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Abstract
Eutectic high entropy alloys (EHEAs) have attracted tremendous research interest over the past decade due to 
their superior physical and mechanical properties. Given the compositional complexity, there are no 
well-established phase diagrams for EHEAs. Therefore, the compositional design of EHEAs has been following a 
trial-and-error empirical approach, which is time-consuming, costly, and ineffective. To accelerate the search for 
EHEAs, data-driven approaches, particularly machine learning (ML) based modeling, have recently been utilized in 
lieu of the traditional empirical approach. In this article, we provide a critical overview of the recent efforts in the 
design and development of EHEAs, which covers the various empirical methods and the state-of-the-art machine 
learning models developed for EHEAs. In addition, we also briefly discuss the mechanical properties and plasticity 
strengthening mechanisms in EHEAs which are related to their heterogeneous microstructure, such as 
heterogeneous deformation induced strengthening, twinning induced strengthening, and phase transformation 
induced strengthening.
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INTRODUCTION
Eutectic alloy, in which at least two phases form and grow in a coupled manner during solidification, has 
attracted immense attention and interest in both academia and industries in past decades[1,2]. The term 
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“eutectic” was coined by Guthrie in 1884 to refer to easy melt (i.e., the minima on a liquidus curve)[3]. Since 
the melting temperature of a eutectic alloy is always lower than those of its constituent phases, eutectic 
alloys often exhibit good castability. Additionally, their eutectic microstructures can be readily tailored 
through thermomechanical processing for optimized properties, such as high rupture strength[4-6], good 
high-temperature creep resistance[7-9], high thermal conductivity[10,11] and superior wear and corrosion 
resistance[12-15]. Compared to single-phase alloys, eutectic alloys usually possess balanced mechanical 
properties that can meet demanding requirements in structural applications[1,16-18].

To date, a number of eutectic alloy systems have already been developed for various applications, such as 
Sn-Pb as solder joints[19-21], Sn-Ag for electronics[22-24], Ni-Si for magnetics[25,26], In-Ga for optics[27,28] and 
Ni-Al-Cr for aerospace engineering[29,30]. However, just like many other conventional alloys, the design of 
conventional eutectic alloys is usually based on one principal element. If the phase diagram is not available, 
alloying elements are then added in a trial-and-error manner to pinpoint a eutectic composition. While 
people have been following such a design strategy for decades, this approach is costly, time-consuming, and 
inefficient, particularly when it comes to compositionally complex alloys (CCAs), such as multi-principal-
element alloys (MPEAs)[31-33] and high entropy alloys (HEAs)[34,35], for which there is no phase diagram and 
the associated compositional space is too broad to navigate with the traditional design strategy.

In the past, the development of HEAs in their infancy was mainly focused on the formation of single-phase 
solid solutions[36-41], while the recent trend has shifted to multi-phase HEAs with balanced mechanical 
properties[42-44]. One good example is the so-called eutectic high entropy alloys (EHEAs) comprising a 
biphasic or triphasic microstructure with a lamellar or rod morphology[1,45]. By carefully controlling the 
thermal and mechanical processing, EHEAs can exhibit a wide range of microstructural feature sizes, 
ranging from tens of nanometers to a few microns[46-49]. Owing to these heterogeneous eutectic micro- or 
nanostructures, EHEAs can attain high strength and good ductility[46,47,50,51], remarkable creep resistance[45,52], 
superior thermal stability at elevated temperatures[53-55] and good processability[56].

Given the vast hyper-dimensional compositional space for EHEAs, the traditional design strategy becomes 
impractical. Therefore, several design methods were proposed recently to quickly locate the possible eutectic 
or near-eutectic composition in the compositional space. These include, the simple mixing method[57-60], the 
grouping method[61-63], the pseudo-binary methods[64-67] and the so-called “LEGO” method[68]. The pros and 
cons of these methods are listed in Table 1 and they can be categorized into two strategies, as summarized in 
Figure 1. However, we note that these methods are mostly empirical; therefore, the related experimental 
workload that one has to pay is heavy to verify these empirical predictions as the number of constituent 
elements increases. To improve efficiency, people usually turned to machine learning (ML) as an alternative 
to the traditional design strategy for the development of advanced alloys (i.e., titanium alloys[69,70], copper 
alloys[71,72], shape memory alloys[73-75] and even metallic glasses[76-78]). Recently, these efforts were extended to 
the design of EHEAs[79-81]. In the present work, we provide a critical overview of these recent efforts for the 
development of EHEAs covering the empirical design methods and the data-driven methods.

