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Abstract
Bifidobacterium species are integral members of the human gut microbiota and these microbes have significant 
interactions with the intestinal mucus layer. This review delves into Bifidobacterium-mucus dynamics, shedding 
light on the multifaceted nature of this relationship. We cover conserved features of Bifidobacterium-mucus 
interactions, such as mucus adhesion and positive regulation of goblet cell and mucus production, as well as 
species and strain-specific attributes of mucus degradation. For each interface, we explore the molecular 
mechanisms underlying these interactions and their potential implications for human health. Notably, we 
emphasize the ability of Bifidobacterium species to positively influence the mucus layer, shedding light on its 
potential as a mucin-builder and a therapeutic agent for diseases associated with disrupted mucus barriers. By 
elucidating the complex interplay between Bifidobacterium and intestinal mucus, we aim to contribute to a deeper 
understanding of the gut microbiota-host interface and pave the way for novel therapeutic strategies.
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INTRODUCTION
Intestinal mucus
The intestine is continually exposed to a multitude of luminal antigens and bacterial components. To 
protect itself, the intestinal epithelium harbors specialized cells known as goblet cells, which synthesize and 
secrete mucus. The structure of intestinal mucus is intricately designed to form a protective barrier. The 
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primary structural component of intestinal mucus is a gel-forming glycoprotein called MUC2. MUC2 is a 
large, heavily glycosylated protein that forms disulfide-bonded dimers. These dimers undergo further 
polymerization and crosslinking, resulting in the formation of a gel-like network that constitutes the mucus 
layer.

In addition to the gel-forming MUC2, intestinal mucus contains a diverse array of compounds that 
contribute to its composition and functionality. Mucus harbors Antimicrobial Peptides (AMPs): small 
cationic peptides that possess antimicrobial properties. AMPs in the mucus layer help to maintain the 
balance of microbial populations by inhibiting the growth of pathogenic bacteria and promoting the growth 
of beneficial commensal bacteria. Immunoglobulin A (IgA) antibodies are also abundant in the mucus layer 
of the gut. They are produced by specialized immune cells called plasma cells and secreted into the mucus, 
where they play a crucial role in immune defense by neutralizing pathogens, preventing their adherence to 
the intestinal epithelium, and promoting their clearance from the gut. In addition to MUC2, goblet cells also 
secrete trefoil factors, a family of small peptides that contribute to the maintenance of mucosal integrity and 
repair by promoting epithelial cell migration, enhancing wound healing, and providing protection against 
injury and inflammation. Other mucus-associated proteins, such as FCGBP, metalloenzyme CLCA1, ZG16, 
Lypd8, glycosaminoglycans, and chitinases, contribute to the structural organization, hydration, and 
stability of the mucus layer[1]. These compounds play various roles in shaping the mucus layer and 
modulating host-microbe interactions within the gut.

The structural organization of intestinal mucus is highly dynamic, exhibiting regional variations along the 
gastrointestinal tract. In the small intestine, the mucus layer is thinner and less firmly attached to the 
epithelium, allowing for efficient absorption of nutrients. In contrast, the mucus layer in the colon is thicker 
and firmly adheres to the epithelial surface, serving as a physical barrier that limits direct contact between 
luminal contents and the epithelium. In the colon, the mucus layer is stratified, consisting of two distinct 
regions: the inner mucus layer and the outer mucus layer. The inner mucus layer, also known as the firmly 
adherent mucus layer, is in direct contact with the intestinal epithelium. It is tightly packed with MUC2, 
forming a dense and organized matrix that provides a protective barrier against luminal contents. The outer 
mucus layer, also referred to as the loose mucus layer, is less compact and acts as a reservoir for commensal 
bacteria and other luminal components. This outer layer is more penetrable and allows for the 
establishment of symbiotic interactions between the gut microbiota and the host.

One feature of mucus that makes it amenable to microbe interactions is the structure of the mucin proteins. 
The MUC2 protein is extensively O-glycosylated with branched oligosaccharides[2-7]. O-glycans are attached 
at serine and threonine residues in the MUC2 protein and consist of core structures of α- and β-linked 
N-acetyl-glucosamine, N-acetyl-galactosamine, and galactose. The core structures are then elongated and 
generally modified by α-linked fucose, sialic acid, and sulfate residues[4]. Mucin glycoproteins serve as both 
an adhesion site and nutrient source for the resident gut microbes, providing an array of complex microbe-
host interactions.

Bifidobacteria and mucus
Among the bacteria found in the gut microbiota, Bifidobacterium species are known to reside within the 
intestinal mucus layer[8-14] and exert multiple beneficial effects on the host[15-20]. Bifidobacteria are Gram-
positive anaerobic bacteria from the phylum Actinobacteria that can have a rod or a distinctive bifid (i.e., Y) 
shape. There are currently 55 recognized species and subspecies of Bifidobacterium[21-23]. These species can 
be grouped into seven phylogenetic clusters: B. longum, B. adolescentis, B. pseudolongum, B. boum, 
B. asteroides, B. pullorum, and B. bifidum.
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Bifidobacteria are predominant in the healthy breast-fed infant gut due to the presence of human milk 
oligosaccharides (HMOs), which these bacteria are adept at utilizing[24-27]. Studies have suggested that 
Bifidobacterium species make up ~80% of a breast-fed infant gut microbiota[28-32]. The benefits of 
Bifidobacterium strains are especially pronounced in early life, encompassing epithelial maturation, immune 
cell activation, and gut-brain-axis crosstalk[33-39]. Upon the introduction of solid food and weaning, the level 
of intestinal bifidobacteria continually decreases until adulthood, at which point bifidobacteria are 
maintained at a relative abundance of about ~10% throughout adult life[31,40-42]. In the elderly, the level of 
bifidobacteria further diminishes to about 0%-5% relative abundance[42]. This reduction in bifidobacteria 
levels in the elderly has been linked to age-related alterations in lifestyle and environment. Interestingly, this 
decline in Bifidobacterium abundance coincides with a simultaneous decrease in the thickness of intestinal 
mucus and an increase in its permeability[43-45]. It remains uncertain whether there is a direct link between 
decreased Bifidobacterium and decreased mucus, but this interesting observation suggests a relationship. 
Independent of age, Bifidobacterium species can be found in both the small intestine and colon, although 
they exhibit a higher abundance in the colon. Several Bifidobacterium species have been observed to interact 
with intestinal mucus, colonize the mucus layer, consume mucus glycans, and exert strain-specific 
modulatory effects on the mucus layer. This review covers the existing literature for the following 
Bifidobacterium-mucus interactions: (1) mucus adhesion; (2) mucin glycan degradation; (3) positive 
modulation of goblet cell cells; (4) goblet cell retention during inflammation; and (5) suppression of pro-
inflammatory cytokines and production of anti-inflammatory IL-10.

