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Plastic surgery is a specialty that is now worldwide 
recognized as its own academic discipline within 
the surgical community. The roots however are 
as old as 600 BC when in the Sushruta Ayurveda 
the reconstruction of a nose with a flap from the 
forehead was described. Plastic surgery is a problem 
solving discipline that meanwhile is an integral 
part within modern surgical concepts. A number of 
groundbreaking inventions and developments from 
plastic surgery had led to relevant innovations and 
these influenced the whole field of surgical specialities, 
including the nobel prize for the first successful renal 
transplantation, performed by the plastic surgeon 
John Murray. Although principal details of operation 
techniques that had been described as early as 
600 BC are still part of the surgical armamentarium, 
many innovative methods have enriched the current 
spectrum of possibilities. Whereas over many 
centuries techniques of reconstruction utilized delayed 
pedicled random pattern flaps and needed multi stage 

procedures (even before the advent of anaesthesia) 
today axially vascularized and perforator based 
flaps have replaced these often tedious and painful 
techniques. It was the publication of the Indian method 
of nose reconstruction in the Gentlemen´s magazine in 
England that replaced the random pattern flap based 
method that was described in Tagliacozzi’s two volume 
book De Curtorum Chirurgia per Insitionem (1597), 
where he detailed the different surgical steps with 
graphic illustrations that became a hallmark of surgical 
textbooks ever since.

When within the last decades the rapid development of 
microsurgery allowed for transplantation of vascularized 
tissue to almost any part of the body this spread as 
a fascinating extension of older surgical methods 
to many other surgical specialities as well. Modern 
reconstructive and oncological concepts rely on the 
interdisciplinary character of plastic surgery making 
our specialty an essential part of any reconstructive 
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concept and rendering plastic surgery as a problem 
solving discipline within the concert of all medical 
specialities. It has been shown that such modern 
interdisciplinary concepts contribute significantly to 
improving the patient´s quality of life.

As an example one can look at the salvage of 
hypovascularized wounds in the lower extremity, that is 
made possible by transferring well vascularized tissue 
utilizing microsurgery. This concept utilizes the surgical 
induction of angiogenesis for the treatment of chronic, 
poorly vascularized wounds, such as in diabetic 
ulcers and ulcers following arteriosclerotic disease[1-5]. 
Autologous venous bypass grafts can be used as a 
prolongation or as arterio-venous loops to allow for 
a distal free flap connection even in the absence 
of appropriate local vessels, before amputation is 
necessitated. We have been using this concept for 
more than 20 years now and have investigated a larger 
cohort of such selected patients who needed bypasses 
and microsurgical free flaps. We have therefore 
assessed and advocated an algorithm based on our 
results and from current literature data[6-11].

Perforator flaps have significantly contributed to a 
further reduction in donor sit morbidity when compared 
to myocutaneous or muscle flaps. Perforator flaps 
have been advocated to be another soft tissue choice 
for all zones of the lower extremity, recognizing that 
donor site function preservation is their major asset 
because in such perforator flaps no muscle needs to 
be included [Figures 1 and 2]. When patients do not 
have relevant microperfusion problems in the recipient 
area and when arterial inflow is not compromised, 
peninsular, propellor, or advancement perforator flaps 
can be regarded as valuable local non-microsurgical 
flap alternatives in appropriate cases[12]. However, the 
indication to decide whether a local flap or a free tissue 
transfer is necessary depends on the localization 

and the size of the defect as well as on the vascular 
situation of the recipient site[13]. In diabetic foot ulcers 
for instance the indications for local flaps are rather 
limited. It also has to be taken into account that any 
local flap does not only cause a donor site defect 
but also may further deteriorate the vascular supply 
of the distal extremity. In experimental studies the 
potential role of neo-angiogenesis at the non-ischemic/ 
ischemic interfaces are key to the biological healing 
process. Such interfaces occur after transfer of free 
vascularized flaps into ischemic wounds[14,15]. Due to 
the standardization of microsurgery the age of patients 
seems to be no hindrance to become eligible for free 
flap transfers to the lower extremity. A correlation 
between flap loss and increased risk factors and age 
was not found in the elderly population so far[16-18]. 

We have gained experience with more than 100 
patients who received a bypass or an av-loop (primarily 
or staged) along with a free flap and we could show 
that weighed against the gain in quality of life the donor 
site morbidity is comparatively low and acceptable. 
Nevertheless a consequent patient selection and 
a thorough planning can help to keep the rate of 
complications low. 