EMPIRICAL DESIGN METHODS OF EUTECTIC HIGH ENTROPY ALLOYS
Linear combination of binary eutectics
Without a phase diagram, it is non-trivial and difficult to locate the eutectic compositions for multi-
component alloys and HEAs. Therefore, to facilitate the design of EHEAs, one strategy is to resort to the 
phase diagrams of binary eutectics, which can be easily found in the literature[57,59,60,68]. In other words, there 
is a hypothesis that the eutectic microstructures of multi-component systems may inherit from some 
binary/ternary eutectics[68,82,83]. While this hypothesis remains to be verified theoretically, it indeed provides 



Page 3 of Chen et al. J Mater Inf 2023;3:10 https://dx.doi.org/10.20517/jmi.2023.06 19

Table 1. Pros and cons of the empirical methods for EHEA design

Methods Pros Cons

Simple mixing 
method

“LEGO” method

Take binary eutectics as the constituents, which can be 
easily located from phase diagrams 

(1) Lack of supportive physical and thermodynamic theories, which 
significantly reduces the efficiency 

Pseudo-binary 
method

Grouping 
method

With the help of CALPHAD, a pseudo-binary system 
can be quickly constructed and evaluated 

(2) The explorable space following empirical methods is limited 
compared with the vast compositional space of HEAs 

Figure 1. The schematic for the various empirical design methods for eutectic high entropy alloys.

an avenue to locate EHEA compositions. In practice, one can add the weighted compositions of binary 
eutectics as a candidate composition Ceutectic for a multi-component alloy, which may be formulated as 
follows:

where Ceutectic stands for the eutectic composition; Ai and Bi stand for the constituent element of the ith binary 
eutectic, while xi is the weighting factor. Following this line of reasoning, many EHEAs or multi-component 
eutectic compositions were discovered, including Nb0.45CoCrFeNi[57], Nb0.8Co1.74Fe2.82Ni[60], Nb0.5CoFeNi[84] 
and Nb0.5CoCrFeNi[85,86], etc. Here we emphasized that the values of xi are not fixed; however, in the 
literature, they were mostly set equal or nearly equal in a heuristic manner such that the overall composition 
was close to an equiatomic or near-equiatomic composition, as listed in Table 2.

Pseudo-binary eutectics
Since mixing of elements with a similar atomic size tends to form solid solutions[89,90], such as CoCrNi[91,92], 
CoCrFeNi[93], and CoCrFeNi2

[94], one alternative way to design EHEAs is to view these solid solutions as a 
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Table 2. EHEA compositions identified via Equation (1) compared with the experimental verifications

Alloy system xi Ceutectic (calculated) Ceutectic (experimental) Ref.

Nb13.9 Co86.1 0.25

Nb12Cr88 0.25

Nb10.6Fe89.4 0.25

Nb-Co-Cr-Fe-Ni

Nb15.5 Ni84.5 0.25

Nb0.6CoCrFeNi Nb0.45CoCrFeNi [57]

Ta8Co92 0.25

Ta13Cr87 0.25

Ta7.5Fe92.5 0.25

Ta-Co-Cr-Fe-Ni

Ta13.7Ni86.3 0.25

Ta0.47CoCrFeNi Ta0.4CoCrFeNi [57]

Zr9.5Co90.5 0.25

Zr17.2Cr82.8 0.25

Zr9.8Fe90.2 0.25

Zr-Co-Cr-Fe-Ni

Zr8.8Ni91.2 0.25

Zr0.51CoCrFeNi Zr0.55CoCrFeNi [57]

Hf11Co89 0.25

Hf13Cr87 0.25

Hf7.9Fe92.1 0.25

Hf-Co-Cr-Fe-Ni

Hf12.5Ni87.5 0.25

Hf0.49CoCrFeNi Hf0.4CoCrFeNi [57]