MUCUS ADHESION BY BIFIDOBACTERIUM SPECIES
Multiple studies have demonstrated the ability of Bifidobacterium species to adhere to mucus [Table 1]. 
B. adolescentis, B. angulatum, B. bifidum, B. breve, B. catenulatum, B. infantis, B. longum, B. infantis, 
B. animalis subsp. lactis, and B. pseudocatenulatum have all been shown to bind to mucus isolated from the 
stool of human infants and/or adults[46-51]. B. bifidum, B. breve, B. animalis, B. animalis subsp. lactis, 
B. longum, B. longum subsp. infantis, and B. catenulatum have also been demonstrated to bind to intestinal 
mucus isolated from the healthy part of resected colonic tissue[52-58].

Interestingly, Bifidobacterium animalis subsp. lactis and unclassified Bifidobacterium species were shown to 
adhere well to mucus isolated from the feces of newborns, 2-month-old infants, 6-month-old infants, and 
adults (25 to 52 years), but had substantially lower adhesion to mucus derived from the feces of elderly 
individuals (74 to 93 years)[41]. It was also found that B. animalis subsp. lactis had diminished adhesion to 
mucus isolated during episodes of diarrhea[50]. These findings point to the integrity of mucus for adhesion.

In addition to human stool and tissue derived mucus, B. dentium, B. bifidum, B. adolescentis, B. breve, 
B. pseudocatenulatum, B animalis subsp. lactis, B. longum, and B. infantis have been shown to bind to 
human mucus-producing HT29-MTX, Caco-2, INT-407, and LS-174T cells[53,59-69] as well as to cecal mucus 
from germ-free mice and rats[18,65] [Table 1]. B. adolescentis, B. angulatum, B. longum, B. infantis, 
B. pseudocatenulatum, B. bifidum, B. breve, B. catenulatum, and B. animalis subsp. lactis were also found to 
bind to pig stomach mucus[48,70], and B. animalis subsp. lactis was reported to bind to pig intestinal 
mucus[71]. In agreement with these findings, Bifidobacterium species were found to have widespread 
adhesion to mucin gels created with pig stomach mucus in a bioreactor model[72]. These studies indicate that 
mucus adhesion is widely conserved among Bifidobacterium species.

The binding of Bifidobacterium to intestinal mucus is regulated by diverse adhesins [Figure 1]. 
Bifidobacterium species employ pili, surface adhesion proteins, moonlighting proteins, and other surface-
anchored proteins to adhere to intestinal mucus [Table 2][73-75]. For example, B. bifidum has several known 
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Table 1. Literature review of mucus adhering Bifidobacterium species and strains

Bifidobacterium species Mucus type Ref.

B. animalis subsp. Bb12

Bifidobacterium 420

Bifidobacterium BF1100

Bifidobacterium 913

Human stool mucus [41]

B. adolescentis JCMI275T

B. adolescentis JCM7042

B. adolescentis JCM7046

B. angulatum JCM7096T

B. animalis JCM 1190T

B. animalis JCM 1253

B. animalis JCM 7117

B. animalis JCM 7124

B. bifidum JCM 1254T

B. bifidum JCM 1255

B. bifidum JCM 7004

B. breve JCM1192T

B. breve JCM7016

B. catenulatum ATCC 27675

B. catenulatum JCM 7131T

B. infantis JCM 1210

B. infantis JCM 1222T

B. infantis JCM 1272

B. animalis subsp. BbI2

B. lactis JCM 10140T

B. longum JCM 127F

B. longum JCM 7052

B. longum JCM 7054

B. pseudocatenulatum JCM 1200T

Human stool mucus [46]

B. animalis sbusp. lactis Bb12 Human stool mucus [47]

B. adolescentis JCM 2701T

B. angulatum ATCC 27678 T

B. longum subsp. infantis JCM 1222 T

B. pseudocatenulatum JCM 1200 T

B. bifidum JCM 1255 T

B. breve JCM 1192 T

B. catenulatum JCM 1194 T

B. longum subsp. longum JCM 1217 T

B. animalis subsp. lactis Bb12

B. bifidum TMC3115

B. bifidum TMC3103

B. bifidum TMC3104

B. bifidum TMC3108

B. bifidum TMC3110

B. bifidum TMC3112

B. bifidum TMC3116

B. bifidum TMC3119

B. bifidum TMC3120

B. bifidum TMC3121

B. bifidum TMC3122

Human stool mucus [48]
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B. animalis subsp. lactis Bb12 Human stool mucus [49]

B. lactis Bb12 Human stool mucus [50]

B. lactis Bb12 Human stool mucus [51]

B. longum BIF9s

B. longum BIF12s

B. longum BIF13s

B. catenulatum BIF31s

Colonic tissue mucus [52]

B. breve 99 (DSM 13692)

B. lactis Bb12 (DSM 10140)

Colonic tissue mucus [54]

B. breve 99 (DSM 13692) Colonic tissue mucus [55]

B. bifidum M6

B. bifidum A1

Colonic tissue mucus [56]

