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Abstract
No single animal model can recapitulate all the features of a particular human disease on its own. Historically, rats 
have been used to study neurobiology and underlying functional networks. Likewise, rat models have been created 
to study neurodegenerative mechanisms and therapeutic interventions. In the last decades, a shift towards the use 
of mice has been observed in many research fields, not least because of the comparatively easier genetic 
manipulation of mice. However, with the full sequence of the rat genome being available, advances in genetic 
manipulation of the rat, and advanced test regimens and biomarkers at hand, the rat presents itself once more as a 
valuable model organism for studying neurodegenerative disorders. This review provides an overview of currently 
available, well-characterized rat models of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, as 
well as their advantages for studying neurodegenerative disorders and evaluating therapeutic interventions.

Keywords: Genetic rat models, phenotypic rat models, Alzheimer’s disease, Parkinson’s disease, Huntington’s 
disease

INTRODUCTION
Rattus norvegicus, the laboratory rat, was the first mammal to be domesticated and kept in captivity for 
research purposes[1,2]. Over time many inbred rat strains have been obtained to study various physiological 
aspects, disease mechanisms, and pharmacological questions. Both mice and rat models have been relied on 
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in basic and preclinical research. Their short generation times, relatively easy to establish housing 
conditions, and genetic similarities to humans have made them the largest group amongst animal models in 
research (EU commission, 2019 report). In general, rats are considered an ideal species for behavioral 
studies, and have been used far more than mice in behavioral research in the past, although the increasing 
use of transgenic mice in behavioral testing in recent years has inverted this trend[3]. Rats are easy to handle 
by experimenters and less aggressive towards conspecifics (i.e., members of the same species) than mice[4]. 
Rat behavior has been well characterized, and several behavioral tasks currently used in rodents may better 
fit the rat[5,6], as they were originally developed in rats[7,8]. In cognitive tests which are used to model 
cognitive deficits of human disorders, especially for tasks requiring swimming, such as the Morris water 
maze, rats display less floating and thigmotaxis[9] and perform better than mice[10,11], probably because they 
are adapted to the water environment and are natural swimmers. In a decision-making task, rats were 
shown to learn the task faster than mice[12]. Furthermore, compared to mice, rats display a more complex 
behavioral repertoire which is likely to result from the species’ evolutionary history[13]. Increasing evidence 
in the last 15 years suggests that, similar to primates, rats present metacognition, that is, the awareness of 
one’s own cognitive processes[14-16]. In the context of neurodegenerative disorders (NDs), this is relevant 
given that metacognitive impairment is a feature of Alzheimer’s disease (AD) and other dementias[17].

Consequently, using rats to model cognitive symptoms could increase the robustness of cognitive 
assessments and enhance the accuracy of phenotypes. However, it is important to bear in mind that 
different rodent species differ in their behavioral traits[18,19] that could best mimic specific aspects of a human 
disorder, emphasizing the importance of using multiple model species, especially given the heterogeneity of 
deficits in several neurodegenerative disorders.

The rat’s body size further offers advantages over mice and other small animal models, as surgical 
procedures can be performed more reliably and consistently. Repeated blood and cerebrospinal fluid (CSF) 
sampling of larger volumes is possible in rats, and neuroimaging and electrophysiological measurements are 
preferentially performed in rats. The rat remains the classical animal model in toxicological studies, as the 
eradication of toxins is more closely related between human and rat, than between human and mouse[20]. 
However, a close examination of the individual biological processes affected is necessary, as many 
differences exist between species[21]. Both mouse and rat genomes were published in the early 2000s[22,23] 
opening the way for genetic studies investigating rat genes that share similar traits in rats and humans[20]. 
With the advancement of genetic tools, mice have been favored over rats due to technical challenges in 
creating rat models carrying genetic mutations. By improving methods for harnessing rat embryonic stem 
cells and advances in genetic tools, like zinc finger nuclease and CRISPR/Cas systems, rat models have been 
created more successfully in the last two decades. However, with a certain time delay in comparison to 
respective mouse models[24].

For NDs, like AD, Parkinson’s disease (PD), and Huntington’s disease (HD), no natural mutation in the rat 
exists that would provide a rat strain to model the human disease. Therefore, rat lines have been created that 
mostly carry and overexpress the human disease gene, in order to elicit phenotypes that resemble pathology 
and behavioral alterations, reminiscent of what is observed in patients. However, the most prevalent NDs, 
AD and PD, are not monogenetic disorders, with a low proportion of familial cases and, therefore, 
inherently difficult to model.

AD is the most common neurodegenerative disorder. Patients suffer from progressive cognitive decline, 
affecting, for example, memory and orientation and with disease progression limiting activities of daily life. 
The decline in cognitive abilities and behavioral alterations are caused by preceding, exaggerated amyloid 
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beta (Aβ) peptide plaque formation and tau tangles. Progressive neuronal loss in the hippocampus and 
other brain regions further leads to reduced levels of neurotransmitters[25].

PD, like AD, is a highly prevalent neurodegenerative disorder that has a multifactorial etiology and is most 
often of idiopathic origin. Genetic and environmental factors contribute to the disorder that is primarily 
characterized by the lack of the neurotransmitter dopamine, leading to bradykinesia and other motor 
deficits in patients. Several PD-causing and PD-risk genes have been identified. Mutations in α-Synuclein 
(SNCA), Parkin (PARK2), PTEN-induced kinase 1 (PINK1), Protein deglycase DJ-1 (DJ-1), and Leucine-
rich repeat kinase 2 (LRRK2) amongst others can cause the familial form of the disorder. On the cellular 
level, PD is characterized by mitochondrial dysfunction, altered protein degradation pathways, and 
increased neuroinflammation leading to synaptic dysfunction and neuronal loss in the substantia nigra pars 
compacta[26].

HD is a monogenetic ND caused by a CAG repeat expansion in exon 1 of the huntingtin gene (HTT), which 
translates to a poly-glutamine tract in the huntingtin protein (HTT)[27,28]. HD commonly manifests in 
adulthood, with CAG expansions in a range of 36 to 60 CAG repeats[29]. More than 60 CAG repeats are 
associated with juvenile HD, leading to symptom onset before the age of 20 years[30]. The neuropathological 
hallmarks of HD are extensive cell loss in the striatum and HTT aggregates localized in the neuropil, 
perikarya, and nucleus[31-33]. The clinical manifestations include motor deficits, cognitive impairment, and 
psychiatric disturbances[34].

This review provides an overview of rat models that have been generated to study the above-mentioned 
NDs, AD, PD, and HD. Neuropathological characteristics and behavioral phenotypes of well-characterized 
genetic models are summarized and stand in contrast to phenotypic/aspect-replicating rat models that are 
historically and currently more commonly used in biomedical research. We aim to highlight the advantages 
both types of rat models offer in terms of readouts and study design opportunities to improve translatability 
to human treatment.

GENETIC RAT MODELS TO STUDY AD, PD, AND HD
Neuropathological phenotypes
Neurodegenerative diseases represent a large group of neurological disorders with progressive loss of 
particular subsets of neurons. The most common NDs are Alzheimer’s disease (AD) and Parkinson’s 
disease (PD); and as a monogenic disease, Huntington’s disease (HD), is well-studied. In addition to the 
progressive and selective neuronal cell loss, the second central characteristic of NDs is the presence of 
protein aggregates composed of misfolded proteins, specifically, the N-terminal fragment of mutant 
huntingtin in HD, Aβ peptide and hyperphosphorylated tau in AD, and α-synuclein (α-syn) in PD. The role 
of protein aggregates in NDs, whether neurotoxic or neuroprotective, is still a matter of debate since the 
distribution of protein aggregates does not reliably match the patterns of neuronal loss in different 
diseases[35]. Nevertheless, due to its commonality among NDs and its dependency on a specific molecular 
cascade (i.e., misfolding, oligomerization, and fibrillization), protein aggregate formation remains an 
important aspect of ND research. Thus, animal models that recapitulate the disease’s characteristic protein 
aggregation pathologies can make great contributions to understanding the disease mechanisms and aid in 
the development of therapeutic strategies. For genetically modified animal models of NDs, the presence, as 
well as the regional and subcellular location of protein aggregates, depends on the genetic construct’s 
promoter, protein expression levels, and genetic background of the animal. Mouse models have closely 
recapitulated the features of human NDs and provided essential insight into neuropathology. However, no 
single animal model can mimic all aspects of human diseases, not even all mouse models, collectively. Rats 
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and mice are closely related species, but still have genetic and physiological differences, such as the distinct 
expression pattern and localization of certain protein isoforms. These diversities lead to some variance 
between both species in resembling human pathological processes, making rat models a meaningful 
complement to mouse models. This section discusses the commonly used genetic rat models for AD, PD, 
and HD [Table 1], and describes to what extent they recapitulate the characteristic protein aggregate 
pathology.