Nb13.9Co86.1 0.29

Nb10.6Fe89.4 0.46

Nb-Co-Fe-Ni

Nb15.5Ni84.5 0.25

Nb0.62Co1.22Fe1.98Ni Nb0.62Co1.22Fe1.98Ni [60]

Nb13.9Co86.1 0.29

Nb10.6Fe89.4 0.46

Nb-Co-Fe-Ni

Nb40.5Ni59.5 0.25

Nb1.30Co1.74Fe2.82Ni Nb0.80Co1.74Fe2.82Ni [60]

Zr9.5Co90.5 0.29

Zr9.8Fe90.2 0.47

Zr-Co-Fe-Ni

Zr8.8Ni91.2 0.24

Zr0.43Co1.19Fe1.94Ni Zr0.53Co1.19Fe1.94Ni [60]

Hf11Co89 0.28

Hf7.9Fe92.1 0.48

Hf-Co-Fe-Ni

Hf12.5Ni87.5 0.24

Hf0.47Co1.22Fe2.11Ni Hf0.47Co1.22Fe2.11Ni [60]

Nb13.9 Co86.1 0.33

Nb10.6Fe89.4 0.33

Nb-Co-Fe-Ni

Nb15.5Ni84.5 0.34

Nb0.49CoFeNi Nb0.5CoFeNi [84]

Nb13.9 Co86.1 0.25

Nb12Cr88 0.25

Nb10.6Fe89.4 0.25

Nb-Co-Cr-Fe-Ni

Nb15.5 Ni84.5 0.25

Nb0.6CoCrFeNi Nb0.5CoCrFeNi [85,86]

(Al2O3)43(Y2O3)57 0.35Al2O3-Y2O3-ZrO2

(Al2O3)63(ZrO2)37 0.65

(Al2O3)44(Y2O3)16(ZrO2)19 (Al2O3)65(Y2O3)16(ZrO2)19 [87]

(Al2O3)77(Gd2O3)23 0.57Al2O3-Gd2O3-ZrO2

(Al2O3)63(ZrO2)37 0.43

(Al2O3)102(Gd2O3)19(ZrO2)23 (Al2O3)58(Gd2O3)19(ZrO2)23 [88]

“super element” and to substitute them for a normal element in a binary eutectic. In doing so, the candidate 
composition Ceutectic may be expressed as:
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Figure 2. Schematic of a data-driven approach for the design of eutectic high entropy alloys.

where CI denotes the “super element” (e.g., the mixture of elements that may form a solid solution) and CII 
the single element in a pseudo-binary system. Following Equation (2), a number of EHEA compositions 
were discovered with the aid of CALPHAD[64-67,95-102], as tabulated in Table 3. Here, x is the composition yet 
to be determined via experiments or CALPHAD.

With CALPHAD, one can obtain the so-called pseudo-binary phase diagram as a function of x and 
temperature, through which fully-eutectic compositions can be identified, if any, for Ceutectic. For example, 
Wu et al.[109] identified the near-eutectic composition Al19.4Co20.6Cr20.6Ni39.4 for the pseudo-binary (CoCrNi)1-x

(AlNi)x alloy, which is very close to the eutectic composition of Al17.4Co21.7Cr21.7Ni39.2 verified experimentally. 
In light of the Scheil solidification theory, Yurchenko et al.[110] also successfully found the Al28Cr20Nb15Ti27Zr10 
EHEA. However, we note that all these above-mentioned methods are semi-empirical since CALPHAD is 
also based on the available database. Regardless of the difference in these methods, a more general method 
is always desirable, which can be applied to a wide range of compositions. In addition to the above-
mentioned eutectic high entropy alloys, people also developed a number of eutectic refractory high entropy 
alloys[105-107], eutectic soldering high entropy alloys[108] and eutectic high entropy ceramics[87,88]. Interestingly, 
some of these eutectics could also be designed based on the aforementioned empirical rules. Therefore, we 
also list them in Tables 2 and 3 for the sake of completeness.