B. infantis BIR-0304

B. infantis BIR-0307

B. infantis BIR-0312

B. catenulatum BIR-0324

B. bifidum BIR-0326

B. infantis BIR-0349

B. breve BIR-0350

B. longum BIR-BPD1

B. longum BIR-BPD3

B. longum BIR-BPG1

B. longum BIR-BPG4

Colonic tissue mucus [57]

B. bifidum M6

B. bifidum M6dCo

B. bifidum PBT

B. bifidum PBTdOx

B. animalis IPLA 658

B. animalis 658dOx

B. bifidum A8

B. bifidum A8dOx

B. bifidum A1

B. bifidum A1dOx

B. longum NIZO B667

B. longum B667dCo

B. animalis IPLA 4549

B. animalis 4549dCo

B. animalis 4549dOx

Colonic tissue mucus [58]

B. bifidum DSM20456

B. bifidum MIMBb75

Colonic tissue mucus, Caco-2 cells [53]

B. animalis subsp. lactis Bb12 Porcine intestinal mucus [71]

B. dentium ATCC 27678

B. longum subsp. infantis ATCC 15697

B. longum subsp. longum ATCC 55813

B. breve ATCC 15698

Germ-free mouse cecal mucus, HT29-MTX cells [18]

B. longum BIF 53

B. lactis Bb 12

B. longum BB 536

B. longum NCC 2705

B. longum W 11

B. longum SP 07/3

Porcine stomach mucus [70]
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B. longum NCIMB 8809

B. longum ATCC 15707

B. longum BIR 324

B. longum BIF 53

B. animalis subsp. lactis IPLA4549

B. animalis subsp. lactis 4549dOx

B. animalis subsp. lactis A1

B. animalis subsp. lactis A1dOx

B. animalis subsp. lactis A1dOx-R1

B. longum NB667

B. longum 667Co

HT29-MTX cells [60]

B. animalis subsp. lactis CCDM 374 Caco-2 cells, HT29-MTX cells [61]

B. breve 4

B. breve 5

B. breve 25

B. longum 4

B. longum 16

B. longum 18

B. longum 22

B. bifidum 8

B. bifidum 7

B. infantis 1

Caco-2 cells, HT29-MTX cells [62]

B. animalis IATA-A2

B. bifidum IATA-ES2

Bifidobacterium animalis subsp. lactis Bb12

Caco-2 cells, HT29-MTX cells [64]

B. bifidum DSM 20082

B. breve DSM 20213

B. longum DSM 20219

B. animalis DSM 20104

Caco-2 cells, HT29-MTX cells; rat cecal mucus [65]

B. longum CSCC 5089 Caco-2 cells [63]

B. bifidum DNG6 Caco-2 cells [66]

B. lactis NCC362

B. longum NCC 490

B. adolescentis NCC251

B. bifidum NCC 189

B. breve MB226

B. bifidum S16

B. bifidum S17

B. infantis E18

Caco-2 cells [67]

B. adolescentis ATCC 15706

B. adolescentis TMC 2704

B. adolescentis TMC 2705

B. animalis TMC 5101

B. infantis TMC 2906

B. infantis TMC 2908

B. longum TMC 2607

B. longum TMC 2608

B. longum TMC 2609

B. bifidum TMC 3101

B. bifidum TMC 3108

B. bifidum TMC 3115

Caco-2 cells [68]
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B. bifidum TMC 3116

B. bifidum TMC 3117

B. breve TMC 3207

B. breve TMC 3217

B. breve TMC 3218

B. breve TMC 3219

B. infantis ATCC 15697 Glycan array [86]

Table 2. Literature review of mucus and cell binding adhesins in Bifidobacterium species and strains

Bifidobacterium species Adhesin Ref.

