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Abstract
Multiple myeloma (MM) is a hematologic cancer characterized by uncontrolled growth of malignant plasma cells 
in the bone marrow and currently is incurable. The bone marrow microenvironment plays a critical role in MM. MM 
cells reside in specialized niches where they interact with multiple marrow cell types, transforming the bone/bone 
marrow compartment into an ideal microenvironment for the migration, proliferation, and survival of MM cells. In 
addition, MM cells interact with bone cells to stimulate bone destruction and promote the development of bone 
lesions that rarely heal. In this review, we discuss how Notch signals facilitate the communication between 
adjacent MM cells and between MM cells and bone/bone marrow cells and shape the microenvironment to favor 
MM progression and bone disease. We also address the potential and therapeutic approaches used to target 
Notch signaling in MM.

Keywords: Notch, tumor microenvironment, multiple myeloma, bone, osteocytes, osteoclasts, osteoblasts, γ-
secretase inhibitors.

INTRODUCTION
Multiple myeloma (MM) is a cancer that forms in the bone marrow due to the growth and accumulation of 
clonal, terminally differentiated B lymphocytes. Although considered rare, MM is the second most common 
hematological cancer, accounting for 10% of all hematological cancers. The precise etiology of MM has not 
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yet been defined, but genetic, environmental, and microenvironmental components, as well as age, are 
considered important factors for disease development[1]. The clinical presentation of the disease includes the 
detection of high levels of paraproteins produced by MM cells[2]. Bone pain and fatigue are typical 
symptoms and frequently the main cause of initial consultation. Formal diagnosis of MM requires the 
detection of elevated monoclonal paraprotein levels, serum immunoglobulin free light chain ratio (FLCR) > 
100, the presence of at least 10% myeloma cells in the bone marrow, advance imaging to detect focal bone 
disease, and the display of end-organ damage, often referred to as CRAB: hypercalcemia, renal failure, 
anemia, and bone lesions[3,4]. MM is commonly preceded by a precancerous, benign condition known as 
monoclonal gammopathy of undetermined significance (MGUS)[5,6]. MGUS is characterized by the presence 
of serum M paraproteins (less than 3 g/dL), clonal plasma cells in the bone marrow (less than 10%), and no 
other major MM symptoms[5,6]. MGUS has 3 different subtypes including: non-IgM MGUS, IgM MGUS, 
and light-chain MGUS. Non-IgM MGUS (more common) and light-chain MGUS can progress to MM, 
while IgM MGUS is commonly associated with B-cell lymphoproliferative disorders, but also can progress 
to MM. Patients with non-IgM MGUS and light-chain MGUS have a 1% risk of progression to MM per 
year[5]. Smoldering MM (SMM) is distinguished from MGUS by a higher risk of progression to MM[4,7]. 
SMM patients are asymptomatic, but have higher serum M paraproteins (greater than 3 g/dL) and bone 
marrow plasma cells (10%-60%) than MGUS patients. SSM patients have a 10% risk of developing MM per 
year in the first 5 years[4,7]. In later stages, MM can progress to an advanced disease stage called plasma cell 
leukemia (PCL), which is diagnosed when 20% of white blood cells are abnormal plasma cells. PCL, which 
can also occur de novo, without preceding MM, is a very aggressive form of MM and has a low survival 
rate[8]. If eligible, MM patients typically undergo chemotherapy and stem cell transplantation, leading to a 
remission phase of variable duration[2]. However, disease relapse is very common in MM, and is followed by 
a second line of therapy and remission phase[2]. This cycle continues until drugs are not able to stop MM 
progression[2]. Although recent advances have significantly improved overall patient survival, MM still 
remains incurable due to the high rate of relapse. Thus, new therapeutic approaches to treat MM 
progression and prevent disease relapse are desperately needed.

Another area where unmet medical needs remain is the management of the bone disease that accompanies 
MM. Approximately 80% of patients with MM present bone lesions, which can cause severe bone pain and 
pathological fractures in 60% of MM patients[9,10]. The skeletal complications have a major impact on patient 
morbidity and mortality, and decrease the quality of life of MM patients. Mechanistically, the growth of 
MM cells in the bone marrow disrupts bone homeostasis by increasing the number of bone resorbing 
osteoclasts, stimulating apoptosis of matrix embedded osteocytes, and decreasing the number and function 
of bone forming osteoblasts[9-11]. As a result, MM patients display exacerbated bone resorption and a 
concomitant suppression of bone formation that leads to the formation of focal osteolytic lesions, which 
weaken the bone and increase the risk of bone fractures[9,10]. Bisphosphonates, and more recently 
Denosumab, a neutralizing antibody against Rankl, are potent anti-resorptive agents and the mainstay 
treatment for MM-induced bone disease due to their ability to prevent bone loss and to minimize the risk of 
fractures[10,12-14]. However, bisphosphonates only stop the bone disease and do not repair damaged bone. 
Because the bone disease and fractures persist, even in patients in complete remission, new clinical 
interventions are necessary to repair and/or build new bone in MM patients. Despite the promising results 
seen with the use of bone-forming agents (anti-Sclerostin antibodies) in preclinical animal models[15-17], no 
bone anabolic therapies have been approved for the treatment of MM yet.

