint equations into the form 𝐶𝑍 ≥ 𝑏, as follows.



[
−𝐿Δ𝑈
𝐿Δ𝑈

]
Δ𝑈 (𝑘) ≥

[
−Δ𝑈max(𝑘)
Δ𝑈min(𝑘)

]
[
−𝐿𝑈
𝐿𝑈

]
Δ𝑈 (𝑘) ≥

[
𝑈′(𝑘 − 1) −𝑈max (𝑘)
𝑈min(𝑘) −𝑈′(𝑘 − 1)

]
[
−𝑆𝑢
𝑆𝑢

]
Δ𝑈 (𝑘) ≥

[
𝑌 ′(𝑘 − 1) − 𝑌max(𝑘)
𝑌min (𝑘) − 𝑌 ′(𝑘 − 1)

] (27)

where 𝐿Δ𝑈 , Δ𝑈max(𝑘), Δ𝑈min(𝑘), 𝐿𝑈 , 𝑈′(𝑘 − 1), 𝑈max(𝑘), 𝑈min(𝑘), 𝑌 ′(𝑘 − 1), 𝑌max(𝑘), and 𝑌min(𝑘) can be
calculated according as described in [21]. Then, this question can be described as a standard QP problem. In
this manner, the solution of this problem without the constraint equation can be set as the initial solution,
which can be expressed as follows:

Δ𝑈 (𝑘, 0) =
(
𝑆𝑇𝑢 (𝑘 − 1)𝑄𝑇𝑄𝑆𝑢 (𝑘 − 1) + 𝑅𝑇𝑅

)
𝑆𝑇𝑢 (𝑘 − 1)𝑄𝑇𝑄𝐸 (𝑘) (28)

where 𝐸 (𝑘) = 𝑌𝑟 (𝑘)−𝑆𝑥 (𝑘−1)Δ𝑥(𝑘)− 𝐼𝑦𝑦(𝑘) he optimal solution of the input vectorΔ𝑈∗(𝑘) can be calculated
using the algorithm of the QP problem with constraints. Then, the closed-loop control input can be obtained
as follows:

Δ𝑢(𝑘) =
[
𝐼2×2 0 · · · 0

]
1×𝑛𝑒

Δ𝑈∗(𝑘) (29)
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Table 2. Parameters of vehicle and in-wheel motors

Parameter Description Value/Unit Parameter Description Value/Unit

𝑚 Vehicle mass 812 kg 𝐵𝑤 Wheelbase 1.65 m
𝑚𝑤 Vehicle mass 20 kg 𝑃𝑒 Rated power 7.5 KW
𝑙 𝑓 Distance from mass center to front axle 1.1 m 𝑃𝑚 Peak power 12 KW
𝑙𝑟 Distance from mass center to rear axle 1.25 m 𝑛𝑒 Rated speed 750 rpm
𝐼𝑍 Moment of vehicle inertia around Z axis 808 kg ·m2 𝑛𝑚 Peak speed 1,000 rpm
𝐼𝑤 Moment of tire inertia around rotation axis 0.5 kg ·m2 𝑇𝑒 Rated torque 150 Nm
ℎ Distance between roll center and center of sprung mass 0.27 m 𝑇𝑚 Peak torque 250 Nm
𝑅𝑤 Distance between roll center and center of sprung mass 0.29 m

4. TORQUE ALLOCATION ALGORITHM
The proposed torque allocation algorithm based on the equal adhesion rate rule is described in this section.
We adopt the equal adhesion rate rule by considering only the adhesion rate of longitudinal force because the
deviations due to the lateral and longitudinal forces are excessive, meaning that no solution can be obtained.
Therefore, the longitudinal forces on the left and right sides of the vehicle are expressed as follows.