B. bifidum PRL2010 Sortase-dependent pili [76]

B. bifidum ATCC 15696 Extracellular sialidase [77]

B. bifidum A8 Extracellular transaldolase [79]

B. longum NCC2705 Extracellular transaldolase [78]

B. longum BBMN68 Putative adhesion proteins [75]

B. longum BBMN68 FimM [75]

B. bifidum 85B FimM homologs [75]

B. gallinarum CACC 514 FimM homologs [75]

B. longum NCC2705 Type 2 glycoprotein-binding fimbriae homolog [80]

B. longum NCC2705 EF-Tu [81]

B. longum NCC2705 Enolase [81]

B. animalis subsp. lactis Bl07 Enolase [82]

B. animalis subsp. lactis KLDS 2.0603 GroEL [83]

B. longum VMKB44 Blap-1 [84]

B. longum JCM1217 Endo-α-N-acetylgalactosaminidase [85]

B. longum subsp. infantis ATCC 15697 Family 1 of solute binding proteins (F1SBPs) [86,87]

B. breve UCC2003 Type IVb pilus-type proteins [82,83,88]

B. longum NCC2705 Extracellular vesicles [89]

Figure 1. Schematic outlining examples of the various mechanisms by which Bifidobacterium adhere to mucus. (A) Extracellular vesicles 
released by Bifidobacterium can bind to mucus, and in turn, this binding can inhibit pathogen colonization; (B) Bifidobacterium possess a 
wide array of pili and fimbriae, including FimM and its homologs, type 2 fimbriae, and type IVb pili, which bind to mucus; (C) Other 
proteins such as F1SBPs (family-1 binding proteins), BL0155 (a type of ABC transport transmembrane protein), GroEL (a heat shock 
protein), and EF-Tu (Elongation Factor Tu) are involved in mucus binding; (D) Endo-α-N-acetylgalactosaminidase, transaldolase, 
sialidase, and enolase are enzymes that facilitate mucus adhesion.
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mucin-binding partners. B. bifidum possesses two sortase-dependent pili that promote bacterial 
coaggregation and bind to mucus-producing Caco-2 cells[76]. Another study found that B. bifidum produces 
an extracellular sialidase that mediates adhesion to mucus via a conserved sialidase domain peptide that 
interacts with mucin carbohydrates[77]. Similar to B. bifidum, B. longum also expresses multiple mucus-
binding proteins. B. bifidum and B. longum both have been shown to express extracellular transaldolases 
that function as an adhesin that is capable of binding mucin[78,79]. A recent study found that B. longum 
harbors 21 putative adhesion proteins[75]. Using an overexpression system in a heterologous host, it was 
found that FimM exhibited significant adhesion to mucus-producing LS174T goblet cells, and it was further 
found that mucin was one of the major adhesion receptors for the FimM protein[75]. Homologs of FimM 
were also identified in B. bifidum, B. gallinarum, and 23 other B. longum strains by sequence similarity 
analysis. Another study found that B. longum harbors a protein with high homology to type 2 glycoprotein-
binding fimbriae that may mediate mucus adhesion[80]. B. longum additionally produces the moonlighting 
proteins EF-Tu and enolase, which indirectly promote adhesion to mucus-producing Caco-2 cells through 
interactions with host plasminogen[81]. Likewise, enolase plays the role of an adhesion factor in B. lactis 
Bl07[82], and GroEL is another moonlighting protein that has been indicated as an adhesion factor for 
B. animalis subsp. lactis[83].

As another example of the various adhesins employed by Bifidobacterium species, B. longum was found to 
possess a 26-amino-acid peptide called Blap-1 that mediates adhesion to HT-29 cells. Interestingly, genomic 
analysis revealed that Blap-1 was an identical match to a site in a large extracellular transmembrane protein 
encoded by the BL0155 open reading frame of B. longum NCC2705[84]. Additionally, B. longum possesses an 
endo-α-N-acetylgalactosaminidase that contains binding sites specific to the protein core of mucin 
glycoproteins[85]. Furthermore, the genome of B. longum subsp. infantis encodes several family 1 of solute 
binding proteins (F1SBPs), and these proteins were shown to bind and transport mucin 
oligosaccharides[86,87]. In addition to B. bifidum and B. longum, B. breve has type IVb pilus-type proteins that 
facilitate colonization in the host gut[82,83,88]. Interestingly, it has also been shown that B. longum produces 
extracellular vesicles that export mucin-binding cytoplasmic proteins, and these proteins promote the 
adhesion of B. longum to mucus[89]. It has also been recently shown that the polyamine Spermidine 
significantly increased the adhesion of B. bifidum Bb12 to mucus isolated from healthy infants[90], suggesting 
that secreted factors could also influence the adherence of Bifidobacterium to mucus. Together, these studies 
indicate that although multiple Bifidobacterium species can bind to mucus, the mechanisms of adhesion 
appear to be diverse, even among strains of the same species.

The structure of mucus likely dictates the consequences of mucus binding for Bifidobacterium species. In 
the small intestine, the mucus is loose and not attached to the epithelium. As a result, mucus adhesion likely 
does not promote persistent colonization of the small intestine. In contrast, in the colon, the mucus is highly 
organized and adhesion to colonic mucus most likely allows Bifidobacterium species to persist and colonize 
the colon. The adhesion of Bifidobacterium to colonic mucus is also thought to increase the transit time of 
the bacteria in the gut, thereby maximizing its beneficial properties[91,92]. It has also been shown that 
colonization of the mucus layer by Bifidobacterium species positively regulates goblet cells. These 
interactions are all viewed as beneficial for the host. As a result of these positive attributes, the ability to 
adhere to human intestinal mucus is a commonly employed criterion for the selection of probiotic 
organisms[75,93,94].

The binding of Bifidobacterium to intestinal mucus extends beyond a mere physical attachment; it serves as 
a gateway for host-microbe crosstalk. By positioning themselves within the mucus, Bifidobacterium strains 
gain proximity to host cells, enabling the effective delivery of health-promoting molecules, metabolites, and 
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signaling compounds[18,95,96]. Furthermore, the presence of Bifidobacterium within the mucus layer influences 
the spatial organization and composition of the gut microbiota, thereby impacting the overall microbial 
ecosystem. In several studies, the ability to bind to the mucus layer allowed Bifidobacterium species to create 
a niche and exclude pathogens[54,56,57,62,64,92,97]. One study found that a probiotic containing Bifidobacterium 
could inhibit pathogenic colonization of Escherichia coli, and this protective effect was dependent on MUC2 
expression by Caco-2 cells[98]. This data suggests that mucus adhesion is critical for excluding pathogens. In 
addition to excluding pathogens, Bifidobacterium species likely have synergistic interactions with other 
commensal microbes in the mucus layer. Bifidobacterium has been shown to cross-fed commensal 
Eubacterium rectale[99], E. hallii[100,101], and Faecalibacterium prausnitzii[102]. In each of these scenarios, 
Bifidobacterium-commensal co-cultures generated elevated levels of butyrate, a beneficial short-chain fatty 
acid, compared to the mono-cultures. The literature clearly indicates that Bifidobacterium species readily 
bind to mucus, and this mucus adhesion likely sets the stage for a range of beneficial effects on both the host 
and the gut microbial community.