MM is highly dependent on the bone marrow microenvironment[18,19]. In recent years, research efforts have 
focused on understanding the role of the MM tumor microenvironment in MM to identify new targets and 
develop novel therapeutic approaches. The inclusion of agents targeting the supportive effects of the 
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marrow niche, including bortezomib, lenalidomide and other immunomodulatory drugs, has significantly 
changed treatment strategies in MM and improved patient outcomes. Importantly, some of these agents can 
have dual effects, reducing MM growth and mitigating the deleterious effects of MM cells on bone[20,21]. 
Notch signaling, a pathway mediating the communication between adjacent cells, has been identified as 
aberrantly activated in the MM tumor niche. In this manuscript, we review the last findings and pleiotropic 
effects of Notch signaling activation in MM and discuss new advances in the therapeutic strategies aiming to 
target Notch for the treatment of MM and the associated bone disease.

THE NOTCH SIGNALING PATHWAY
Notch is a highly conserved signaling pathway that mediates short-range, cell-to-cell communication 
[Figure 1][22-24]. In fact, under most circumstances, Notch signaling transmission requires physical contact 
between cells. The Notch pathway core components include Notch transmembrane receptors (1-4), 2 
families of membrane-bound ligands, Delta-like ligands (Dll) 1-4 and Serrate-like ligands (Jagged) 1 and 2, 
the Notch receptor proteases Adam and γ-secretase, and the nuclear effector Csl (also known as Cbf1 or 
RbpjK)[22-25]. The Notch membrane-bound ligands are expressed in signal-sending cells. Notch ligands are 
type I transmembrane proteins with 3 main structural domains: a N-terminal DSL motif, a specialized 
tandem EGF repeat called the DOS domain, and EGF-like repeats[26,27]. Both the DSL and the DOS domains 
are involved in receptor binding[26,27]. Notch receptors, expressed in the signal-receiving cell, are single-pass 
type I transmembrane proteins and can have both redundant and unique functions. The extracellular 
domain of Notch receptors is required for ligand binding[28,29]. Notch receptors do not have enzymatic 
activity and rely on a sequence of proteolytic cleavage events to become active[30,31]. When the Notch ligand 
and receptor come into contact, there is a conformation change in the extracellular portion of the Notch 
receptor, which unmasks the cleavage site 2 (S2). This allows for Adam metalloproteases, Adam10 and 
Adam17, to cleave the Notch receptor at the S2 cleavage site, the first step leading to its activation[32]. After 
S2 cleavage, the γ-secretase complex cleaves at site 3 (S3)[32]. This cleavage causes the separation of the C-
terminal portion of the receptor, known as NICD, which is now free to translocate to the nucleus. In the 
absence of NICD, RbpjK is bound to co-repressor proteins to prevent transcription [Figure 1]. Once in the 
nucleus, the NICD displaces the co-repressors and interacts with RbpjK, as well as recruits mastermind-like 
(MAML) proteins to form a multi complex that induces transcription of various genes downstream[33,34]. 
Notch target genes include genes in the hairy and enhancer-of split (Hes) and hairy and enhancer-of-split 
with YRPW (Hey) families, which are helix-loop-helix proteins that function as transcriptional 
regulators[35]. This limited set of target genes is believed to mediate the diverse biological outcomes 
downstream the activation of Notch receptors.

Notch has pleiotropic biological functions, which are both context and cell dependent[22,23,36]. For instance, 
Notch signals mediate essential biological processes, including cell differentiation, apoptosis, proliferation, 
cell fate, and differentiation programs in both development and maintenance of adult tissues[25]. Given its 
relevant role in fundamental biological processes, aberrant Notch signaling underlies the pathophysiology of 
several human disorders[24], including solid and hematological cancers[36,37].