{ ��𝐹𝑋 𝑓 𝑙 �� /𝐹𝑍 𝑓 𝑙 = |𝐹𝑋𝑟𝑙 | /𝐹𝑍𝑟𝑙��𝐹𝑋 𝑓 𝑟 �� /𝐹𝑍 𝑓 𝑟 = |𝐹𝑋𝑟𝑟 | /𝐹𝑍𝑟𝑟
(30)

The total longitudinal forces on the left and right sides of the vehicle can be calculated as follows:

{
𝐹𝑋 𝑓 𝑙 + 𝐹𝑋𝑟𝑙 = 𝐹𝑋/2 + Δ𝑀𝑍/𝐵𝑤
𝐹𝑋 𝑓 𝑟 + 𝐹𝑋𝑟𝑟 = 𝐹𝑋/2 − Δ𝑀𝑍/𝐵𝑤

(31)

Therefore, each longitudinal tire force can be solved quickly by using Eqs. (30) and (31). By using the solved
longitudinal tire force and algorithm of equal-adhesion-rate-rule, the torque acting on each wheel can be
determined as follows.


𝑇 𝑓 𝑙 =

(
𝑇𝑡𝑜𝑡𝑎𝑙𝐹𝑋 𝑓 𝑙

)
/
(
𝐹𝑋 𝑓 𝑙 + 𝐹𝑋𝑟𝑙 + 𝐹𝑋 𝑓 𝑟 + 𝐹𝑋𝑟𝑟

)
𝑇 𝑓 𝑟 =

(
𝑇𝑡𝑜𝑡𝑎𝑙𝐹𝑋 𝑓 𝑟

)
/
(
𝐹𝑋 𝑓 𝑙 + 𝐹𝑋𝑟𝑙 + 𝐹𝑋 𝑓 𝑟 + 𝐹𝑋𝑟𝑟

)
𝑇𝑟𝑙 = (𝑇𝑡𝑜𝑡𝑎𝑙𝐹𝑋𝑟𝑙) /

(
𝐹𝑋 𝑓 𝑙 + 𝐹𝑋𝑟𝑙 + 𝐹𝑋 𝑓 𝑟 + 𝐹𝑋𝑟𝑟

)
𝑇𝑟𝑟 = (𝑇𝑡𝑜𝑡𝑎𝑙𝐹𝑋𝑟𝑟 ) /

(
𝐹𝑋 𝑓 𝑙 + 𝐹𝑋𝑟𝑙 + 𝐹𝑋 𝑓 𝑟 + 𝐹𝑋𝑟𝑟

) (32)

5. CO-SIMULATION AND RESULTS
To verify the proposed control algorithm, we compared it to the proportional-integral-derivative (PID) control
strategy. The co-simulation method was used for this purpose. Two main typical driving conditions, namely
1⃝ double lane change (DLC) maneuver under high-adhesion-coefficient condition (𝜇 = 0.9) and 2⃝ DLC
maneuver under low-adhesion-coefficient condition (𝜇 = 0.3), were considered. The parameters of the vehicle
and in-wheel motors are summarized in Table 2.

The consistency of human driving cannot be guaranteed, and it would be unsuitable for real drivers to drive a
vehicle at dangerously high speeds or on low-adhesion roads. For this reason, we conducted a simulation to
validate the effectiveness of the proposed control scheme.
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Figure 3. State comparison of different control modes during DLC maneuver. (𝜇 = 0.9, 𝑣𝑥 = 100 km/h).

5.1. DLC maneuver on high-adhesion road
The adhesion coefficient on the high-adhesion road was set to 0.9, and the reference vehicle velocity was set
to 100 km/h. Figure 3. depicts a comparison of the typical state parameters by using different control meth-
ods, which are without active control, hierarchical time-varying MPC control, and PID control. According
to Figure 3A, the velocity fluctuation due to the proposed hierarchical time-varying MPC control was smaller
than that due to PID control. As shown in Figure 3B, compared to the without active control and PID control
methods, the hierarchical time-varying MPC control method decreased the maximum lateral displacement
by approximately 0.25 m and 0.11 m, respectively. The yaw rate and sideslip angle of the vehicle under MPC
control were able to follow the ideal curve furthest, which effectively enhanced vehicle handling stability and
safety, as depicted in Figure 3C and D.