It is the daily routine of plastic surgeons to deal with 

Figure 1: A 58-year-old male patient with pretibial defect following 
radical resection of malignant melanoma with exposed tibial bone 
and immediate aspect at the end of free microvascular anterolateral 
thigh flap transfer

Figure 2: Three months postoperative aspect of defect reconstruction 
with free microvascular anterolateral thigh fasciocutaneous flap 
transfer to pretibial defect
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tissue loss and tissue replacement. Therefore it is of 
no wonder that plastic surgeons who were engaged in 
replacing lost tissue were amongst the initial founders 
of what has then be termed tissue engineering (TE) 
and hence have been involved into all kinds of research 
in TE and regenerative medicine. Basically the initial 
idea of TE was to build appropriate scaffolds and then 
seed cells on such matrices to transplant them into the 
recipient area. In the laboratory considerable results 
have been obtained in generating replacement tissue 
but have not found their way into daily clinical practice 
yet. The main obstacle has turned out to be the lack of 
initial vascularization especially in large constructs[19]. 
These suffer from sufficient initial blood supply after 
transplantation to nourish inherent or adherent cells 
right from the beginning of their inset. One possible 
way to overcome this problem is the prevascularization 
of such scaffolds utilizing microsurgically created 
arterio-venous (av-) loops to three-dimensionally 
vascularize large constructs before the designated 
cells are inoculated [Figure 3]. These prevascularized 
constructs can then be successfully transplanted[20-23]. 
Methods derived from such approaches have been 
successfully implemented into the clinical scenario[24-27]. 
For the first time in the literature we were able to 
successfully apply av-loops in two patients, fill in the 
patient´s own bone marrow stem cells, along with 
a hydroxyl-apatite powder and fibrin sealant and 
we then have seen a permanent replacement and 
restoration of large human bone defects[28]. This is a 
very promising approach that offers a way from bench 
to bedside already in selected cases. Latest advances 
now include the integration of 3D bioprinting of cells 

and proteins together with biodegradable matrices 
[Figures 4 and 5], generally now perceived as the new 
field of “biofabrication”[29]. It has been postulated by 
researchers that bioprinting would now be on the cusp 
of entering the translational phase where laboratory 
research practices can be scaled up into manufacturing 
products specifically designed for individual patients[30]. 
In addition to tissue replacement such modalities 
could help to also fight systemic conditions, such as 
diabetes mellitus or malignant diseases. With the help 
of biofabricated protein synthesizing producer cells 
in a 3D microvascularly connected defined container 
it can become possible to treat systemic or local 
diseaeses. The advantage of such containers with 3D 

Figure 3: 3D negative imprint of angio- and vasculogenesis network 
sprouting out from arterio-venous loop in an isolated chamber after 
6 weeks

Figure 4: Future applications of 3D bioprinting envision a precise 
specialdeposition of cells and molecules into 3D scaffolds to 
mimick natural tissue conditions and to facilitate artificial tissue 
replacement, such as in this artistic rendering an ear or a noise for 
example, using tools of biofabrication

Figure 5: 3D bioprinted ear frame work with bioink that can contain 
living cells to be positioned into the printed construct
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hierarchically printed reporter/producer cells would 
be that it could potentially produce antibodies in a 
clinically relevant amount and could be removed when 
no longer needed. Ravnic et al.[31] reported on recent 
successful attempts to generate beta-cells and how this 
can be coupled with bioprinting technologies in order to 
fabricate pancreas tissues, which holds great potential 
for type 1 diabetes. They postulated that it would be 
possible to integrate vascularization and encapsulation 
in bioprinted tissues. This would lend other future 
prospects, such as pancreas-on-a-chip or organoids on 
a chip[31]. Our own group is actively investigating the 
value of bioprinting to generate such arterialized 3D 
prevascularized containers which can then be loaded 
with protein producing cells. These cells are supposed 
to continuously express functional substances and 
address specific functions in the recipient organism. 
This interdisciplinary approach is a fine example of how 
we can combine the knowledge, skills and expertise 
of plastic surgical microvascular techniques with the 
science of bioengineering and biology. Therefore, it 
seems promising to help our patients better than today 
with customized solutions to overcome morbidities that 
are rarely curable today. In summary, all the findings 
from regenerative medicine and tissue engineering 
are now more and more merging into the new field of 
biofabrication. This might well enrich our daily clinical 
practice of to the benefit of our patients by combining 
the art of plastic surgery with basic science[32,33]. 
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