Neuropathological phenotypes in genetic rat models of Alzheimer’s disease: APPNL-G-F knock-in, TgF344-AD 
and McGill-R-Thy1-APP transgenic rats
Amyloid plaques containing Aβ peptide and neurofibrillary tangles (NFTs) consisting of 
hyperphosphorylated microtubule-associated protein (tau) make up the typical protein aggregate forms in 
AD. While some studies suggested that tangles may precede plaques, it is commonly accepted that the 
amyloid plaques are formed first and trigger tau agglomeration (see review[49]). Nevertheless, both amyloid 
plaque and tau tangles are characteristic features of AD. The development of amyloid plaques appears to be 
dependent on the initial accumulation of Aβ, which is derived from amyloid beta precursor protein (APP) 
through sequential proteolytic cleavage by β and γ-secretase. Mutations in APP close to the main APP 
cleavage site and in the catalytic subunit of γ-secretase presenilin (PSEN) are major genetic causes of familial 
AD[50,51]. Ultimately, overexpression of APP with a combination of multiple mutations has been used to 
generate APP transgenic models[52-54], while double transgenic models expressing mutant APP and mutant 
PSEN represent APP/PSEN models (see review[36]).

Many transgenic APP mouse models recapitulate amyloid plaque formation and disease manifestation of 
AD and have thereby made essential contributions to understanding Aβ pathology in familial AD. In 
comparison, APP rat models often develop less accumulation of Aβ peptide and amyloid plaques. This 
cannot be simply explained by lower expression levels of transgenes in rats, or different transgene protein 
isoforms, or the applied promoters. One rat model, however, displays full amyloid pathology. Leon et al. 
developed an APP transgenic rat model expressing hAPP751 under the control of the murine Thy1.2 
promoter and containing the Swedish and Indiana mutations of APP (McGill-R-Thy1-APP rats)[55]. This rat 
model carries one copy of the transgene hemizygously and accordingly presents approximately double the 
amount of APP protein (i.e., both endogenous and transgenic) as wild-type rats. Homozygous rats show an 
early-onset and progressive accumulation of Aβ peptide starting at 1 week of age and develop extracellular 
Aβ deposition at 6 months of age. Particularly, at 20 months of age, McGill-R-Thy1-APP transgenic rats 
display dense-core plaques in most brain areas with predominant presence in the entorhinal and parietal 
cortices, and hippocampus, the typical brain structures that are vulnerable to AD[56-58]. In summary, despite 
the lower expression level of the transgene, McGill-R-Thy1-APP transgenic rats develop early-onset, 
progressive, characteristic amyloid plaque pathology making this model valuable for studying Aβ 
pathogenesis in a close to physiological condition.

In fact, the distribution and burden of amyloid plaques in AD patients do not correlate with neuronal loss, 
disease severity, or disease duration. In contrast, NFT formation strongly correlates with neuronal death 
and follows a typical progression from the frontal cortex and the CA1 area of hippocampus to the 
anterodorsal thalamus, and in later stages (IV), the CA4 region of hippocampus[59,60]. Instead, NFTs have 
only been found in AD mouse models carrying human mutant tau, mostly with P301L mutation[36]. P301L 
missense mutation in tau is the genetic cause of frontotemporal dementia and parkinsonism linked to 
chromosome 17 (FTDP-17); this mutation causes tau hyperphosphorylation and its subsequent aggregation 
into NFTs[61,62]. Different from FTDP-17, tau is not the only hyperphosphorylated neuronal protein in AD, 
and hyperphosphorylated tau is the result of a protein phosphorylation/dephosphorylation unbalance (see 



Page 5 of Novati et al. Ageing Neur Dis 2022;2:17 https://dx.doi.org/10.20517/and.2022.19 29

Table 1. Genetic rat models of Alzheimer’s, Parkinson’s, and Huntington’s disease

FAD FPD HD

Categories 
(Example)

Early onset AD 
(McGill-R-Thy1-APP 
rats, TgF344-AD)

Later onset 
AD 
(APOE epsilon 
4 knock-in)

Autosomal 
recessive 
(PINK1 KO, DJ-
1 KO)

Autosomal dominant 
(α-synuclein BAC, LRRK2 KO)

Juvenile-onset 
HD 
(BACHD)

Adult-onset HD 
(tgHD)

Molecular 
and 
biological 
basis

Mutation in APP, 
PSEN1, 
hyperphosphorylation 
of tau

rRsk factors, 
e.g., APOE 
variants

Mainly loss-of-
function, e.g., 
PARKIN, PINK1 
and DJ-1

Mainly gain-of function, e.g., SNCA, 
LRRK2

CAG expansion 
> 60

CAG expansion 
< 60

Strategy ● Expression/knock-in 
of a combination of 
multiple mutations in 
APP 
● Expression of 
mutations in APP + 
PSEN 
● Expression of 
mutations in MAPT

●  Humanization 
of loci of AD 
relevant 
mutations

● Knock out of 
PARKIN, PINK1 
or DJ-1

●  Overexpression 
of wild-type or 
mutant SNCA 

● Overexpression 
of wild-type or 
mutant LRRK2     
● KO

●  Overexpression 
of full-length 
mutant HTT

● Overexpression 
of the N-
terminal 
fragment of 
mutant HTT

Pros ● Early and progressive 
recapitulation of 
neuropathological 
features  
● Tangle-like 
pathology 
● Spatial cognition 
deficits

● Physiological 
levels of 
protein 
expression

●  Mitochondrial 
pathology can 
be studied 

● Cranial 
sensorimotor 
deficits can be 
studied (DJ-1 
KO and PINK1 
KO)

● LB pathology 
can be studied

● Effect of impaired 
dopamine 
homeostasis can be 
studied

● Early and 
progressive 
recapitulation of 
the HTT 
aggregation 
phenotype 
● Displays HD-
like behavioral 
phenotypes

● Represents 
the major form 
of HD 
● Displays HD-
like behavioral 
phenotypes

Cons ● Non-physiological 
condition 
● Represents a small 
portion of disease form 
(early onset AD 
accounts for < 5% of 
AD cases)

● Need to 
verify and 
characterize 
identified 
novel risk 
factors

● Most of 
them do not 
mimic the LB 
pathology of 
PD patients? 
● No motor 
behavior 
impairment in 
PARKIN KO

● No dopaminergic 
neurodegeneration

● Represent only 
juvenile HD 
● Long CAG 
repeats may 
change the HTT 
protein 
properties

● Mild and slow 
recapitulation of 
disease 
pathology

Literature Reviewed in[36-39] Reviewed 
in[40-42]

Reviewed in[43-47] Reviewed in[48]

AD: Alzheimer’s disease; APOE: apolipoprotein E; APP: amyloid precursor protein; CAG: polyglutamine; DJ-1 (PARK7): Parkinson’s disease protein 
7; FAD: familial Alzheimer’s disease; FPD: familial Parkinson’s disease; HD: Huntington’s disease; HTT: huntingtin; KO: Knockout; LB: Lewy body; 
LERRK2: leucine-rich repeat kinase 2; MAPT: microtubule-associated protein Tau; PINK1: PTEN-induced kinase 1; PSEN: presenilin; SNCA: 
synuclein alpha.

review[63]). This raises the debate of whether the P301L resulting tau aggregation can represent tau pathology 
in AD. Tau is a microtubule-associated protein stabilizing microtubules in the polymerized state[64,65]. 
Alternative splicing of tau in humans generates six isoforms containing microtubule-binding domain, 
including three (3R) or four (4R) microtubule-binding repeats[66]. It has been shown that rats express all six 
tau isoforms as humans, while mice only possess 3R tau isoforms[67].