MUCUS DEGRADATION BY BIFIDOBACTERIUM  SPECIES
In addition to serving as a binding site for bacteria, mucus can act as a nutrient source. The mucin protein is 
heavily O-glycosylated and has multiple structures of repeating α- and β-linked N-acetyl-galactosamine 
(GalNAc), N-acetyl-glucosamine (GlcNAc), and galactose (Gal) residues, terminated with α-linked fucose 
(Fuc), and sialic acid (Neu5Ac) residues[103]. Mucus-degrading bacteria harbor specific glycosyl hydrolases 
(GHs) that enzymatically degrade mucin glycans[3,4,103-106]. After cleavage, the released glycan oligosaccharides 
can feed the bacteria or other microbes in the vicinity[3,107]. In order to degrade mucin glycans, intestinal 
bacteria must possess GH33 sialidases (also known as neuraminidases), which cleave terminal sialic acid 
residues. For efficient glycan cleavage, bacteria can also generate GH29 or GH95 to remove fucose residues. 
Once the terminal sugars are removed, the underlying GalNAc, GlcNAc, and galactose residues can be 
removed. Bacteria can have GH101 or GH129 to remove GalNAc, GH84, GH85, GH89, or GH20 to remove 
GlcNAc, or GH2, GH35, GH42, and GH98 to remove galactose residues. Some bacteria also encode for 
GH16, endo-acting O-glycanases that remove larger glycan structures. A recent genome analysis confirmed 
that B. bifidum harbored the largest repertoire of mucus-degrading GHs among the Bifidobacterium 
species[103]. All B. bifidum genomes had GH33, GH29, GH95, GH20, GH2, GH42, GH101, GH129, GH89, 
and GH84[103], suggesting that this species was capable of cleaving sialic acid, fucose, GalNAc, GlcNAc, and 
galactose from mucus glycans. B. breve, B. longum, and B. scardovii were also found to possess multiple 
mucus-associated GHs. This finding is consistent with other genome studies and in vitro studies, which 
report that B. bifidum, B. longum, and B. breve can degrade mucus[19,100,103,108-112]. In contrast, B. adolescentis, 
B. angulatum, B. animalis, B. dentium, B. pseudolongum, and B. thermophilum possessed few mucus-
associated GHs[103]. In vitro work confirmed that B. dentium and B. angulatum were unable to grow on pig 
colonic mucus as the sole carbon source[103]. Separate studies have also found that B. animalis subsp. lactis 
and B. pseudolongum do not degrade mucus[100,113-115]. These studies suggest that, unlike mucus adhesion, 
mucus degradation is not conserved in Bifidobacterium species[103].

Mucin degradation is considered to be a normal process of intestinal mucus turn-over[116] and begins within 
the first few months of life[117,118]. Infants are commonly colonized with mucin-degrading B. bifidum, 
B. longum subsp. infantis, and B. breve[28-30,118], as well as Akkermansia muciniphila and Bacteroides 
species[116]. Interestingly, breast-fed babies that are dominated by Bifidobacterium species exhibit a delay in 
the mucin degradation profile as compared with babies fed with formula milk[118]. Consistent with this 
notion, Karav et al. found that supplementation of B. longum subsp. infantis EVC001 to healthy breast-fed 
infants significantly reduced the proportion of free colonic mucin-derived O-glycans in the total glycan pool 
to 1.87% compared to 37.68% in the control infants who did not receive supplemented B. longum[119]. The 
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level of freed mucin-derived O-glycans was negatively correlated with populations of Bifidobacteriaceae, 
indicating that mucus degradation was not occurring at the same level in B. longum supplemented 
infants[119]. Along the same lines, genes involved in mucus-degrading pathways, particularly in carbohydrate 
metabolism, in Bifidobacterium species were found to be expressed to a greater degree in formula-fed 
infants than in breast-fed infants[120]. It has been speculated that HMOs, which are similar to mucus in some 
of the glycan structures[120,121], or other mucin-like glycoproteins present in breast milk, may compete with 
intestinal mucus as a substrate[118].

In addition to being found in infants, mucus-degrading Bifidobacterium species are present in adults and 
have been linked to the suppression of detrimental mucus degradation. One example of excessive mucus 
degradation that may be prevented by Bifidobacteria is in the context of a Westernized diet, a diet 
characterized by low fiber but high fat and sugar. It has been demonstrated in mice harboring defined 
microbial communities that consuming a Westernized diet leads to an expansion of mucin-degrading 
bacteria such as Akkermansia muciniphila and Bacteroides caccae, and this shift enables the bacterial 
community to target the mucus layer for digestion in lieu of dietary fibers[122]. In a model with complex 
native gut microbiota, mice fed a Westernized diet similarly exhibited an expansion of Akkermansia and a 
corresponding decrease in Bifidobacterium species[123] and increased susceptibility to pathogens and 
inflammation. In this setting, the addition of B. longum NCC 2705 or the prebiotic inulin resulted in 
elevated levels of endogenous Bifidobacterium species, reduced mucus degradation, and restored the mucus 
barrier. In a similar vein, B. bifidum G9-1 was shown to protect against mucus degradation by 
A. muciniphila following small intestine injury caused by a proton pump inhibitor and aspirin[124]. Another 
study found that the administration of B. pseudolongum Patronus increased mucosal thickness in rats and 
decreased the levels of A. muciniphila[125]. These data suggest that mucus degradation by Bifidobacterium 
species is not detrimental to the host and that Bifidobacterium species keep mucus degradation in check.

MUCUS MODULATION BY BIFIDOBACTERIUM  SPECIES
Modulation of mucus by Bifidobacteria in homeostasis
Although some bifidobacteria have mucolytic properties, they generally have an overall positive net effect in 
regulating intestinal mucus. Several studies have found that Bifidobacterium species elevate mucus levels in 
vitro and in vivo [Table 3 and Figure 2]. In vitro, B. infantis, B. breve, B. longum and a probiotic cocktail 
containing these microbes and others (VSL#3) was found to stimulate mucus secretion in human mucus-
producing LS174T cells[126]. The probiotic cocktail was also found to increase MUC2 expression and 
secretion in rat colonic loops[126]. In another study, B. dentium was reported to increase MUC2 in human 
mucus-producing T84 cells[18]. Short-chain fatty acids (SCFA) have been demonstrated to increase MUC2 
expression[127], and Bifidobacterium species are known to produce high levels of SCFA acetate. The 
application of acetate was likewise able to increase MUC2 gene and protein levels in T84 cells[18]. In vivo, 
B. dentium was found to colonize germ-free mice, elevate intestinal acetate levels, and increase MUC2 at the 
gene and protein levels[18]. An elevated number of goblet cells and goblet cell-specific genes were observed in 
B. dentium mono-associated mice, as well as increased mucin glycosylation[18]. In this model, it was 
speculated that B. dentium-generated gamma-aminobutyric acid (GABA) was able to activate autophagy 
and calcium signaling to stimulate the release of mucus from goblet cells and bolster the mucus barrier[18]. In 
addition to B. dentium, B. bifidum and B. longum colonize germ-free mice and increase intestinal mucin 
glycoproteins[128,129]. These studies using mono-associated gnotobiotic animals provide very powerful 
evidence that B. dentium, B. bifidum and B. longum can modulate goblet cell function and increase mucus 
production. In mice with complex gut microbiota, B. breve supplementation led to 3,996 upregulated and 
465 downregulated genes in supplemented neonatal mice relative to the untreated group[35]. Upregulated 
genes in the neonatal mice encoded multiple mucus layer-associated proteins such as MUC2. These data 
suggest that B. breve in early life modulates goblet cells. In adult mice, administration of a probiotic cocktail 
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Table 3. Literature review of the positive effects of Bifidobacteria on mucus expression, mucin levels and mucus expulsion