The adhesion rate can be expressed as follows:

𝜍𝑖 𝑗 =
��𝐹𝑋𝑖 𝑗 �� /𝐹𝑍𝑖 𝑗 (33)

where 𝑖 = 𝑓 or 𝑟 , 𝑗 = 𝑙 or 𝑟 , and 𝑓 𝑙 denotes front left, 𝑓 𝑟 denotes front right, 𝑟𝑙 denotes rear left, and 𝑟𝑟 denotes
rear right.

The torque and adhesion rate of each tire are depicted in Figure 4. According to Figure 4A, the torque acting
on each tire changed gently. Moreover, the torques acting on the left front and rear tires were similar but not
equal. Likewise, the torques acting on the right front and rear tires were similar but not equal. However, the
adhesion rates of the left two tires were almost equal, and the adhesion rates of the two right tires were almost
equal, as depicted in Figure 4B. This indicates that the proposed algorithm can enhance vehicle safety and
ensure that the adhesion rates of the two tires on the same side are as similar as possible.

5.2. DLC maneuver on low-adhesion road
Generally, a low-adhesion road can reflect the control effect more remarkably. The adhesion coefficient on a
low-adhesion roads and the reference vehicle velocity were set to 0.3 and 70 km/h in this study. As illustrated in
Figure 5A, the velocity fluctuation due to the hierarchical time-varyingMPC control was smaller than that due
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Figure 4. Torque and adhesion rate of each tire. (𝜇 = 0.9, 𝑣𝑥 = 100 km/h).

to PID control, and with both methods, velocity fluctuations occurred close to the reference line. However,
without control, the velocity dropped considerably. As shown inFigure 5B, the vehicle without control lost
stability and deviated from the designated trajectory. The hierarchical time-varying MPC control reduced
the maximum lateral displacement by approximately 0.2 m compared to that achieved with PID control. As
depicted in Figure 5C and D, under hierarchical time-varying MPC control, the yaw rate and sideslip angle
tracked the reference curves very well. The performance of PID control was slightly inferior in comparison,
while the case without control performed the worst and the vehicle diverged from the set trajectory. With
both PID control and hierarchical time-varyingMPC control, the yaw rate control effect was stronger than the
sideslip angle control effect because the sideslip angle is more difficult to control than the yaw rate. However,
with hierarchical time-varying MPC control, the sideslip angle was less than 2.5◦, which is within the safety
limit.

The torque and adhesion rate of each tire are shown in Figure 6. According to Figure 6A, the torques acting
on the left front and rear tires are similar but not equal, and the torques acting on the right front and rear tires
are similar but not equal. However, the adhesion rates of the two left tires are almost equal, and the adhesion
rates of the two right tires are almost equal, as shown in Figure 6B. This finding indicates that the proposed
algorithm can secure vehicle safety and ensure that the adhesion rates of the two tires on the same side of the
vehicle are as close to each other as possible. Unlike on the high-adhesion road, the torques and adhesion rates
of each of the tires are lower, which is consistent with the actual situation.

6. CONCLUSIONS
In this study, 3DOF reference vehicle model and a 7DOF nonlinear vehicle model were developed. A novel hi-
erarchical time-varyingMPC control strategy was proposed for 4WID EVs by considering vehicle stability and
adhesion efficiency. A time-varying MPC controller was designed to reduce system error in the linearization
process.

In the co-simulation, two typical conditions were adopted to demonstrate the performance of the proposed
method. The DLC maneuver was performed on high- and low-adhesion roads to verify the effectiveness of
the proposed control strategy. The results indicated that the proposed hierarchical time-varying MPC control
strategy was able to enhance vehicle handling stability effectively. Furthermore, the lower torque allocation
algorithm was able to improve the adhesion efficiency of each tire.
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Figure 5. State comparison of different control modes during DLC maneuver (𝜇 = 0.3, 𝑣𝑥 = 70 km/h).

Figure 6. Torque and adhesion rate of each tire (𝜇 = 0.3, 𝑣𝑥 = 70 km/h).
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