DATA-DRIVEN METHODS FOR THE DESIGN OF EUTECTIC HIGH ENTROPY ALLOYS
Database
In recent years, ML has been widely used to accelerate the search for advanced alloys[69-78]. As a data-driven 
approach, the performance of ML models is highly dependent on the quantity and quality of data[111,112]. 
Figure 2 illustrates the workflow of a typical ML approach to designing EHEAs. While EHEAs are 
important and very useful, we note that only a limited number of EHEA compositions are located out of 
vast compositional space with the ML approach [Table 4][79-81,113]. While one can easily find the data of 
binary and ternary eutectics from their corresponding phase diagrams, the data for EHEAs mainly comes 
from the literature, including those found through the empirical methods illustrated in Figure 1 and/or the 
results of CALPHAD calculations. Here, we note that the CALPHAD calculations are performed with 
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Table 3. EHEA compositions identified via Equation (2)

CI CII Parent binary eutectics Pseudo-binary system Ceutectic (experimental) Ref.

Ta (Co, Cr, Ni)-Ta (CoCrNi)1-xTax CoCrNiTa0.4 [67]CoCrNi

Nb (Co, Cr, Ni)-Nb (CoCrNi)1-xNbx CoCrNiNb0.4 [100]

CoFeNi NiAl (Co, Ni)-Al (CoFeNi)1-x(NiAl)x CoFeNi(NiAl)0.92 [101]

CoCrFeNiTa0.75 [66]Ta (Co, Cr, Fe, Ni)-Ta (CoCrFeNi)1-xTax

CoCrFeNiTa0.43 [95]

Nb (Co, Cr, Fe, Ni)-Nb (CoCrFeNi)1-xNbx CoCrFeNiNb0.65 [64]

Zr (Co, Cr, Fe, Ni)-Zr (CoCrFeNi)1-xZrx CoCrFeNiZr0.5 [102]

Hf (Co, Cr, Fe, Ni)-Hf (CoCrFeNi)1-xHfx CoCrFeNiHf0.4 [103]

CoCrFeNi

Mo (Co, Ni)-Mo (CoCrFeNi)1-xMox CoCrFeNiMo0.8 [99]

CoCrNi2(V2B)0.43 [97]CoCrNi2 (V, B, Si) (Co, Ni)-V 
(Co, Cr, Ni)-B 
(Co, Cr, Ni)-Si

(CoCrNi2)1-x(V, B, Si)x

CoCrNi2(V3B2Si)0.2 [97]

CoCrFeNi2(V2B)0.51 [97](V, B, Si) (Co, Ni)-V 
(Co, Cr, Fe, Ni)-B 
(Co, Cr, Fe, Ni)-Si

(CoCrFeNi2)1-x(V, B, Si)x

CoCrNi2(V6B3Si)0.149 [97]

CoCrFeNi2

Ni0.8Al1.2 (Co, Fe, Ni)-Al (CoCrFeNi2)1-x(Ni, Al)x CoCrFeNi2(Ni0.8Al1.2) [65]

Co2CrFeNi Ni0.8Al1.2 (Co, Fe, Ni)-Al (Co2CrFeNi)1-x(Ni, Al)x Co2CrFeNi(Ni0.8Al1.2) [65]

CoCrFe2Ni Ni0.8Al1.2 (Co, Fe, Ni)-Al (CoCrFe2Ni)1-x(Ni, Al)x CoCrFe2Ni(Ni0.8Al1.2) [65]

Ni2AlTi V Ni-V (Ni2AlTi)1-xVx (Ni2AlTi)68V32 [104]

CrNbTiZr Al (Nb, Zr)-Al (CrNbTiZr)1-xAlx (CrNbTiZr)0.25Al0.75 [105]

HfMo0.5NbTiV0.5 Si (Hf, Mo, Nb, Ti, V)-Si (HfMo0.5NbTiV0.5)1-xSix - [106]

HfCo NbMo Co-(Nb, Mo) (HfCo)1-x(NbMo)x (HfCo)0.75(NbMo)0.25 [107]

GaInSn Zn (Ga, In, Sn)-Zn (GaInSn)1-xZnx - [108]

Table 4. EHEA compositions identified via machine learning

Alloy Database Features Label Algorithm Ref.