The TgF344-AD rat is an AD transgenic model that carries transgenic constructs, expressing both the 
Swedish human mutant APP and the PSEN1(PS1ΔE9). These rats exhibit 2.6-fold human APP and 6.2-fold 
human presenilin-1 expression, respectively, compared to the endogenous rat homologs. Around 16 
months of age, TgF344-AD rats develop amyloid plaques, some of which are thioflavin S-positive dense-
core plaques. Strikingly, abundant insoluble tau structures have also been demonstrated in the cortex and 
hippocampus of aged transgenic animals, whose morphology recapitulates human NFTs. Frank and 
progressive neurodegeneration combined with neuroinflammation and cell apoptosis have been found in 
the same brain areas[68]. Similarly, tangle-like tau aggregates were also observed in a wild-type rat injection 
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model expressing mutant APP and PSIN1(PS1M146L) mediated by adeno-associated viruses[69].

Very recently, Pang and colleagues generated an APP KI rat model, AppNL-G-F rats, which carry three family 
App mutations G676R, F681Y, and R684H[70]. Both homo- and heterozygous rats manifested amyloid 
plaques rapidly at 1 and 4 months of age, respectively. Notably, the amyloid plaque manifestation in 
AppNL-G-F rats preceded faster in females compared to males[71]. Whether this sex difference in Aβ aggregation 
can be linked to the higher incidence rates of AD in women than in men requires further investigation. 
Interestingly, aggregated tau was found in 12-month-old homozygous AppNL-G-F rats and further manifested 
into NFTs at 22 months of age. Increased gliosis, apoptotic cell death and brain atrophy have been observed 
in AppNL-G-F rats at 12 months of age and older.

Taken together, several APP rat models have shown common AD neuropathological features in AD-affected 
brain areas, in particular NFT formation, a key pathogenic event in the disease process, which have not been 
recapitulated in APP mouse models. The lack of the 4R isoforms in mice may be the cause for the two 
rodents’ differing abilities to model human tau pathology.

Neuropathological phenotypes in genetic rat models of Parkinson’s disease: PINK1 KO, DJ-1 KO, and a-
synuclein BAC rats
The characteristic neuropathological features of PD are intracellular α-synuclein positive inclusions known 
as Lewy bodies (LBs), and selective neuronal loss in the substantia nigra, which is strongly related to 
mitochondrial dysfunction (see review[72]). About 20 genes have been identified to cause familial PD, 
inherited in an autosomal dominant or recessive mode. In the following, we will focus on three PD genetic 
rat models, which made significant contributions to the PD field as compensations for mouse models: the 
α-synuclein transgenic rats, PINK1 KO rats, and DJ-1-KO rats.

α-synuclein BAC transgenic rat model 
The major component of LBs is α-synuclein, which is encoded by the SNCA gene. This was the first gene 
revealed to have a causal link to PD development. To this date, six autosomal dominant SNCA point 
mutations (A53T, A30P, E46K, G51D, H50Q, and A53E) have been identified[73]. Moreover, duplication, 
triplication and quadruplication of the SNCA locus have been reported to be causal in genetically unrelated 
PD families[74-77]. A number of transgenic mice models bearing human mutant or wild-type SNCA have been 
generated. Many of these models exhibit proteinase K resistant, detergent-insoluble, and thioflavin S 
positive α-synuclein aggregates (see review[78]). Mouse models also show a neuronal loss in PD-relevant 
brain areas, that is, substantia nigra, neocortex, and hippocampus[79-83]. An α-synuclein BAC transgenic rat 
model using a bacterial artificial chromosome (BAC) construct consisting of full-length human wild-type 
SNCA locus with the upstream regulatory promoter sequences has been generated by the Riess lab[84]. These 
BAC transgenic rats showed key pathological features of PD, including progressive misfolding and 
accumulation of α-synuclein aggregates, striatal dopamine depletion, decreased TH-positive cell numbers, 
and characteristic dark dopamine neurons in the substantia nigra. These pathological features have been 
modeled comparably in α-synuclein transgenic mice. However, with larger body sizes, rats offer unique 
possibilities for surgical manipulations of the brain, serial sampling of cerebrospinal fluid and blood, and 
brain imaging.

Rat models for autosomal recessive mutations 
Autosomal recessive forms of PD commonly present an early onset phenotype[85,86]. All three known 
autosomal recessive PD genes, PARKIN, PINK1, and DJ-1, are closely associated with mitochondrial 
dysfunction[87-89]. The PTEN-induced kinase 1 (PINK1) and Parkin are involved in the same pathway leading 
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to the degradation of damaged mitochondria. PINK1 acts as a sensor for depolarization of mitochondrial 
membrane potential[85,90-93], recruiting the E3 ubiquitin ligase Parkin which ubiquitinates substrates on the 
outer mitochondrial membrane, thus eliciting a vicious cycle resulting in mitophagy[94]. Protein deglycase 
DJ-1 is a stress-dependent chaperone localized in mitochondria, which plays an essential role in ATP 
production and complex I activity[95,96]. Interestingly, it has been observed that Lewy bodies can be absent in 
PD patients with either PARKIN, PINK1, or DJ-1 mutation (see review[97]). In comparison, mitochondrial 
pathology and neuronal loss in animal models of autosomal recessive PD are expected as important 
pathological phenotypes. PINK1 knockout (KO) rats show decreased complex I level and increased proton 
leak in the electron transport chain, indicating a mitochondrial respiration defect, as well as a reduced 
number of TH-positive neurons and proteinase K resistant α-synuclein aggregates[47,98]. By contrast, no 
evidence reflecting neurodegeneration was found in PINK1 KO mice[99], not even in the triple knockout 
mice with deficiency of Parkin/PINK1/DJ-1, all known gene deficiencies related to autosomal recessive PD 
forms[100]. Similarly, DJ-1 KO rats show significantly progressive neuronal loss with approximately 50% 
dopaminergic cell loss at 8 months of age in the substantia nigra, combined with altered mitochondrial 
respiration[101,102]. In contrast to rat models, no dopaminergic neuron loss-related event or mitochondrial 
dysfunction has been observed in all existing DJ-1 KO mouse models, while one DJ-1 KO mouse model only 
shows increased sensitivity to the neurotoxin MPTP[103-105]. Notably, PARKIN KO mice and rats also have 
been generated, while PARKIN KO mice exhibited increased striatal extracellular DA concentration, which 
is opposite as expected[106], PARKIN KO rats did not show any neuropathological differences compared to 
wild-type controls[101]. Whether these results can be explained by the genetic and biological differences 
between human and rodent remains unaddressed. Nevertheless, both PINK1 and DJ-1 monogenic KO rat 
models are valuable for investigating mitochondrial pathology in autosomal recessive PD, whereas the 
comparable mouse models lack disease-related neuropathological phenotypes.

Neuropathological phenotypes in genetic rat models of Huntington’s disease: tgHD and BACHD rats
To date, two genetic rat models have been generated and well characterized for HD research. One carries 
the whole genomic sequence and regulatory elements of human HTT with 97 mixed CAG-CAA repeats in a 
bacterial artificial chromosome construct (BACHD rats), thereby bearing the mutation in its appropriate 
genomic context as in HD patients[107]. The interruption in CAG repeats avoids somatic instability of polyQ 
size and variation in repeat length within the animal colony. The other rat model carries N-terminal rat Htt 
cDNA fragments under the rat Htt promoter, with 51 CAG repeats (tgHD rats)[108]. In humans, the CAG 
length present in the tgHD construct would lead to an adult-onset of disease, whereas 97 CAGs, as in the 
BACHD rats, would result in the juvenile form of the disorder. Both BACHD and tgHD rat models have a 
wide expression pattern of transgene HTT/Htt throughout the brain that, to some extent, resembles the 
human condition. BACHD rats have a 4.5-fold higher expression level of transgenic HTT as the endogenous 
Htt, while tgHD rats show a strongly reduced transgene expression level compared to the endogene[107,108]. 
Both rat models show subtle evidence for neurodegeneration, including structural changes in white 
matter[109,110], reduced brain volume in BACHD rats[111], and age-dependent enlarged ventricles in tgHD rats.