DYSREGULATION OF NOTCH SIGNALING IN MULTIPLE MYELOMA
It is well documented that the Notch signaling pathway is deregulated in MM and preclinical data suggest it 
contributes to the progression of MM[25,38,39]. Analysis of immunostainings for Notch components in bone 
marrow biopsies from MM patients and healthy subjects revealed that the expression of Notch receptors 1 
and 2 is increased in malignant plasma cells from MM patients compared to nonmalignant plasma cells or 
bone marrow from healthy individuals[40-42]. Notch receptor 3 expression is low in MM cells[43]. To the best of 
our knowledge, no studies have been conducted to determine if the expression of Notch receptor 3 is 
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Figure 1. Activation of the canonical Notch signaling pathway. Notch mediates the transmission of near- range signals by physical 
contact between adjacent cells. The sending signal cell expresses Notch ligands that bind to Notch receptors in the receiving signal cell. 
Upon binding, the intracellular portion of the Notch receptor undergoes sequential proteolytic cleavage by Adam enzymes and the γ-
secretase complex. The cleavage by the γ-secretase complex frees the Notch intracellular domain (NICD) from the transmembrane 
Notch domain and it translocates to the nucleus. In the nucleus, NICD promotes a transcriptional switch by binding to RbpjK and 
displacing of co-repressors and promoting the recruitment of MAML proteins and other transcriptional activators, activating the gene 
transcription of Notch target genes of the Hes and Hey families.

elevated in malignant plasma cells from MM patients or if it changes as the disease progresses from MGUS 
to PCL. Notch receptor 4 expression is low and in some cases undetectable in malignant plasma cells from 
MM patients and MM cell lines[43]. The expression of the Notch ligands Jagged 1 and 2, as well as the Notch 
target gene Hes5 has also been reported as elevated in MM patients[40-42,44]. Although some Notch 
components are aberrantly expressed in MM, the mechanism behind their dysregulation remains unclear. 
One possibility is that the increase in Notch members is due to genetic mutations. For instance, Notch 
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receptor 2 increases have been associated with translocations t(14;16)(q32;q23) and t(14;20)(q32;q11)[45]. The 
increased copy number of Notch ligands and receptors has also been linked to trisomies of various 
chromosomes at which genes of the Notch pathway are located. This includes Notch1 (chr.9q34.3), Notch3 
(19p13.2-p13.1), Dll3 (19q13), and Dll4 (15q14)[25,44]. De novo activation due to microenvironmental cues 
may also underlie the changes in the expression of Notch components. Supporting this notion, chromatin 
activation of genes at different steps of the Notch pathway, including ligands, receptor protease machinery, 
and downstream targets, has recently been detected in MM cells[46]. Moreover, preclinical studies from 
different groups have shown that interactions between MM cells and microenvironmental cells, such as 
stromal cells or osteocytes, can upregulate and/or change the repertoire of Notch receptors in MM cells[43,47]. 
Further studies are needed to determine the expression of Notch members in MM patients and changes that 
might occur as patients progress through the different stages of MM. Similarly, a better understanding of 
the underlying mechanisms involved in the transcriptional regulation of Notch components is required to 
determine the specific contribution of Notch dysregulation to MM disease.

Notch and multiple myeloma tumor growth
Overexpression of Notch receptor 1, Jagged 1, and Jagged 2 occurs early in MM disease[40-42]. Additionally, 
dysregulation of Notch receptor 1 and Jagged 1 has been associated with progression from MGUS to 
MM[41]. These initial observations suggest that the main outcome of Notch activation in MM is increased 
tumor growth. Indeed, in vitro and animal studies show that both homotypic (among MM cells) and 
heterotypic (between MM cells and host cells) Notch activation increases MM cell proliferation and 
decreases apoptosis in both human and murine MM cell lines and primary cells from patients[40,43,48-52]. The 
increased levels of Notch ligands and receptors in MM cells facilitate physical communication with other 
neighboring MM cells, leading to increased Cyclin D1 expression and Il-6 production, which in turn 
stimulates proliferation and promotes survival[43,53]. The pro-survival effect of Notch is due to upregulation 
of anti-apoptotic proteins like Bcl-2 and Bcl-x2, and downregulation of Bax and Bak, pro-apoptotic 
proteins[54,55]. Notch signaling also appears to contribute to the migration of MM cells through the 
expression of the Cxcr4/Sdf1α axis system[56]. Yet, the specific contribution of individual Notch receptors to 
MM proliferation remains unclear. For instance, Notch receptor 1 overexpression increases MM cell 
proliferation, suggesting a relevant role of this receptor in MM growth[57]. We recently found that lentiviral-
mediated inhibition of Notch receptor 3 reduces proliferation and Cyclin D1 expression in MM cells[58]. In 
contrast, genetic inhibition of Notch receptor 2 does affect the growth of MM cells[58]. Although yet to be 
determined, due to the low/undetectable levels of Notch receptor 4, it is likely that this receptor does not 
contribute to regulation of MM proliferation through homotypic interactions. Less is known about the 
specific contribution of Notch ligands to MM proliferation. In this regard, it has been shown that Jagged 2 
regulates MM self-renewal in vitro and in vivo[59].