Bifidobacterium species Finding Experimental model Ref.

B. infantis Increased mucus secretion LS174T cells [126]

B. breve Increased mucus secretion LS174T cells [126]

B. longum Increased mucus secretion LS174T cells [126]

VSL#3 Increased mucus secretion LS174T cells [126]

VSL#3 Increased MUC2 expression and secretion Rat colonic loops [126]

B. dentium ATCC 27678 Increased mucus expression and secretion T84 cells [18]

B. dentium ATCC 27678 Increased MUC2 expression and mucus levels Adult gnotobiotic mice [18]

B. bifidum FPLC AA22 Increased mucus levels Adult gnotobiotic mice [129]

B. longum FPLC 117 Increased mucus levels Adult gnotobiotic mice [128]

B. breve UCC2003 Increased MUC2 expression Neonatal conventional mice [35]

B. breve (probiotic cocktail) Increased goblet cells per crypt and increased mucus levels Adult conventional mice [130]

Figure 2. Representative diagram of Bifidobacterium-goblet cell interactions. (A) Bifidobacterium species can generate acetate, which can 
elevate MUC2 expression and protein; (B) Bifidobacterium species can also generate varying levels of GABA, which can activate 
autophagy-driven expulsion of mucus. Through these mechanisms, Bifidobacteria are speculated to positively regulate goblet cells. 
GABA: B. dentium-generated gamma-aminobutyric acid.

containing B. breve also increased the number of goblet cells per crypt and increased the production of 
mucus compared with controls[130]. Collectively, these data indicate that Bifidobacterium strains influence 
goblet cell function and mucus production.

Modulation of mucus by Bifidobacteria in inflammation and infectious diseases
There is a wide array of data that demonstrate the substantial benefits of Bifidobacterium in the context of 
disease. Colitis is one of the most frequently investigated intestinal diseases, and a variety of Bifidobacterium 
species have exhibited the ability to alleviate major complications of colitis. In general, Bifidobacterium 
species have been shown to (1) limit inflammation-associated goblet cell and mucus depletion and MUC2 
and (2) reduce pro-inflammatory cytokines [Figure 3, Tables 4 and 5].



Page 12 of Gutierrez et al. Microbiome Res Rep 2023;2:36 https://dx.doi.org/10.20517/mrr.2023.3723

Table 4. Literature review of strain-specific effects of Bifidobacterium species on mucus modulation in the context of inflammation or 
infectious disease

Bifidobacterium species Finding Intestinal 
site Experimental model Ref.

B. bifidum FL-276.1 Increased MUC2, improved mucus, reduce 
colitis

Colon DSS-colitis [166]

B. bifidum FL-228.1 Increased MUC2, improved mucus, reduce 
colitis

Colon DSS-colitis [166]

B. bifidum BGN4 Improved mucus, reduce colitis Colon DSS-colitis [168]

B. longum subsp. longum YS108R Increased MUC2, improved mucus, reduce 
colitis

Colon DSS-colitis [169]

B. longum Bif10 Increased MUC2, improved mucus, reduce 
colitis

Colon DSS-colitis [171]

B. breve Bif11 Increased MUC2, improved mucus, reduce 
colitis

Colon DSS-colitis [171]

B. breve CBT BR3 Improved mucus, reduce colitis Colon DSS-colitis [170] 

B. animalis subsp. lactis A6 Improved mucus, reduce colitis Colon DSS-colitis [167]

B. infantis GMCC0460.1 Improved mucus, reduce colitis Colon DSS-colitis [172]

B. infantis 2017012 Improved mucus, reduce colitis Colon DSS-colitis [176]

B. infantis unclassified strain Improved mucus, reduce colitis Colon DSS-colitis [176]

B. breve H4-2 Improved mucus, reduce colitis Colon DSS-colitis [174]

B. breve H9-3 Improved mucus, reduce colitis Colon DSS-colitis [174]

B. lactis BL-99 Improved mucus, reduce colitis Colon Zebrafish colitis model [177]

B. dentium ATCC 27678 Increased MUC2, improved mucus, reduce 
colitis

Colon TNBS-colitis [96]

B. infantis unclassified strain Improved mucus, reduce colitis Colon TNBS-colitis [178]

B. longum Bar 33 Improved mucus, reduce colitis Colon TNBS-colitis [176]

B. animalis subsp. lactis CNCM-
I2494

Improved mucus, reduce colitis Colon DNBS-colitis [179]

B. bifidum E3 Increased MUC2, improved mucus Small intestine LPS-induced injury [180]

B. infantis E4 Increased MUC2, improved mucus Small intestine LPS-induced injury [180]

B. lactis BB12 Increased MUC2, improved mucus Small intestine LPS-induced injury [180]

B. bifidum OLB637 Increased mucin expression Small intestine Rat model of NEC [181]

B. bifidum G9-1 Increased MUC2, improved mucus Small intestine Rotavirus mouse model [185]

B. infantis PCM Improved mucus Small intestine Cronobacter sakazakii mouse 
model

[186]