Although neuronal loss in HD patients is most prominent in the striatum, mHTT aggregates have been 
more frequently detected in the cerebral cortex. Subcellular localization studies revealed a prevalent 
neuropil localization of mHTT aggregates, while smaller amounts of mHTT inclusion bodies were found in 
the nucleus[31-33]. One of these studies reported that in all 12 investigated HD brains, only 1%-4 % of striatal 
neurons had nuclear inclusion bodies, while a large number of mHTT aggregates were detected in the 
cortex with prominent subcellular localization in neuropil and perikarya. Although juvenile HD patients 
show an increased number of nuclear inclusion bodies compared to patients with adult-onset, neuropil 
aggregates were still predominantly distributed in the striatum and cortex[32]. Consistent with these 
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observations, BACHD rats exhibit more prominent mHTT aggregates in the cerebral cortex compared to 
subcortical areas, with aggregates distributed through all cortical layers, primarily in neurites. tgHD rats 
display a similar aggregate distribution pattern. Notably, tgHD rats display abundant mHTT aggregates in 
the dorsomedial part of the striatum and BACHD rats have been found to show a similar aggregate load in 
the lateral striatum. Interestingly, both HD rat models show a prevalent distribution of HTT aggregates in 
the limbic structures, with notable aggregate loads in the ventral striatum (nucleus accumbens), striatal 
terminal bed nucleus, and central nucleus amygdala[107,112,113]. In the BACHD rats, aggregates were also found 
in the hippocampus and hypothalamus. It is difficult to judge to what extent this relates to human disease, 
as the distribution of aggregates outside the striatum and cortex has barely been studied in HD patients.

In contrast to the aggregate pathology seen in patients and rat models, most mouse models display nuclear 
inclusion bodies rather than neuropil aggregates. Moreover, they display more abundant aggregates in the 
striatum compared to the cerebral cortex, regardless of the genetic construct or modification they are based 
on[114]. It is therefore clear that BACHD and tgHD rats provide a meaningful complement to HD mouse 
models for modeling and understanding the mHTT neuropathogenic mechanisms. mHTT aggregation is 
affected by several intrinsic factors, including polyQ-flanking sequences of mHTT, mHTT interaction 
partners, protein fragmentation, and post-translational modifications (see review[115]). Different subcellular 
localization of aggregates may initiate different cellular quality-control processes, resulting in different 
pathogenic processes. Working with a combination of mouse and rat models of HD, could therefore help 
tease apart what exactly causes one type of pathology over the other.

Behavioral phenotypes
Behavioral phenotypes in genetic rat models of Alzheimer’s disease: APPNL-G-F knock-in, TgF344-AD, and 
McGill-R-Thy1-APP transgenic rats
Memory impairment is an early symptom in AD patients, followed by language and mathematical deficits, 
decreased visuospatial orientation, and attention deficits[116,117]. One of the most common symptoms in 
subjects affected by AD is an impairment of spatial navigation which is the ability to define and retain 
trajectories between places[118]. Although attributing cognitive functions to specific brain areas does not 
embrace the complexity of brain networks regulating cognition, hippocampus and medial entorhinal cortex 
represent essential areas for spatial navigation[119] and are already affected in the early phases of AD[120]. 
Similar brain areas in humans and rodents appear to be involved in the regulation of specific types of 
memory, for example, spatial memory[9,121,122], which is important for modeling cognitive deficits in animal 
models.

Most of the behavioral results in AD genetic models come from the characterization of mouse models. On 
the other hand, the use of genetic rat models is increasing, and these models may be advantageous from a 
behavioral perspective, given that cognitive testing is central to AD research. In McGill-R-Thy1-APP 
transgenic rats, spatial learning and memory deficits already manifest by 3 months of age, prior to amyloid 
plaque deposition and are present in both homozygous and hemizygous rats which can sometimes differ in 
the degree of impairment. Spatial cognition deficits include reference and working memory impairment as 
detected in maze tasks for spatial learning, and problems with object location memory[55,123-125]. TgF344-AD 
transgenic rats show spatial cognition deficits as early as 4 months of age[126,127]. Similar to the McGill-R-
Thy1-APP rats, they were shown to have a deficient performance in several paradigms for spatial cognition 
including tasks for reference and working memory[68,126,128,129] as well as reversal learning[68,130,131]. Moreover, 
TgF344-AD rats display a decreased accuracy in spatial trajectories[132]. In line with the results in the 
transgenic models of AD, five months old APPNL-G-F knock-in rats were reported to display impaired spatial 
learning abilities[70]. Hence, defective spatial cognition is reproduced among different categories of AD 
genetic rat models.
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A crucial factor in the process of translating behavioral readouts from animal models to humans is the 
similarity of the deficits measured in each species. Using similar assessments in animal models and patients 
is of great advantage, as this could ultimately increase the predictability of therapy effects. Accordingly, 
hippocampus-dependent navigation tasks, commonly used in rats, for example, the Morris water maze, 
were adapted for humans in the form of real and virtual versions, and revealed impairments in spatial 
memory and navigation abilities in AD subjects[133,134], consistent with results in transgenic rat models 
assessed in mazes for spatial learning[55,123,125,132]. Comparative water maze testing in healthy humans and 
wild-type rats showed a similar effect of scopolamine and donepezil normally used to model cognitive 
dysfunction and to treat cognitive deficits, respectively[135], indicating similar behavioral responses to 
pharmacological cholinergic modulation across species. The direct comparison of AD patients and genetic 
AD rat models would be more informative regarding the analogy between human and rat results in the 
context of AD.

Episodic memory, which allows to store and retrieve information about personal experiences along with the 
related spatial and temporal contexts, is dysfunctional in AD[136]. Recognition memory and associative 
learning, linked to episodic memory, are impaired as well[137-139]. McGill-R-Thy1-APP and TgF344-AD rats 
display deficits in some aspects of recognition memory and associative learning. In both rat models, deficits 
in novel object recognition have been reported, although results are overall mixed[123,124,140-143]. There are also 
signs of associative learning impairment in passive avoidance setups[142,144,145]. Additionally, fear conditioning 
analyses revealed that multiple memory recall components are impaired in homozygous and hemizygous 
McGill-R-Thy1-APP rats[124]. Moreover, testing on automated touch screen setups showed impaired 
associative learning in the McGill-R-Thy1-APP rat model and deficits in episodic-like memory in APPNL-G-F 
knock-in rats[70,146]. Touchscreen methods like those applied in McGill-R-Thy1-APP rats are meaningful as 
analogous to platforms applied to assess cognition in AD patients[147].