Notch communication between MM cells and local microenvironmental cells also supports MM growth. 
Most of the work performed in this area has focused on the supportive role of stromal cells. Interaction of 
MM cells and bone marrow stromal cells induces the expression of Notch receptor 2 and Jagged 2 in MM 
cells, which results in increased expression of the Notch target genes Hes1, Hey2, and Hes5[60]. Stromal cells 
can activate Notch in MM cells via Dll 1 and cause an upregulation of Notch receptor 2 signaling, resulting 
in increased Notch transcription[61,62]. MM cells can also employ Notch ligands to activate the pathway in 
stromal cells, supporting the existence of bidirectional Notch communication between these cells types. In 
this regard, MM Jagged 2-mediated Notch activation stimulates Il-6, Vegf, and Igf expression in stromal 
cells, which in turn promotes MM growth and progression[42]. Osteoclast-MM communication via Notch 
also appears to promote MM survival through a mechanism involving the regulation of chrondoitin 
synthase 1 (Chys1) and Notch receptor 2 expression[63]. Our group recently demonstrated that osteocytes, 
the most abundant cells in bone[11], activate Notch signaling in MM cells and increase MM cell proliferation 
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by upregulating Cyclin D1[43]. In addition, osteocytes change the MM Notch receptor repertoire by rapidly 
increasing Notch receptor 3 expression and inducing the expression of Notch receptor 4[43]. Notch receptor 
3 knockdown in MM cells partially inhibited osteocyte-induced MM proliferation[58]. Importantly, injection 
of MM cells with knockdown for Notch receptor 3 in mice resulted in smaller tumors[58]. In contrast, 
knockdown of Notch receptor 2 in MM cells did not impair the proliferative effects of osteocytes on MM 
cells[58]. These results suggest that osteocyte-MM interactions contribute to MM growth and are mediated by 
Notch receptor 3. However, it is likely that Notch receptor 1 and/or 4 also contributes to MM-osteocyte 
communication. These studies are among the first ones investigating the specific contribution of each Notch 
receptor to homotypic and heterotypic communication in MM. Future studies are needed to identify the 
Notch receptor-ligand binding requirements for the different interactions between MM cells and local 
microenvironmental cells.

γ-Secretase inhibitors (GSIs) are a class of small-molecule inhibitors that prevent the cleavage of γ-secretase 
substrates and block Notch signaling activation by precluding the cleavage of Notch receptors. GSIs are 
widely used to inhibit Notch and have been employed to better understand the contribution of Notch 
signaling to MM growth. Treatment with GSI decreases Notch signaling, which in turn causes MM cell 
apoptosis and decreases cell proliferation in vitro[43,50,54,64]. The Notch inhibition mediated by GSIs decreases 
Cyclin D1 expression, consequently increasing the portion of MM cells in the G0/G1 phase and decreasing 
those in the S-phase. In addition, pharmacological inhibition of Notch with GSIs decreases the expression of 
the anti-apoptotic protein Bcl-2, and activates Bak and Bax, resulting in activation of caspases and pro-
apoptotic proteins, leading to increased MM cell death[43,50,54,64]. GSIs are also able to block the proliferative 
and pro-survival effects of heterotypic Notch activation by surrounding marrow cells. For instance, GSI 
blocked stromal Notch activation and decreased MM cell proliferation mediated by Jagged 2 
overexpression[47]. Similarly, GSIs fully block osteocyte-induced Notch activation and increase proliferation 
in MM cells[43]. It is important to note that, besides Notch receptors, GSIs can also inhibit the processing of 
other gamma-secretase substrates, such as cell-surface receptors and proteins involved in embryonic 
development, hematopoiesis, cell adhesion, and cell/cell contact. Nonetheless, the results described above 
with GSIs are in line with those resulting from direct manipulation of Notch components in MM cells or 
environmental cells, and thus further support a role of Notch versus other γ-secretase substrates in MM cell 
proliferation.

In addition to GSI, other drugs have shown to achieve their anti-MM effects through the modulation of 
Notch signaling in MM cells. The ubiquitin specific peptidase 1 inhibitor SJB3-019A increases MM cell 
apoptosis by downregulating the expression of Notch receptors 1 and 2[65]. Further, Wang et al.[66] 
demonstrated that treatment with sophocarpine triflorohydrazone (SCA), an alkaloid acting as an inhibitor 
of Notch receptor 3, decreased MM cell viability, activated apoptosis, and decreased Notch receptor 3 
expression in vitro, in 2 different MM cell lines[66]. SCA treatment increased Bax proteins, decreased Bcl-2 
proteins, and elevated caspase 3 levels[66]. Additionally, SCA treatment caused a decrease in the Notch target 
genes Hes1 and Hey1 expression[66].