Al18Co30Cr10Fe10Ni32 10 (Experiment) + 
311(CALPHAD)

Compositions Primary phase 
fraction

ANN [79]

Al19Co16Cr16Ni49 4 (Experiment) + 96(CALPHAD) Compositions Primary phase 
fraction

SVM [80]

Hf0.34Co1.33Cr0.74Fe0.20Ni
0.75

Hf0.30Co0.80Cr1.40Fe0.82Ni
0.16

Hf0.37Co0.42Cr0.81Fe1.29Ni0.82

Hf0.36Co0.16Cr0.76Fe0.81Ni1.38

20 (Experiment) Content of Co, Cr, Fe, Ni Content of Hf ELM [81]

AlCrFe2.5Ni2.5  
(Near-eutectic)

66 (Experiment) Compositions, phase volume 
fractions

Melting range GRNN [113]

ANN: Artificial neural network; ELM: extreme learning machine; GRNN: generalized regression neural network; SVM: support vector machine.

respect to equilibrium phases, which might differ from the actual EHEA compositions that are metastable 
because of the fast cooling. In addition, one needs to be cautious while resorting to Scheil simulations for 
metastable phases, which are usually considered to represent as-cast phases[63,110,114,115] because it is performed 
by only considering atom diffusion in liquids (i.e. completely ignoring solid-state diffusion)[111].

To improve the data fidelity and also the performance of ML modeling, the data may need to be screened or 
pre-processed. Generally, data pre-processing includes (1) deletion of repetitive and incompatible data; (2) 
data normalization; and (3) data undersampling or oversampling[116-118]. However, randomly oversampling 
may result in model overfitting while randomly undersampling may cause loss of useful data, both of which 
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Figure 3. A typical categorization of data descriptors in the high entropy alloy design. Reproduced with permission from Roy et al.[124]. 
Copyright 2021, Elsevier.

could jeopardize the validity of the ML predictions[119]. Also, we note that metastability or the thermal 
history is another issue that may affect data fidelity. In such a case, one may obtain different microstructures 
and properties from the same alloy composition, such as AlCoCrFeNi3 EHEA[120,121].

Data features & labels
After data collection, one needs to develop proper data features (or descriptors) and labels for the 
subsequent training of the ML models. Table 5 lists the commonly used features for the design of HEAs. 
Ideally, data features should be uncorrelated while containing all relevant information. In data-driven 
design of HEAs[122,123], alloy composition is usually the first data feature to be included. However, it is 
believed that only alloy composition alone is not sufficient. Therefore, other complementary data features, 
which are of physical relevance and significance, should be considered[112]. To date, nearly a hundred data 
features have been employed in the training and optimization of the ML models, which include the 
so-called atomic parameters[124-126], the environmental parameters[123], and the thermodynamic parameters 
which can all be derived from alloy composition[125-128], as represented in Figure 3 and Table 5.

The formulation of the complementary data features requires domain knowledge in material science and 
physical metallurgy[124]. To date, data features for eutectic alloys can be divided into two groups: (1) those 
related to eutectics formation and growth; and (2) those correlated with mechanical properties[1]. However, 
unlike the Hume-Rothery rules for solid solution HEAs[125,126,129], there still lacks a well-established general 
theory that can underpin the correlation between alloy compositions and eutectics, if there is any. 
Therefore, most ML models for EHEAs reported in the literature are solely based on the data feature of alloy 
composition [Table 4], which may compromise their performance. In practice, one can find the most 
important features using different approaches, such as Pearson Correlation Coefficient (PCC)[130,131] and 
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Table 5. List of the commonly used features of HEAs with the corresponding formula