Colitis-inducing compounds are known to activate ER stress[131-134], and ER stress has been linked to 
intestinal inflammation in multiple animal models[135-139]. Goblet cells are particularly sensitive to ER stress 
since producing and folding MUC2 is a complex process[140,141]. It has been speculated that modulation of 
goblet cell ER stress by Bifidobacterium species may represent a key pathway by which bifidobacteria 
promote intestinal health. In mucus-producing Caco-2 cells, the application of live B. breve YIT 12272 and 
B. adolescentis YIT 4011T alleviated tunicamycin-induced ER stress[142]. In another study using mucus-
producing T84 cells, it was shown that B. dentium ATCC 27678-secreted metabolites could also suppress 
tunicamycin- or thapsigarin-induced ER stress[96]. Analysis of the B. dentium metabolites revealed that this 
strain generated substantial levels of γ-glutamylcysteine, a compound that can be converted into the 
powerful antioxidant glutathione and suppress oxidative and ER stress[131,133,143-147]. B. dentium metabolites 
harboring γ-glutamylcysteine and application of commmerically available γ-glutamylcysteine both elevated 
glutathione, suppressed inflammatory NF-κB activation, reduced IL-8 secretion, and attenuated the 
induction of the unfolded protein response (UPR) genes GRP78, CHOP, and sXBP1 in T84 cells and TNBS-
treated mice[96]. These data suggest that Bifidobacterium species can reduce goblet cell ER stress.
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Table 5. Literature review of strain-specific effects of Bifidobacterium species on immune modulation in the context of inflammation

Bifidobacterium species Finding Body site Experimental 
model Ref.

B. infantis Reduced pro-inflammatory cytokines & 
increased IL-10

Colon TNBS colitis [176]

B. breve CBT BR3 Reduced pro-inflammatory cytokines & 
increased IL-10

Colon TNBS colitis [170]

B. longum and B. animalis (probiotic cocktail) Reduced pro-inflammatory cytokines & 
increased IL-10

Colon TNBS colitis [178]

B. dentium ATCC 27678 Reduced pro-inflammatory cytokines & 
increased IL-10

Serum and 
colon

TNBS colitis [96]

Bifidobacterium animalis subspecies lactis CNCM-
I2494

Reduced pro-inflammatory cytokines & 
increased IL-10

Colon and T 
cells

DNBS colitis [179]

B. longum Bif10 Reduced pro-inflammatory cytokines Serum and 
colon

DSS colitis [171]

B. breve Bif11 Reduced pro-inflammatory cytokines Serum and 
colon

DSS colitis [171]

B. longum Bif16 Reduced pro-inflammatory cytokines Serum and 
colon

DSS colitis [171]

Figure 3. Diagram outlining the major beneficial effects, especially in improving goblet cell function and in reducing inflammation, per 
Bifidobacterium species in disease models. GABA: B. dentium-generated gamma-aminobutyric acid; NEC: necrotizing enterocolitis; 
SCFAs: short-chain fatty acids.

When goblet cells undergo ER stress, they are unable to adequately synthesize and secrete MUC2, leading to 
a reduction in goblet cell number and a thinning of the intestinal mucus layer. Several animal models have 
shown that goblet cell ER stress or loss of mucus leads to intestinal inflammation (Winnie, MUC2-/-, 
AGR2-/-, glycan deficiency, etc.)[148-153]. These animal model phenotypes closely resemble the intestinal issues 
observed in inflammatory bowel disease (IBD) patients, particularly in ulcerative colitis patients[138,154-157]. 
Ulcerative colitis patients have decreased goblet cell numbers, truncated mucin glycosylation, reduced 
mucus layer thickness, and limited mucus integrity[137,155-160]. Loss of both the thickness and integrity of the 
mucus layer is thought to promote bacterial-epithelial interactions and drive inflammation[161-165].



Page 14 of Gutierrez et al. Microbiome Res Rep 2023;2:36 https://dx.doi.org/10.20517/mrr.2023.3723

Several studies have found that Bifidobacterium species can limit the reduction of goblet cells and improve 
the mucus barrier in the setting of chemically induced intestinal inflammation [Table 4]. For example, 
B. bifidum, B. longum, B. longum subsp. longum, B. breve, and B. animalis subsp. lactis were shown to 
increase MUC2, improve the mucus barrier, and ameliorate DSS-induced colitis[166-172]. A probiotic mixture 
containing B. infantis was also shown to enhance the mucus barrier in DSS-treated mice[173]. B. infantis and 
B. breve were likewise found to limit the reduction of goblet cells in DSS models[174-176], and B. lactis was 
found to improve goblet cell counts in a zebrafish model of intestinal inflammation[177]. Along the same 
lines, B. dentium was also shown to increase MUC2, limit goblet cell reduction, and improve the mucus 
layer in a TNBS-induced model of colitis[96]. B. infantis and B. longum were also found to improve goblet cell 
numbers in TNBS-induced colitis[176,178], while B. animalis subsp. lactis restored goblet cell populations in 
dinitrobenzene sulfonicacid (DNBS)-challenged mice[179]. These studies indicate that Bifidobacterium species 
can reduce goblet cell loss and mucus depletion in the setting of TNBS and DNBS-induced colitis.

Bifidobacterium species also have positive roles in modulating mucus in other inflammatory models. For 
example, B. bifidum, B. infantis, and B. lactis increased MUC2 in the small intestine during LPS-induced 
injury[180]. In a rat model of necrotizing enterocolitis (NEC), B. bifidum was shown to increase mucin and 
TFF3 expression and decrease the disease severity[181]. B. longum EVC001 and B. infantis BB-02 also 
decreased NEC occurrence in animals[182,183]. Even more promising is a double-blind, randomized, controlled 
study of very-low-birth-weight preterm infants, in which a combination of B. breve strain Yakult and 
L. casei strain Shirota completely prevented the occurrence of NEC in the intervention group, whereas 3.5% 
of the cases developed NEC in control without probiotics[184]. The mechanism by which Bifidobacterium 
confers its benefits in NEC is not fully understood but may be similar to colitis involving the mucus layer, 
intestinal permeability, and inflammation.