Together, the results discussed in this section highlight the contribution of Notch signals to MM 
progression by promoting cell cycle progression, improving survival in MM cells, and transmitting 
proliferative cues from cells in the marrow niche. However, it is important to note that MM proliferation is 
regulated by multiple signaling pathways[19]. Nonetheless, these collective findings provide the rationale for 
using Notch components as anti-myeloma therapeutic targets, an active area of investigation discussed in 
the “Notch components as therapeutic targets” section.
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Notch and drug-resistance
Relapse and refractory MM are hallmarks of MM disease, but the mechanisms underlying the development 
of drug resistance in MM are still under investigation. Disease relapse can be a consequence of the presence 
of drug-resistant MM clones initially present and/or emerging in the course of treatment[67,68]. MM 
refractory chemotherapy mechanisms are complex, and may involve a combination of genetic and 
epigenetic alterations, dysregulation of pathways involved in drug transport and cell death programs, and 
the presence of drug-resistant cancer stem cells or dormant cells[67,68].

The focus of the research in drug-resistance has recently shifted towards the identification of protective 
mechanisms initiated by the marrow microenvironment[67,68]. Growing evidence supports an active role of 
Notch signals, particularly from stromal cells, in the acquisition of a drug-resistant phenotype in MM cells. 
Jagged 1-mediated activation of Notch signaling in MM cells by stromal cells is sufficient to protect MM 
cells from melphalan- and mitoxantrone-induced apoptosis[69]. This protective effect appears to be mediated 
by Notch receptor 1 and not by Notch receptor 2, as overexpression of Notch receptor 1 in MM cells 
prevents melphalan- and mitoxantrone-induced MM cell death[69]. Dll 1 signaling, through Notch receptor 
2, has been shown to contribute to drug resistance to bortezomib, in both murine and human MM cells[62]. 
In vitro and in vivo studies demonstrated that both intrinsic and stroma-mediated drug resistance to 
bortezomib, lenalidomide, and melphalan also require Jagged ligands in MM cells[70,71]. Notch signals may 
also contribute to the development of resistance to mitoxantrone as inhibition of Notch signaling with GSI 
overcame the drug resistance to mitoxantrone induced by stromal cells[50]. Although in this case the ligand-
receptor requirements were not evaluated, this effect appeared to be mediated by the transcriptional activity 
of the Notch target gene Hes1[49]. Notch signaling, in particular Notch receptor 1, is also required for 
resistance to doxorubicin. In this case, Notch receptor 1 regulates the expression of integrin αvβ5 in MM 
cells, which enhances MM cell adhesion to vitronectin[72]. Silencing Notch receptor 1 or blocking integrin 
αvβ5 with an antibody reduced MM cell adhesion to vitronectin and reverted in MM cells the protection 
from doxorubicin pro-apoptotic effects conferred by adhesion to vitronectin[72]. Importantly, blocking the 
Notch pathway with GSIs has been shown to prevent stroma-induced drug resistance by increasing 
sensitivity of MM cells to bortezomib, doxorubicin, and melphalan in cell cultures and animal models of 
MM[50,62,69]. Together, these studies suggest that specific Notch ligand-receptor signals confer resistance to 
different anti-MM drugs, an observation that could be exploited in the clinic to overcome drug resistance to 
particular therapies. Thus, the addition of Notch inhibitors to chemotherapy might be an interesting 
strategy to increase drug sensitivity in refractory MM patients. Nonetheless, animal and clinical studies are 
needed to determine the potential of targeting Notch inhibition to prevent or delay disease relapse in MM.

Notch and angiogenesis
Angiogenesis, the process of new blood vessel formation from the existing vasculature, is necessary for the 
growth of MM cells[73-75]. Microvessel density is remarkably higher in the marrow of MM patients compared 
to those with MGUS or healthy subjects[73-75]. Neovessel density correlates with the disease stage and shrinks 
during remission, increasing again during the relapse/refractory phase, and reaching maximum expansion 
in PLC[73-75]. Elevated levels of marrow angiogenesis correlate with decreased MM patient survival[76]. 
Angiogenesis is regulated by a broad spectrum of locally produced factors, with Vegf (A-E) members being 
main drivers of this process in MM[75]. Vegf factors bind to Vegf receptors 1-3, activate endothelial cells, and 
initiate angiogenesis[77]. The bone marrow microenvironment in MM also facilitates angiogenesis because it 
is extremely hypoxic, which stimulates the production and release of Vegf.