A large portion of AD patients suffers from subtle neuropsychiatric symptoms, and the most common are 
apathy, depression, anxiety, and sleep disturbances[148]. Neuropsychiatric disorders, especially depression, 
have been associated with phenomena such as decreased hippocampal volume, inflammation, and 
alterations of the monoaminergic systems[149-152]. Mood alterations in rodent models of AD and other 
neurodegenerative disorders are most commonly assessed in terms of anxiety and depression-like behavior. 
Both phenotypes have been more extensively characterized in the TgF344-AD rat model relative to the 
McGill-R-Thy1-APP model. In TgF344-AD transgenic rats, anxiety-like behavior was detected at different 
ages in the elevated plus maze[128,145,153,154]. In McGill-R-Thy1-APP rats by the age of 5 months, there is 
evidence for anxiety-like behavior in the light-dark box[125]. Results obtained in the open field in both rat 
models are contradictory[123,125,143-145,154]. Regarding depression-related parameters, anhedonia-like behavior as 
well as behavioral despair were shown in TgF344-AD rats aged 10 months or older[131,145,154]. One of these 
studies assessed both males and females but did not report sex differences[131]. Nevertheless, given the 
evidence for sex differences in the prevalence of depression and apathy in AD[155], it would be worth 
examining sex differences more thoroughly in transgenic rat models. Also, the time course of depression-
like phenotypes and cognitive impairment in TgF344-AD rats cannot be easily defined from the behavioral 
analyses in the model. Moreover, given that in AD, depression can predate cognitive symptoms[156], the 
assessment of depression-like behaviors in animal models from very early ages would be advisable. Apathy, 
the most frequent behavioral disturbance in AD[149], has not been assessed in detail in the genetic rat models 
reviewed here. Signs of apathy-related behavior could be inferred from the presence of anhedonia-like 
behavior and the reduced motivation to engage in goal-directed behaviors in some experiments in TgF344-
AD; for example, rats display a decreased number of attempts in a maze test[128]. Similarly, in mouse models 
of AD, parameters of object and social exploration, as well as locomotor activity, have been used as 
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measures of apathy[157,158]. Alternative approaches, e.g., progressive ratio tasks[159], used in AD mice[160], may 
provide more compelling information on apathy-related motivational aspects.

Sleep disturbances are tightly linked to mood and behavioral disturbances. Sleep behavior characterization 
in 17-month-old TgF344-AD rats showed changes in sleep architecture, such as increased sleep 
fragmentation and alterations in sleep microstructure, consistent with the sleep alterations observed in the 
prodromal phase of AD[161]. Sleep analyses in McGill-R-Thy1-APP rats are lacking, although changes in 
circadian activity have been reported in this rat model by the age of 8-10 months[125]. In conclusion, both the 
McGill-R-Thy1-APP and TgF344-AD rat models reproduce the dysfunction in key memory aspects, typical 
of AD patients. Similar deficits are found in APPNL-G-F knock-in rats, although only limited information is 
available on their phenotype so far, as this is a recent model. Neuropsychiatric changes have been examined 
in more detail in the TgF344-AD rats which manifest anxiety- and depression-like behaviors as well as sleep 
disruption. Apathy, a key symptom of AD, remains instead largely unexplored in these models.

Behavioral phenotypes in genetic rat models of Parkinson’s disease: PINK1 KO, DJ-1 KO, and a-synuclein 
BAC rats
Typical motor symptoms in PD patients are bradykinesia, impaired fine motor skills, tremor, muscle 
rigidity, and deficits in gait, posture, and balance[162-164]. Homozygous PINK1 KO and DJ-1 KO rats display 
numerous abnormalities reminiscent of the human PD symptomatology. They have deficits in limb motor 
coordination and balance as well as rearing, gait and grip strength[46,101,165-168]. DJ-1 KO rats additionally show 
postural instability[167], whereas PINK1 KO rats display decreased locomotor activity[101,165]. Interestingly, 
female PINK1 KO rats do not exhibit limb motor deficits like the ones observed in males of comparable 
age[169], indicating possible sex differences in the sensorimotor phenotype or in the age when the phenotype 
becomes manifest. Similar to the other models, the main features of motor impairments in α-synuclein BAC 
rats are decreased activity and rearing, impaired balance, and gait deficits, although most motor 
abnormalities in these rats start later compared to PINK1 KO and DJ-1 KO rats[84,170,171]. Tremor, present in 
PD patients, was, to the best of our knowledge, not reported in the literature for any of these models. Fine 
paw skills for which specific assays are established in rodents[172,173] have been scarcely assessed, despite the 
impairments of fine motor skills and hand grasping in PD patients[162,164].

Olfactory dysfunction, dysphagia (i.e., difficulty swallowing), as well as hypokinetic dysarthria, a speech 
motor control disorder involving reduced voice loudness and altered articulation, are important 
components of PD symptomatology in a high percentage of patients[174,175]. These changes are not responsive 
to standard dopaminergic treatments[176], and knowledge of the underlying brain changes is rather limited.

Altered phonation in PD patients has been related to the rigidity of the phonatory posture of the larynx, and 
laryngeal muscle impairment has been associated with deficient motor control by the basal ganglia[174]. 
Moreover, an altered perception of speech volume in PD patients[177] has been suggested to result in poor 
control of speech production[174]. Studies in PD patients also showed deficits in the production and 
perception of speech-related emotions. The latter seems to be connected with cognitive impairment in the 
disease[177].

Vocalization in humans and ultrasonic vocalizations in rats share similar anatomical structures and neural 
pathways[178-182]. The periaqueductal gray, especially, plays an important role in the control of vocalization in 
mammals[183]. It receives motor and sensory inputs[183] as well as input from multiple limbic areas including 
cortex, amygdala, and hypothalamus[184-186] that could regulate social and motivational aspects of 
vocalization. The periaqueductal gray has also been linked to vocalization deficits in PD. This is consistent 
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with several results in animal models: (i) in mice overexpressing α-synuclein, vocalization deficits are 
paralleled by α-synuclein aggregates in the periaqueductal gray[187]; and (ii) in PINK1 KO rats, gene 
expression analyses identified associations between the expression of specific gene modules in this brain 
region and female vocal behavior[188].

Both the PINK1 KO and DJ-1 KO rat models exhibit ultrasonic vocalization deficits[46,47]. DJ-1 KO rats 
display an altered call profile and produce ultrasonic vocalization with decreased intensity, as reported 
between 2 and 8 months of age[46]. Similarly, male and female PINK1 KO rats have a decreased ultrasonic 
vocalization average intensity at the same age[47,169], although opposite observations have been reported 
regarding ultrasonic vocalization intensity in male PINK1 KO rats at a later age[189]. The vocalization 
intensity deficits in PINK1 KO rats are stronger compared to PINK1 KO mice[190]. The decreased ultrasonic 
vocalization intensity in genetic rat models resembles the decreased vocal intensity or loudness in PD 
subjects, which occurs in the early disease stages. Given that the vocalizations recorded in male and female 
rats are experimentally induced by exposure to a female and male, respectively, it remains unclear whether a 
possibly altered interest in the conspecific of different sex may have contributed to this phenotype in PINK1 
KO rats. This is important for two reasons: (i) decreased sexual interest and sexual dysfunction are reported 
in PD patients[191], and (ii) brain areas controlling vocalization in rats are also involved in sexual 
behavior[192,193]. Moreover, the connection of the periaqueductal gray, controlling rat vocalization, with 
limbic areas may involve emotional and cognitive aspects in control and in the impairment of vocalization, 
which would be interesting to assess in rat models of PD.

Characterization of vocalizations in PINK1 KO male rats indicated progressively decreased peak 
frequency[189] and altered bandwidth[47] of frequency-modulated calls, in addition to deficits in call intensity. 
Although translating these changes from rats to patients seems not as straightforward as the vocalization 
intensity, the examined variables may be relevant indicators of vocalization dysfunction in rat models. 
Besides altered vocalization, similar to PD patients, both PINK1 KO and DJ-1 KO rats present early 
oromotor abnormalities[46,47,194]. Already at early ages, DJ-1 KO rats have a decreased ability to regulate 
tongue force[46] and PINK1 KO rats display an altered tongue function and biting deficits[47]. 
Videofluoroscopy, normally used to detect swallowing deficits in PD patients[195], showed that PINK1 KO 
rats are dysphagic as assessed at the age of 4 months[194]. Hence, PINK1 KO and DJ-1 KO rats seem 
promising models regarding phenotypes of cranial sensorimotor dysfunction. However, the information on 
olfactory abilities in these rat models remains scarce. Sixteen-month-old DJ-1 rats were shown to have 
increased olfactory abilities, which is opposite to observations in patients[167]. On the contrary, analyses in 
the BAC α-synuclein rats detected smell discrimination impairment at 3 months, before the appearance of 
motor deficits[84], which would temporally mimic the manifestation of symptoms in human PD.