Data feature Formula

Compositional feature Molar fraction of components ci

Mean atomic radius

Atomic size difference

Valence electron concentration

Atomic features

Electronegativity

Mixing enthalpyThermodynamic features

Ideal mixing entropy

Melting temperature

Elastic modulus

Physical features

Bulk modulus

Shapley Additive Explanation (SHAP) value[132]. We believe that data miners need to develop physics-
informed data features, which can be derived from the fundamental theories for eutectic formation, such as 
the Jackson-Hunt theory[133], to improve the predictability of the machine learning models. At present, these 
are still the ongoing effort of active research for EHEAs. By comparison, the design of data labels for EHEAs 
is relatively more straightforward, which is either the characteristics of a eutectic-related microstructure 
(i.e., the volume fraction of eutectic phases[79,80]) or the targeted properties for regression ML modeling. For 
instance, Qiao et al.[113] used the difference between the solidus and liquidus temperature (i.e. the so-called 
melting range termed in Ref.[113]) as the data label, and the composition and phase fraction as the data 
feature in the search of EHEAs, which led to the discovery of a near-eutectic composition of AlCrFe2.5Ni2.5.

Machine learning model
After data are collected with their descriptors/labels being developed, the next task for the data-driven based 
alloy design is to select a proper ML algorithm. To date, there are a number of ML algorithms that have 
been used for the design of HEAs, such as support vector machine (SVM)[116,125,126,128,134], artificial neural 
network (ANN)[125,126,130,135], random forest (RF)[126,136,137], decision tree (DT)[138,139] and k-nearest neighbors 
(KNN)[130,140]. The selection of the ML algorithms can be either heuristic[116,141,142] or through 
benchmarking[125,135].

Once the ML algorithm is selected, the ML model will be trained and the reliability of the training results is 
usually evaluated against the issues, such as overfitting and underfitting, through cross-validation (CV)[143,144] 
and bootstrapping[122,131]. To be more specific, the testing accuracy[116,126], the Kappa index[128], the confusion 
matrix[118,145], and/or the receiver operating characteristic (ROC) curves[144] are usually used as the metric for 
the evaluation of classifiers, while the coefficient of determination (R2)[146] and the root mean square error 
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Table 6. List of the ML models based on SVM or ANN with good performance on small-sized databases

Target Size of database Algorithm Performance Ref.

Phase prediction 118 ANN Accuracy = 0.992 [127]

Phase prediction 401 ANN Accuracy = 0.943 [130]

Phase prediction 550 SVM Accuracy = 0.887 [134]

Phase prediction 322 SVM Accuracy = 0.9384 [139]

Phase prediction 391 ANN Accuracy = 0.92 [142]

Phase prediction 407 SVM Accuracy = 0.9743 [149]

Phase prediction 209 ANN Accuracy = 0.9297 [150]

Hardness prediction 155 SVM RMSE = 31 [122]

Hardness prediction 214 SVM R2 = 0.873 [146]

Hardness prediction 370 SVM R2 = 0.8836 [147]

Hardness prediction 53 ANN R2 = 0.8575 [151]

Strength prediction 231 ANN R2 = 0.9702 [152]

EHEA Design 321 ANN R2 = 0.9663 [79]

EHEA Design 100 SVM R2 = 0.916 [80]

ANN: Artificial neural network; EHEA: Eutectic high entropy alloys; RMSE: root mean square error; SVM: support vector machine.

Figure 4. Confusion matrix of the SVM, ANN models, and the predicted results. Reproduced with permission from Jaiswal et al.[126]. 
Copyright 2021, Elsevier. ANN: artificial neural network; SVM: support vector machine.

(RMSE)[147] are usually used for regressors. It is noteworthy that the performance of the ML models should 
be judged not only by existing data (i.e. data in the database) but also by the “unseen” data (data out of the 
database). In addition to the above-mentioned numerical evaluations, experimental validation is therefore 
needed that produces unseen data to test the predictability of the ML models. For instance, Jaiswal et al.[126] 
used two different ML models (i.e., SVM and ANN) for the phase prediction of the CoCuFeNix system. 
While both ML models achieve a similar numerical accuracy (~0.85), it appears that the ANN model can 
predict the result being consistent only with the experimental observation for low Ni content (x = 5, 10). In 
contrast, the SVM model can predict the results correctly only for high Ni content (x = 15, 20, 25), as 
illustrated in Figure 4.