Recent evidence suggests that Notch signals between MM cells, marrow cells, and endothelial cells can 
contribute to angiogenesis in MM. Endothelial cells from MM patients exhibit higher expression of Jagged 1 
and 2, Notch receptors 1 and 2, and Notch target genes than endothelial cells from MGUS patients[78,79]. In 
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vitro work has shown that Jagged-mediated signals from MM cells can increase angiogenesis by activating 
Notch and stimulating the release of Vegf in both endothelial cells and marrow stromal cells[77]. In vitro, 
genetic knockdown of Notch receptor 1/2 or blockade of Notch signaling with GSI decreased angiogenesis 
induced by MM cells. Further, GSI treatment reduced the secretion of pro-angiogenic cytokines in 
conditioned media and decreased angiogenesis in animal models of MM[48,78,79]. Until recently, MM cells or 
stromal cells have been considered the main source of angiogenic factors in the MM niche. In a recent study 
from our group, we examined if osteocytes contributed to the increased marrow vascular density in MM 
patients. We found that the number of Vegf-A positive osteocytes is significantly increased in bones bearing 
MM tumors and positively correlates with tumor vessel area[80]. Hypoxia and MM cells increased Vegf 
expression in osteocytes and increased the pro-angiogenic capacity of osteocytes[80]. Vegf-A knockdown in 
osteocytes completely blocked the increased endothelial activity induced by MM cells or hypoxia[80]. These 
results demonstrate that osteocytes are a source of Vegf-A, and potentially other pro-angiogenic factors, in 
bones infiltrated with MM cells. However, whether Vegf-A production by osteocytes is dependent on Notch 
remains to be determined. Despite the positive in vitro and in vivo results observed with pharmacological 
blockade of Vegf in MM models, inhibition of Vegf in the clinical setting has not been successful, likely due 
to the contribution of other pro-angiogenic factors to this phenomena[75]. Further studies are needed to 
clarify if Notch inhibition suppresses the production of other angiogenic factors besides Vegf, and if it could 
be an efficacious strategy to contain angiogenesis in MM patients.

Notch and multiple myeloma-induced osteolytic bone disease 
Bone is a very dynamic tissue, constantly being renewed by a lifelong process known as bone remodeling, 
where mature bone is removed from the skeleton and new bone tissue is formed[81]. This process is 
orchestrated by the osteocytes, which coordinate the coupled and balanced activity of osteoclasts, bone 
resorbing cells, and osteoblasts, bone forming cells[81,82]. Notch signals contribute to physiological bone 
remodeling[83]. However, the role of Notch in bone is complex and cell-dependent. The incomplete 
understanding of the role of Notch in adult bone biology stems from the use of genetic manipulations in 
mice, which result in alterations in skeletal development that inevitably affects the adult skeleton. The effects 
of Notch on osteoclasts are controversial, with findings reporting both inhibition and stimulation of 
osteoclast differentiation after Notch activation[84-86]. The effects of Notch in cells of the osteoblastic lineage 
are dependent on the differentiation stage[87-91]. In osteocytes, Notch receptor 1 genetic activation from birth 
results in inhibition of bone resorption due to Opg upregulation[92]. In contrast, conditional activation of 
Notch signaling in osteocytes in mature bones triggers bone formation[93].