PD patients show non-motor symptoms, including psychiatric and cognitive symptoms, sleep disorders, 
and autonomic dysfunction[196-199]. Most PD patients experience disturbances such as apathy, anxiety, 
depression, and psychosis and several studies on PD have also reported disorders of impulsive control[197]. 
Even though some disturbances, for example, psychosis and impulsive control, may in part arise from or be 
enhanced by treatments, neuropsychiatric symptoms are already observed in the early phases of the 
disease[197,198,200]. Despite the obvious limitations in translating neuropsychiatric assessments between animal 
models and humans, genetic rodent models still offer the possibility to relate neuropsychiatric-like 
behaviors to relevant brain changes on multiple levels in treatment-free conditions, and to dissect their 
temporal dynamics. To date, neuropsychiatric-like phenotypes have not been characterized in depth in the 
genetic rat models described here, and the results obtained so far require further corroboration. Research on 
these PD genetic rat models hardly focused on apathy and impulsivity-related behaviors, although altered 
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motivation has been indirectly suggested in α-synuclein BAC rats, based on a faster decline in activity and a 
decreased exploration of the central zone of an automated cage apparatus over time, along with suppressed 
feeding[170]. Regarding depression, DJ-1 KO rats show signs of behavioral despair by 6 months[167], and in 
PINK1 KO female rats, there is evidence for anhedonia by the age of 8 months, whilst PINK1 KO males 
were not assessed simultaneously[169]. In the α-synuclein BAC rats, both increased and decreased anxiety-like 
behaviors have been reported[84,201]. In the same rats, locomotor activity is enhanced in a novel environment 
by 3 months of age, and deficits in prepulse inhibition emerge as well at a more advanced age[201]. Both 
behavioral features have been associated with psychosis-like behavior in rodent models[202]. It is worth 
noting that the psychosis-like phenotype is stronger in α-synuclein BAC male rats relative to females, in 
agreement with evidence for sex differences in the PD symptomatology in patients[203]. This supports the 
assessment of sex differences in psychosis in the human population.

A significant percentage of PD patients suffer from a mild cognitive impairment which can convert into 
dementia with disease progression[196,199]. Cognitive deficits in early PD stages commonly impact several 
facets of executive functioning, visuospatial skills and memory and have been related to dysfunction in 
multiple neurotransmitter systems as well as common PD neuropathological alterations[199]. Analyses of 
some cognitive components have been performed in lesion rat models of PD, which present though some 
limitations in terms of cognitive phenotypes that can be reproduced[204,205]. On the contrary, cognition has 
rarely been investigated in PD genetic rat models. PINK1 KO rats display normal recognition and spatial 
memory when tested at 3 months[206]. DJ-1 KO rats were found to have altered short-term memory by 4.5 
months, but unchanged goal-directed behavior[166,167]. Changes in short-term memory were also observed in 
DJ-1 KO mice, but at a later age compared to PINK1 KO rats[207]. Although it may not reflect the deficits in 
patients, the early rat phenotype is more consistent with the early appearance of cognitive deficits in human 
symptomatology, if the same temporal dynamics also apply to the familiar PD forms. In the α-synuclein 
BAC rats, knowledge of cognitive aspects is very limited.

In summary, all three PD rat models reflect, to a certain extent, the motor impairment in the disease. DJ-1 
KO and PINK1 KO rats are ideal for reproducing cranial sensorimotor deficits and studying the underlying 
mechanisms. The α-synuclein BAC rats mimic the olfactory dysfunction and specific psychiatric features of 
the disease, but cognition remains scarcely examined in any of these models. Apathy, a frequent symptom 
in PD patients, has not been sufficiently investigated in genetic rat models of PD. Moreover, tremor, a main 
motor feature in the disease, does not appear to be reproduced in genetic rat models.

Behavioral phenotypes in genetic rat models of Huntington’s disease: tgHD and BACHD rats
HD patients present motor impairment, cognitive deficits and psychiatric manifestations[208]. The tgHD and 
BACHD genetic rat models mimic many of these HD behavioral features. Compared to mouse fragment 
models, especially R6/2 mice, the phenotype in tgHD rats develops later and progresses at a slower 
pace[108,209]. Motor impairment starts earlier and has faster progression in BACHD rats compared to tgHD 
rats, with the first BACHD rat motor abnormalities starting at the age of 1 month[107] and the motor deficits 
in tgHD rats beginning at about 6 months[210]. In the tgHD rat model, phenotypes appear stronger in 
homozygous compared to hemizygous animals[210] and male rats were reported to be more sensitive to 
motor coordination impairment relative to females[211], while in the BACHD rat model, homozygous 
females seem to develop a stronger motor, emotional, and cognitive phenotype than males[212], although 
information on sex differences and homozygous animals in this model is still limited.

In general, the tgHD and BACHD rat models exhibit reduced motor coordination and 
balance[107,108,210,211,213,214], altered locomotor activity and rearing[107,211,213,215,216], decreased muscle endurance[215,217] 
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and gait abnormalities[107,213,218]. At late time points, tgHD rats are also affected by choreiform neck 
movements which are more frequent in homozygous individuals[219]. Prepulse inhibition of the startle 
response, a measure of sensorimotor gating, is decreased in HD patients[220]. In BACHD rats, there are mild 
sensorimotor gating deficits at the age of 9 months[213], whereas in tgHD rats, no sensorimotor deficits have 
been detected[216,221].

Emotional and behavioral symptoms in HD patients can precede motor symptoms by decades. A variety of 
psychiatric symptoms characterize the disease where apathy, depression, irritability, aggression, and anxiety 
are frequently reported[222]. Likewise, cognitive deficits in HD patients can be found several years before 
motor diagnosis[223] and are heterogeneous, embracing problems with executive function, visuomotor 
integration, psychomotor speed, and social cognition[224-227]. While the available tests in rodents can only 
partially assess the multidimensional nature of the neuropsychiatric disturbances in HD patients, emotional 
changes have been shown with different behavioral paradigms in HD rat genetic models. Both tgHD and 
BACHD rats show a low anxiety phenotype in different behavioral setups[107,108,210,211,214,228]. In tgHD rats, the 
emotional phenotype is already detectable at the age of 1 month, before motor deficits[210], whilst motor and 
emotional alterations in BACHD rats follow the opposite temporal pattern[107]. In BACHD rats, evidence for 
increased anxiety-like behavior was also found in specific paradigms[229], in line with human data. The 
contradictory anxiety phenotype remains mostly unexplained, although it could in part be dependent on 
age and on the different components of anxiety targeted by different typologies of behavioral tests which 
could in turn rely on distinct brain mechanisms. One study demonstrated that the disinhibition of the 
central nucleus of amygdala via GABAA receptor antagonist in BACHD rats increased avoidance and escape 
responses in an avoidance task as well as the social exploration in a social test[230], implicating an altered 
activity in the central nucleus of the amygdala as one of the mechanisms at the base of anxiety-related 
behavioral alterations. Further investigations of emotional phenotypes in tgHD rats revealed enhanced 
emotional learning in discriminative Pavlovian fear conditioning and hyperreactivity to aversive emotional 
events which were paralleled but not explained by shrinkage of the central nucleus of the amygdala[217].

Depression-like behavior reported in multiple studies in HD fragment and full-length mouse models[231-234] 
has not been studied in much detail in HD rat genetic models. An impaired hedonic reaction in response to 
sucrose in tgHD rats has been associated with anhedonia-like behavior[217] which was though not confirmed 
by later analyses[228]. BACHD rats show decreased sucrose preference at 3 months and this effect is 
maintained at later time points[235]. Along with hedonic deficits, BACHD rats present impaired reward-
directed behavior by the age of 3 months[235], indicating a lack of motivation which could be representative 
of apathy, a core symptom of HD[223]. However, the BACHD rat shows notable obesity, and it is currently 
uncertain how that might interact with behavioral tests that are based on food rewards. Still, there do seem 
to be some indicators of the animals putting a lower hedonic value on small reward pellets[236,237].