Rotavirus gastroenteritis is another disease where Bifidobacterium species have been shown to beneficially 
modulate the mucus layer. B. bifidum G9-1 was shown to increase MUC2, normalize mucin-positive goblet 
cells in the small intestine, and reduce the incidence, diarrheal scores, and intestinal damage in the 
supplemented group with rotavirus compared to the control group with rotavirus alone[185]. B. infantis PCM 
has also been shown to maintain goblet cells and reduce epithelial damage in the small intestine of mice 
infected with the pathogen Cronobacter sakazakii[186]. These data demonstrate that goblet cells and mucin 
production are also beneficially influenced by bifidobacteria in the small and large intestines in multiple 
inflammatory models.

Pro-inflammatory cytokines have been shown to negatively regulate goblet cells, while anti-inflammatory 
compounds such as IL-10 are known to alleviate ER stress and enhance goblet cell function. Another 
pathway by which Bifidobacterium species positively modulate goblet cells is through the modulation of 
intestinal cytokines [Table 5]. In TNBS-induced colitis mouse models, supplementation of B. infantis, 
B. breve, and probiotic cocktail mixes that included B. longum Bar 33 and B. animalis subsp. lactis Bar 30 
resulted in reduced levels of several pro-inflammatory cytokines, e.g., IL-2, IL-1β, IL-13, IL-12p40, IL-17A, 
IL-21, IL-23, IFN-γ, TNF-α, and MCP-1, relative to the untreated TNBS groups[170,176,178]. These strains 
additionally led to rises in the anti-inflammatory cytokine IL-10[170,176,178]. Similarly, B. dentium reduced 
serum IFN-γ, IL-1α, IL-1β, IL-12, and TNF-α with a concomitant increase in IL-10 in comparison to the 
TNBS control mice[96]. Another study using DSS revealed that B. breve and B. longum lowered both systemic 
and colonic levels of TNF-α, IL-1β, and IL-6[171]. These studies suggest that in addition to directly 
modulating goblet cells through metabolites and suppression of ER stress, Bifidobacterium strains may be 
indirectly modulating goblet cell function via immune regulation.
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OVERALL EFFECTS OF BIFIDOBACTERIUM-MUCUS INTERACTIONS ON THE HOST
The literature suggests that the intestinal mucus layer plays a crucial role in the interaction of 
Bifidobacterium species with the host. It appears that the majority of Bifidobacterium species bind to 
intestinal mucus and establish a unique niche that affords them an advantageous position for their 
beneficial activities. Within the mucus layer, some Bifidobacterium species can degrade mucus, while others 
must rely on other nutrient sources. In the mucus layer, Bifidobacterium species likely perform the 
following functions: (1) exclude pathogens; (2) cross-fed commensal bacteria; (3) limit excessive mucus 
degradation; (4) secrete compounds such as acetate, which elevate MUC2 expression and increase mucus 
production; (5) reduce goblet cell ER stress; (6) limit inflammation- and infection-driven goblet cell loss; (7) 
suppress pro-inflammatory cytokines; and (8) increase anti-inflammatory pro-goblet cell IL-10.

The literature points to the capacity for Bifidobacterium species to beneficially modulate goblet cell number 
and function, thereby regulating the mucus layer and intestinal barrier function. This modulation of the 
goblet cells by Bifidobacterium is likely even more important during the setting of infection and 
inflammation. Through these interactions, Bifidobacterium species facilitate a dynamic interplay that 
contributes to gut homeostasis and overall host health.

LIMITATIONS AND GAPS IN THE FIELD
While these findings are compelling, there are still several gaps in knowledge. First, it is unclear which 
Bifidobacterium strains are the most effective at positively regulating goblet cell function. Very few studies 
have performed head-to-head comparisons of different Bifidobacterium strains and studies vary in terms of 
mouse strain (C57B6/J, BALBc, Swiss Webster, etc.), colonization status (mono-association, gnobotioic with 
defined communities, conventional, etc.), and challenge (TNBS, DSS, DNBS, LPS, infection etc.). These 
variables make it difficult to tease out the nuances between strains and effects. Second, the metabolites that 
drive goblet cell-specific attributes of Bifidobacterium are not well characterized. It is well documented that 
Bifidobacterium species can generate acetate and this SCFA can elevate MUC2 levels, but it is likely that 
other metabolites also stimulate MUC2. In addition to modulating MUC2 levels, Bifidobacterium species 
can influence goblet cells in other ways, such as suppressing ER stress, promoting autophagy, and 
stimulating mucus expulsion. Likewise, it is not clear how bifidobacteria members regulate IL-10 
production, which could indirectly affect goblet cell homeostasis. These pathways need to be explored with 
multiple Bifidobacterium strains.

The advent of intestinal organoids is a promising new technology to address Bifidobacterium-goblet cell 
interactions. This model maintains segment specificity, is not immortalized, and is not cancer-derived. 
Importantly, intestinal organoids harbor MUC2-positive goblet cells and have been previously used to 
examine bacterial-host interactions, including Bifidobacterium[95,187-189]. We anticipate that many future 
studies will employ this model to define the mechanisms by which Bifidobacterium species regulate goblet 
cells and interact with intestinal mucus.

Although there are still large gaps in the field, the wealth of literature allows us to make some key 
observations on conserved bifidobacteria functions, such as mucus binding, suppression of inflammation-
driven goblet cell depletion, and elevation of MUC2. Understanding the interaction between 
Bifidobacterium and the intestinal mucus layer is imperative for unraveling the mechanisms underlying 
their beneficial effects. With this knowledge, there is immense potential for developing targeted therapeutic 
interventions.
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