The growth of MM cells in the marrow markedly alters bone remodeling, uncoupling the activity of 
osteoclasts and osteoblasts, tilting the balance towards bone resorption[9,94,95]. The ability of MM cells to 
shape the marrow into a pro-resorptive environment is mediated by several signaling pathways, including 
Notch[96]. Notch signaling can regulate osteoclastogenesis by 2 different mechanisms: (1) regulating the 
expression of pro-osteoclastogenic cytokines in MM cells, and (2) mediating the communication between 
MM cells and microenvironmental cells that leads to pro-resorptive effects. MM cells are a source of 
cytokines that regulate osteoclast differentiation, including Rankl and M-Csf[97]. Notch signaling regulates 
Rankl expression in MM cells[98]. Supporting this notion, we recently found that genetic deletion of Notch 
receptors 2 and 3 in MM cells or treatment with GSI significantly decreases Rankl expression and impairs 
their ability to stimulate osteoclastogenesis[58], Rankl expression in MM cells is also stimulated by stromal 
cells, an effect depending on Notch activation[98]. Additionally, MM cells can promote osteoclastogenesis by 
direct activating Notch in osteoclasts, via Jagged 1 and 2 ligands[25,98]. MM cells also activate Notch signaling 
in osteocytes, which are the major source of Rankl in adult bone[99,100]. Upon activation of Notch signaling by 
MM cells, osteocytes undergo apoptosis[43], which in turn increases Rankl expression, decreases Opg 
production, and enhances the ability of osteocytes to recruit osteoclast precursors[43].
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The contribution of Notch signals to the protracted suppression of bone formation in MM is unclear. 
Osteoblast precursors isolated from MM patients exhibit increased Notch signaling and decreased 
osteogenic capacity compared to precursors derived from healthy subjects[101,102]. Interestingly, treatment 
with GSI restored Runx2 expression and the osteogenic capacity in osteoblasts precursors from MM 
patients in vitro, suggesting a potential role of Notch signaling in the suppression of new bone formation 
induced by MM cells[101,102]. Yet, studies manipulating Notch components in osteoblastic cells are required to 
establish the specific contribution of Notch signaling in MM-induced suppression of osteoblastogenesis. It 
is also possible that MM cells suppress osteoblasts indirectly, by acting on other cells in the marrow 
microenvironment. In this regard, our group has reported that MM cells deeply alter osteocyte biology in 
bones infiltrated with MM tumors[43]. For instance, MM cells increase the expression in osteocytes of critical 
regulators of bone remodeling, such as Sclerostin or Dkk-1. Genetic and pharmacologic inhibition of 
Sclerostin dramatically improves bone health in animal models of established disease, with no effects on 
tumor growth[15-17]. Although it has been shown that genetic manipulation of Notch components in bone 
cells can result in changes in Sclerostin production[103], whether the increase in osteocyte-derived Sclerostin 
induced by MM cells is secondary to Notch activation remains to be determined. Importantly, 
pharmacologic inhibition of this pathway in animal models of MM results in decreased bone resorption and 
mitigation of the osteolytic disease, with no significant effects on bone formation[49,54,101,104,105].

Collectively, these findings suggest that Notch signals contribute to the development of bone disease in 
MM, primarily through the generation of a microenvironment conducive to bone resorption and 
destruction. Further studies are needed to clarify the potential role of Notch signaling in osteoblasts 
suppression.

NOTCH COMPONENTS AS THERAPEUTIC TARGETS
Several strategies have been tested to inhibit Notch[106-108]. However, due to the role of Notch signaling in the 
development and homeostasis of multiple tissues, the majority of approaches developed so far have led to 
undesirable, dose-limiting toxicities. For a detailed review of the existing clinical trials testing Notch 
inhibitors in cancer patients, refer to the recent manuscript by Moore et al.[106]. The most traditional and 
common approach to inhibit Notch is to prevent the proteolytic cleavage of the Notch receptors by blocking 
the γ-secretase complex with GSIs[109,110]. GSIs are attractive due to their ability to unselectively inhibit Notch 
signaling regardless of the ligand-Notch receptor involved. However, GSIs can lead to severe unwanted 
side-effects on tissues endogenously regulated by Notch, particularly the gut, where Notch inhibition causes 
secretory goblet cell metaplasia[110,111]. So far, the FDA has only approved, via Orphan Drug Designation and 
Fast Track Designation, the use of the GSIs Nirogacestat and AL101, for the treatment of desmoid tumors 
and Notch-mutant adenoid cystic carcinoma respectively, an important breakthrough in this field of 
research[106,107]. A more targeted approach to inhibit Notch is the use of monoclonal antibodies or soluble 
decoys against individual Notch components to disrupt specific ligand-receptor interactions. Several 
antibodies against Dll 4 (Demcizumab) and Notch receptors 1, 2, and 3 (Brontictuzumab and Tarextumab) 
have been tested in clinical trials[106,107]. Unfortunately, lack of clinic benefit over standard of care or 
intolerable toxicities have precluded the approval of these agents in the clinic. Moreover, these strategies are 
limited to particular Notch ligand-receptor interactions and thus, might not have a widespread application 
for the treatment of cancer patients. Another approach is the use of small-molecule inhibitors to target the 
Notch transcription complex (i.e., SAHM1, RIN1, and CB-103)[106,107]. Promising results have been obtained 
in preclinical models with these agents, particularly with CB-103, which exhibited a safe profile with no gut 
toxicity[112]. Ongoing clinical trials are evaluating CB-103’s anti-tumor efficacy in solid and hematological 
malignancies (NTC034226790).
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To this date, no Notch inhibitors are approved for the treatment of MM. In fact, only 2 trials have tested 
Notch inhibition in MM patients. The effects of the GSI inhibitor RO4929097 were tested in MM patients 
after autologous stem cell transplantation (NCT01251172). Unfortunately, although no severe side-effects 
were reported in this study, the clinical trial was withdrawn due to the termination of drug development by 
the company. Recently, interest in Notch inhibitors has increased due to the observation that the γ-secretase 
complex cleaves BCMA from the membrane of MM cells, decreasing the amount of available target for 
chimeric antigen receptor (CAR) T cells specific for BCMA[113]. The anti-MM efficacy of BCMA-specific 
CAR T-cells in combination with GSI JSMD194 in relapsed or persistent MM patients is currently being 
tested in clinical trial NCT03502577. In this line, several companies have announced the testing of their 
GSIs (i.e., Nirogacestat and AL102) in combination with BCMA-specific CAR T-cells in MM patient 
populations.