A key cognitive impairment in HD is executive dysfunction. One of the main executive function deficits is 
impaired inhibitory control, which can be detected in specific behavioral tests in HD patients[238,239]. It was 
also shown in HD fragment and knock-in mouse models[240,241] and in transgenic rats[242-245]. Rat models, in 
general, may be advantageous over mouse models in the applied paradigms and have been largely used in 
preclinical research on impulsive control[246]. Impulsive-like behavior in tgHD rats was detected in both 
sexes at 15 months and with different strain backgrounds[243,245]. Deficits consistent with the inability to 
withhold inappropriate lever responses have been shown in BACHD rats already by the age of 3-4 
months[242,244]. tgHD and BACHD rats further mimic several other facets of cognitive dysfunction in HD 
patients[223,247,248]. Deficits in both animal models were reported at different ages depending on the cognitive 
aspect considered. In both BACHD and tgHD rats, the first cognitive deficits were found early, at 3 and 4 
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months, respectively. In tgHD rats, cognitive deficits concern, among others, cognitive flexibility, attention, 
working memory, visuospatial and visual object memory, temporal perception and psychomotor 
performance[210,219,221,249-251]. BACHD rats show impaired reversal learning[111,214,252], deficits consistent with 
fronto-striatal dysfunction in different short-term memory tests[253], decreased performance in a decision-
making task[254] and impaired associative memory[252].

Several aspects of social behavior and social cognition are abnormal in HD patients who face problems with 
emotion recognition and awareness as well as theory of mind and, to a certain extent, empathy, which have 
been associated with altered social skills and self-reported social distress[224,255-257]. Transgenic fragment and 
full-length HD mouse models display changes in various social behavior parameters[258-262]. Compared to 
mice, rats show lower group aggression[4] and are more interested in the interaction with male 
conspecifics[18]. Therefore, free social interaction experiments in males can be better performed in rats. Both 
male and female tgHD rats tend to interact more than wild-type rats with the same sex conspecific starting 
from 1 or 2 months of age, which was interpreted as a low anxiety-like phenotype[210,211]. An automated 
analysis of the BACHD rat behavior in a social interaction test between 2 and 8 months of age demonstrated 
alterations in multiple social interaction parameters[263]. Other analyses in the model further revealed 
changes in other areas of social cognition[229,263]. It is difficult to draw direct parallels between social behavior 
parameters measured in humans and rats as social behavior is highly species-specific. Nevertheless, given 
that brain correlates of social behavior are under several aspects comparable in humans and rodents[264], it is 
still reasonable to model main social behavior related functions in rats. Depending on age, in the BACHD 
rats, we find a more aggressive play behavior, decreased tendency to search for or interact with a conspecific 
and a decreased social preference[229,263], which in part indicates higher anxiety and may altogether be 
representative of a disrupted socio-cognitive function. It would then be important to relate social behavior 
alterations to changes in brain areas relevant to social behavior. In the BACHD rat model, in addition to the 
evidence for an involvement of the amygdala in the modulation of anxiety in a social context[230], a decreased 
BDNF gene expression was also reported in the ventral striatum[263]. While the striatum does not have a 
primary social function, it has been suggested to integrate social information into main striatal functions, 
like reward[265]. Future analyses could consider assessing the expression of markers relevant to social 
behavior, such as oxytocin and vasopressin[265,266], and focus on other brain areas affected in HD, like the 
hypothalamus, which shows changes in neuronal populations expressing these markers[267]. In HD patients, 
cerebrospinal fluid oxytocin levels were also found to be decreased and to correlate with social cognitive 
scores[268]. As part of social behavior, aggression is often reported in HD patients[255], but has not been 
assessed in transgenic rat models. While analyses of aggression could take advantage of well-established 
tests in rats, they may be sensitive to the model strain, which adds to the complexity of a phenotypic profile.

Altogether the BACHD and tgHD rat models reproduce many features of the HD triad of symptoms. Both 
models present motor and cognitive deficits, and some have been reproduced across studies. These rat 
models also display emotional alterations. The bidirectional anxiety phenotype in the BACHD rat model 
supports further assessments, especially in terms of underlying mechanisms. Furthermore, several 
phenotypes in the HD rat models and in the models of other neurodegenerative disorders have been 
assessed only once. Thus, their repeatability must still be determined. In addition, it remains largely unclear 
to what extent specific phenotypes in animal models and similar symptoms in humans share the same 
biological mechanisms, thereby representing the same kind of impairment.

PHENOTYPIC/ASPECT-REPLICATING MODELS TO STUDY AD, PD, AND HD
There is still a vast gap between preclinical studies to effective treatments for patients[269-271]. To date, 
translatability from animal models to humans in terms of treatment efficacy, adverse effects, and tolerability 



Page 15 of Novati et al. Ageing Neur Dis 2022;2:17 https://dx.doi.org/10.20517/and.2022.19 29

has been found to often not correlate[272-274]. And likewise, a proportion of unknown size of therapeutics fails 
to enter the clinic, being not beneficial in animal models, though they might be effective in humans.

Despite the discouraging success rates in finding new therapies for NDs, rats have been essential for 
discerning many aspects of neurological functions. However, with the more readily genetic manipulation of 
mice and the discovery of many disease-causing genes for NDs, mice have outnumbered rats in studies 
evaluating behavioral aspects of neuroscientific questions in the last two decades[275]. Also, in studies 
describing therapeutic approaches in AD, PD, and HD, this trend towards using mice is reflected by the 
number of publications listed in PubMed [Figure 1].

Preclinical studies require a model to present a phenotype that is robust, fast developing, replicating key 
aspects of the human disease, and compatible with the form of treatment investigated. Some aspects of 
human disease are, however, only ever hardly modeled in animals. As one important example, cell loss is 
often not found in genetic models of neurodegeneration or only towards the end of the lifespan. 
Additionally, genetic rat models often display milder phenotypes than mouse models when based on the 
same construct, and these phenotypes often take relatively long to develop[276]. Therefore, we briefly describe 
in this section models with induced cell loss - though fairly artificial - which have helped to model neuronal 
demise and to evaluate therapies that can halt or even reverse this process. Commonly used models, with 
such induced neurodegenerative phenotypes, are summarized in Table 2. Their fast-appearing nature and 
cost-effectiveness, in comparison to generating new genetic rat lines, make them a resource to be relied 
upon frequently.

Phenotypic rat models of Alzheimer’s disease
AD poses a challenge for finding appropriate models, because sporadic cases caused by mutations in AD-
risk genes outnumber familial cases[285]. While rats are genetically closer to humans in terms of tau isoforms, 
rats seem to be more resistant to developing characteristic neuropathological features of AD when 
expressing human genes. They present fewer plaques and tau tangles are not present[67,276]. Injection of 
neurotoxins or overexpressing constructs of Aβ into the brain are commonly used to induce local cell death 
and to model the AD typical neuropathology. For this, the larger brain size of the rat offers advantages over 
mice, as stereotactic injections can be performed more consistently and with larger volumes. Additionally, 
these models have been mostly used in preclinical studies.