Among the above-mentioned ML algorithms, the SVM and ANN are the ones that are widely used in the 
design of HEAs, including EHEAs, due to their good performance on small-sized databases[148], as shown in 
Table 6[79,80,122,127,130,134,139,142,146,147,149-152]. Here, we note that the reported ML models for EHEAs with good 
performance are mostly regressors, outperforming the classifier. This phenomenon could be attributed to 
the data imbalance in the EHEA database (i.e. the number of EHEAs is significantly smaller than that of 
non-eutectic HEAs)[153]. In practice, data shortage and/or imbalance could be an issue, particularly for the 
design of EHEAs. To mitigate the negative effect, people proposed a few methods, including (1) data 
rebalancing with the Synthetic Minority Oversampling Technique (SMOTE)[154] and the Tomek links for 
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Figure 5. (A) Three-stage deformation of heterogeneous materials. Reproduced from Ref.[161]. CC BY 4.0; (B) schematic illustration of 
the heterogenous deformation strengthening mechanism. Reproduced from Ref.[162]. CC BY 4.0.

data cleaning[155]; (2) data augmentation with binary/ternary eutectics; (3) engineering of data features which 
may lead to improved predictability of the ML models even from the small dataset, such as Fuzzy C-means 
clustering function (FCM)[156] and Genetic Programming-based feature extraction using Rough Set Theory 
(GPRST)”[157]. In the literature, Bhowan et al.[158] proposed new parameters to mitigate the issue of 
imbalanced data. It includes (1) the average mean square error (AMSE), which uses the average MSE for 
each data class instead of the overall MSE for all data, (2) the incremental-reward-assigned accuracy (Incr), 
which can differentiate different models with similar accuracy by assigning a higher weighted factor to the 
outputs closer to the target value, and (3) the correlation-ratio-based parameter (Corr), which uses the 
separability of outputs for different data classes to evaluate the classifier performance. In our opinion, it is 
plausible to extend the finding of Bhowan et al. to the data-driven design of EHEAs, which, however, 
remains to be an open issue.

Currently, the design of eutectics is still limited in the dual-phase structure while only a few multi-phase 
eutectics were found, e.g. triple-phase eutectics[59], which makes the database significantly biased towards 
dual-phase eutectics and makes it difficult to find multi-phase eutectics using supervised machine learning 
models. To solve this problem, one method is to enlarge the database by including more multi-phase 
eutectics, which, however, is time-consuming. The other one is to use generative machine learning models, 
such  as  Variational  Autoencoder  (VAE)[159]  or  Generative  Adversarial  Network  (GAN)[160], to generate 
multi-phase eutectics even with the data from binary eutectics. To  our  best  knowledge, this  has  not  been 
explored yet for EHEAs.

MECHANICAL PROPERTIES OF EUTECTIC HIGH ENTROPY ALLOYS
Similar to conventional eutectic alloys, EHEAs usually show lamellar or rod-like microstructure with 
alternating soft and hard phases. Such a heterogeneous microstructure (HS) can provide a unique strain 
hardening capability through the asynchronous plastic deformation of the soft and hard phases during 
plastic deformation, which is termed the heterogenous deformation induced (HDI) strengthening 
mechanism[161-163]. To rationalize the HDI effect, it was proposed that geometrically necessary dislocations 
(GNDs) will be generated during the plastic flow in a heterogeneous microstructure, which pile up along the 
interface between the hard/soft phase to maintain the overall deformation compatibility, as illustrated in 
Figure 5. As a result, this produces the back stress in the soft phase and forward stress in the hard phase, 
leading to the synergy that a more plastic flow is facilitated even at higher flow stress. Consequently, EHEAs 
usually show a balanced combination of strength and ductility, as shown in Figure 6[47,65,164-171]. To 
characterize the effect of HDI strengthening, various experimental techniques have been utilized, such as 
electron back scattered diffraction (EBSD)[172-174], transmission electron microscopy (TEM)[175,176], digital 
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Figure 6. The superior mechanical properties of eutectic high entropy alloys overcome the strength-ductility trade-off in conventional 
high entropy alloys[47,65,164-171].

image correlation (DIC)[177] and the loading-unloading-reloading (LUR) tests[177,178], as illustrated in Figure 7.