Given its multifunctional role in MM, Notch still remains an attractive therapeutic target. However, Notch-
related therapies have not gathered momentum due to the toxicities seen with current therapeutic strategies 
and the difficulty of targeting multiple Notch ligand-receptor interactions. Our group has taken a new 
direction to improve the therapeutic index of GSIs for the treatment of MM[105]. We have developed a novel 
bone-targeted GSI to bypass Notch inhibition in other tissues, particularly the gut. Preclinical results in 
animal models of human and murine MM showed that our bone-targeted GSI approach results in specific 
inhibition of Notch in skeletal tissues and decreases MM growth and bone destruction, without inducing 
gut toxicity. Ongoing pharmacokinetic and pharmacodynamics studies, as well as a full assessment of the 
safety profile, should provide a better picture of the potential of this new approach for the clinic.

CONCLUSION
Progress in medical research has improved our understanding of tumor biology and defined the impact of 
the microenvironment on cancer pathogenesis. This is particularly true for MM, where the bone/marrow 
niche plays a critical role in its onset and progression. MM cells locate in specialized niches in the marrow 
where they interact with stromal cells, endothelial cells, immune cells, osteoblasts, osteoclasts, adipocytes, 
and osteocytes. These interactions transform the marrow niche into an ideal environment for MM 
progression and the development of bone disease. Further, the marrow niche provides protection to drug-
resistant MM cells, which can repopulate the marrow and induce disease relapse. Accumulating evidence 
supports that transmission of near-range signals via Notch between MM cells and marrow cells shapes the 
microenvironment and transforms it into a niche conducive to MM cell proliferation and survival, 
promoting drug resistance, and bone destruction [Figure 2].

Yet, several aspects of Notch signaling and its pleiotropic role of in MM remain to be resolved. A clear 
understanding of the specific role of each Notch component, the receptor-ligand specificity for homotypic 
and heterotypic interactions, and potential redundancies in receptor and ligand functions is required to 
identify effective and safer strategies to inhibit this pathway. It is expected that with the inclusion of next-
generation RNA and DNA sequencing approaches in clinical practice, more information regarding the 
changes in expression and actionable mutations in Notch components will be available in the coming years. 
Particular attention should be paid to the changes during the progression from MGUS to MM to PCL in 
patients, as well as in the recurrence of the disease. Although Notch1 and 2 receptors are highly expressed in 
medullary and extramedullary MM cells[40], whether Notch signaling plays a role in MM migration and 
extramedullary growth remains to be determined. Pharmacological inhibition of Notch with GSIs in 
preclinical models of MM shows promising dual strong anti-myeloma and anti-resorptive efficacy. 
Moreover, recent evidence shows that GSIs can enhance BCMA-directed CAR T-cell therapy by increasing 
the amount of surface BCMA target[113]. Unfortunately, the severe side-effects associated with the systemic 
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Figure 2. The multifunctional role of Notch signaling in multiple myeloma (MM). MM cells exhibit increased expression of Notch 
components that help them to receive and transmit near-range signals from and to adjacent cells. Homotypic Notch communication 
between MM cells increases MM cell proliferation. Tumor growth is further supported by Notch signals received by stromal cells and 
osteocytes. In addition, MM cells enhanced angiogenesis via sending pro-angiogenic Notch signals to endothelial cells, stromal cells, 
and osteocytes. The increased angiogenesis in turn aids tumor growth by providing nutrients to the tumor. Both homotypic and 
heterotypic (from stromal cells) Notch signals confer drug-resistance to MM cells and promote MM cell survival. Moreover, Notch 
signals from and to bone cells contribute to the progression of the MM-induced osteolytic bone disease.

inhibition of this pathway in other tissues have precluded the approval of GSI for the clinical care of MM 
patients. Although there are clinical trials evaluating the effects of targeting individual Notch components in 
other cancers, improved and safer strategies to target this pathway for the treatment of MM are still needed. 
Novel approaches to effectively and safely target Notch are currently under development to exploit this 
pathway in the clinic. In addition, more studies are required to determine if the combination of Notch 
inhibitors with other anti-MM therapeutics can delay/prevent disease relapse, repair damaged bone, and 
improve patient outcomes.
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