In addition to the HDI strengthening, twinning-induced plasticity (TWIP) is another plausible 
strengthening mechanism in EHEAs, although, in the first place, it applies to materials of low stacking fault 
energy (SFE) with enhanced strain hardening capability and delayed plastic instability[179,180]. Through the so-
called dynamic Hall-Petch effect, twin boundaries can act as obstacles to dislocation motion while 
permitting some partial dislocations to glide[181]. Diao et al.[182] reviewed the deformation twinning (DT) 
mechanism in HEAs and proposed the preferential conditions for the activation of the DT mechanism, 
including (a) large deformation strain; (b) low deformation temperature; (c) high strain rate; and (d) large 
grain size. With the first three conditions being met, a sufficient high dislocation density will be generated, 
leading to a high local stress for twin nucleation; while the last condition is to ensure there is sufficient space 
for high twinning activities (i.e. twin thickening)[183]. For instance, Shi et al.[180] uncovered a sequentially 
activated DT mechanism in the ultrafine-grained Al19Fe20Co20Ni21 EHEA which resulted in an outstanding 
combination of yield strength (~1.2 GPa) and tensile ductility (~24.0%).

Besides DT, transformation-induced plasticity (TRIP) is another strengthening mechanism that can be 
activated in an alloy with an even lower SFE[184]. For conventional HEAs, the deformation induced phase 
transformation can be activated by heuristically adjusting the alloy chemical composition to lower 
SFE[184,185]. However, it is difficult to activate or control the TRIP effect in EHEAs through compositional 
tuning because of the narrow compositional range for a eutectic alloy. Liu et al.[186] reported the phase 
transformation from the BCC/B2 phase to the FCC phase in the near-eutectic AlCoFe2Ni2 alloy and 
attributed this phenomenon to enhanced atom diffusion under high-temperature torsion. Wu et al.[187] 
found a phase transformation from B2 to BCT structure in the Al18Co30Cr10Fe10Ni30W2 EHEA during tensile 
deformation, which was thought to be responsible for the deformability of the B2 phase. These results are 
interesting and warrant further research. In particular, it still remains open whether EHEAs with the TRIP 
and/or TWIP effect can be designed through the aforementioned data-driven approach.

SUMMARY
To sum up, we provide a critical review of the recent development of EHEAs in this article by focusing on 
the various approach for compositional design, from the empirical to data-driven methods. Through the 
heuristic empirical methods based on binary eutectics (i.e., combination versus substitution), people have 
successfully developed a number of EHEAs; however, this trial-and-error approach is ineffective in 



Page 12 of Chen et al. J Mater Inf 2023;3:10 https://dx.doi.org/10.20517/jmi.2023.0619

Figure 7. Characterization of heterogeneous deformation induced strengthening through various experimental techniques. (A) Phase 
map and kernel average misorientation map of electron back scattered diffraction (EBSD) results in the Al19Co20Fe20Ni41 EHEA. 
Reproduced from Ref.[173]. CC BY 4.0; (B) bright-field images of transmission electron microscopy (TEM) in the AlCoCrFeNi2.1 EHEA. 
Reproduced with permission from Huang et al.[175]. Copyright 2021, Elsevier; (C) SEM image and (D) strain map of digital image 
correlation (DIC). A: deformed region; B: large grain; C: small grain; (E and F) loading-unloading-reloading (LUR) curves in the 
Al0.2CoCrFeNi2Ti0.24 HEA. Reproduced with permission from He et al.[177]. Copyright 2021, Elsevier.

navigating the multi-dimensional compositional space. Therefore, people turned to the data-driven 
approach, such as ML modeling, which is supposed to be more effective in locating the eutectic 
compositions in the complex compositional space. However, the lack of sufficient high-fidelity EHEA data, 
the imbalanced database, and the poor design of data descriptors can compromise the performance of the 
ML models, which warrants further research efforts in this field. Finally, we also discuss the various 
strengthening mechanisms derived from the eutectic microstructure and compositional complexity in 
EHEAs (i.e., low stacking fault energy). These prior works indicate that the data-based design of EHEAs is 
promising but still at its infant stage.
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