Rats with diminished cholinergic neuron populations or severed neuronal circuits show memory deficits 
and impaired learning[278], thereby resembling the cognitive symptoms observed in patients, but not the 
pathobiological origin of the disorder. Ibotenic and okadaic acid, amongst other cholinergic neuron 
harming compounds, or surgically lesioned rats, have been used to study neuroprotective or even 
regenerating therapies. Exemplary, with these phenotypic models, it was possible to demonstrate that 
neuronal stem cells or mesenchymal stem cells can replace or protect cholinergic neurons and improve 
spatial learning and memory[286-288]. Recapitulating early pathobiological events, Aβ-injected models have 
also been used to investigate the beneficial effects of stem cell transplantation[289-291]. It should be noted in 
this regard that the concentrations needed to induce the pathological phenotype by Aβ-injections exceed 
any physiological concentrations, and the stereotactic injections always produce unwanted tissue damage at 
the injection site. Genetic mouse models of AD have been used to elucidate the mechanisms underlying the 
observed amelioration in the genetic context of AD[292,293]. A meta-analysis of preclinical studies on stem cell 
therapy for AD found a large variation in the models used and origin of cells but concluded overall 
beneficial effects on memory and learning. Approximately 60% of the analyzed studies were performed on 
non-genetic rat models[294].
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Table 2. Commonly used phenotypic models of NDs

AD AD/PD PD HD
Physical/chemical 

lesion of 
cholinergic centers

Aβ injection LPS 6-OHDA QA 3-NP

Aspect of 
disease 
reproduced

Degeneration of 
cholinergic neurons

Memory deficits 
behavioral 
alteration 
Neuroinflammation 
Aβ accumulation 
Local cell loss

Neuroinflammation 
cognitive deficits 
Aβ and tau 
accumulation 
Sickness behavior

Dopaminergic cell 
loss, lesions 
Sensitivity to 
apomorphine 
Neuroinflammation

Striatal lesions 
Behavioral 
alterations 
Excitotoxicity-
induced cell 
loss

Striatal 
neurodegeneration 
of MSN 
Motor deterioration 
and behavior 
alterations 
impairs 
mitochondrial 
energy production

Acute or 
progressive?

Acute Single injection 
(acute) 
Osmotic pump 
(progressive)

Acute, severity can 
be modulated by the 
amount of LPS 
challenges

Acute, 
compensatory 
mechanisms 
possible

Acute, chronic Progressive over 
multiple injections

Pros ● Different protocols 
available 
● Easy to implement 
● Systemic injections 
are possible with some 
chemicals

● Rapid appearance 
of Aβ accumulation

● Aspects of 
neuroinflammation 
can be studied 
● Systemic injections

● Lesion intensity 
can be modulated 
● Dopaminergic 
neurons are 
targeted

● Similar to the 
pattern of cell 
loss in HD 
patients

● Systemic 
injections 
● Histological 
similarities to HD

Cons ● Many variables (age 
at lesioning, size/type 
of lesion, strain, etc.) 
● Limited to the 
lesioned brain area  
● No Aβ or tau 
pathology

● High 
concentration 
needed 
● Aging as a 
pathological factor 
neglected 
● Brain injury

● No AD/ PD-
specific pathology 

● Variability within 
animals 
● Compensatory 
effects in unilateral 
lesions

● Many 
variables (age 
at lesioning, 
size/type of 
lesion, strain, 
etc.)

● High inter-animal 
variability in 
lesioning 
● Many variables 
(age at lesioning, 
size/type of lesion, 
strain, etc.)

Literature Reviewed in[277] Reviewed in[277,278] Reviewed in[279] Reviewed in[280] Reviewed 
in[281-283]

Reviewed in[284]

AD: Alzheimer’s disease; PD: Parkinson’s disease; HD: Huntington’s disease; Aβ: amyloid beta (Aβ) peptide; LPS: lipopolysaccharide; 6-OHDA: 
hydroxydopamine; 3-NP: 3-nitropropionic acid; QA: quinolinic acid.

Figure 1. Studies referencing mice or rats in therapy approaches for Alzheimer’s, Parkinson’s and Huntington’s disease. Results of 
PubMed search with terms “mice”/“mouse” and “rat”/“rats” in combination with above mentioned neurodegenerative disorders and 
“therapy”. Review articles have been removed from the year in which they were published.

Aside from lesion models, what needs to be noted in AD and PD are lipopolysaccharide (LPS)-induced 
models, as chronic inflammation is associated with cognitive impairment in AD patients and the 
exacerbation of AD and PD pathology in models of the disease (reviewed in[295,296]). These models 
recapitulate the involvement of the immune system in the pathogenesis and show an increase in Aβ and 
phosphorylated tau and cognitive impairment[279,297,298].
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Over the past decade, improvements in biomarker identification and quantification and improved 
preclinical study design have been implemented to increase translatability to human studies. Incorporating 
such study design, a genetic rat model has been used in a preclinical study with improved longitudinal 
assessment of biomarkers to improve translatability. Continuous CSF and plasma collection for 
measurement of Aβ and neurofilament light chain in combination with PET and MRI imaging have been 
used to evaluate an anti-amyloid therapy in McGill-R-Thy1-APP transgenic rats[299].

Phenotypic rat models of Parkinson’s disease
Due to the multifactorial etiology of PD and most cases being of idiopathic origin, neurotoxin and lesion 
models are mostly relied on for preclinical Parkinson’s research. The main neuropathological feature of the 
disease, the loss of dopaminergic neurons in the substantia nigra can be modeled through the injection of 
hydroxydopamine (6-OHDA) in most studies into the substantia nigra pars compacta or in the medial 
forebrain bundle[300]. Next to cell loss, lesioned rats show motoric deficits that are correlated to the degree of 
dopaminergic neuron loss, oxidative stress, and neuroinflammation[280,301]. Test paradigms have been 
developed to assess motor deficits, resembling akinesia, fine motor impairment, and showing rotational 
response to dopaminomimetic agents when extensive unilateral lesioning is produced[301]. While the lesions 
produced resemble cell loss in humans, unilateral lesions are mostly used in experimental settings, inducing 
cell loss in one hemisphere only. These lesions are mostly produced in rats, as mice are more prone to 
weight loss and post-lesion mortality which can be circumvented by modification of the injection sites and 
improved post-surgical surveillance[302-304].

Another neurotoxin model is the MPTP mouse model. In contrast to 6-OHDA, which does not cross the 
blood-brain barrier, MPTP can be administered systemically, but shows larger variation in neuronal loss in 
the substantia nigra and the motor phenotype is not fully equivalent to PD patients[305]. MPTP has been 
mainly used to mimic PD in mice in many different treatment studies, as rats are highly resistant to MPTP. 
One rat model of unilateral brain infusion with MPP+ has been developed, which shows progressive loss of 
dopaminergic neurons[306].

Phenotypic rat models of Huntington’s disease
Only few preclinical studies have been performed in transgenic rat models of HD despite the monogenetic 
etiology of HD[111,307]. To a greater extent, neurotoxin models are used to model histopathological 
characteristics of the disease or mechanism of neuronal demise to test preventive therapies or therapies 
aiming at restoring functionality. The two most commonly used substances are quinolinic acid (QA) and 3-
nitropropionic acid (3-NP). QA is an excitotoxin, binding to the N-methyl-d-aspartate (NMDA) receptor 
and more strongly affecting neurons within the hippocampus, striatum, and neocortex. It can induce 
different neuron and glia-damaging effects, also dependent on the dosage[308]. The lesions produced are 
structurally similar to HD characteristic lesions within the striatum and limited to the area around the 
injection site[283,309]. Impairment of paw use can be assessed in cylinder test, altered grooming behavior has 
been described, and learning and motoric abilities are altered in this model[310-312].

Systemic injection with 3-NP, an irreversible inhibitor of succinate dehydrogenase in the mitochondria, 
leads to striatal neuronal degeneration, as well. Rats are more sensitive to 3-NP than mice and develop 
lesions and behavioral alterations[284,313]. The lesions produced by 3-NP are more severe and cause a 
phenotype that includes learning impairment, reduced grip strength, and balance deficits that are more 
severe than in the QA model[310].
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In current treatment approaches and clinical trials, HTT is lowered independently of the mutation or in an 
allele-selective manner[314]. Preclinical studies lowering HTT by micro-RNA (miRNA) have been performed 
in genetic mouse models of HD, an acute rat model of HD, a large animal model, and non-human 
primates[315-317]. Acute and local expression of HTT by lentiviral- or adenoviral vectors produces models that 
replicate typical neuropathological features HD, like aggregation and neuronal dysfunction[315,318,319]. This rat 
model can be used to evaluate the HTT lowering effects before a long preclinical trial is initiated, for 
example, by investigating behavioral readouts. Most allele selective therapies utilize heterozygous single 
nucleotide polymorphisms (SNPs) that are associated with the mutation-carrying allele. These therapeutic 
targets are only found in fractions of a population, and accordingly, they are also not necessarily present in 
the constructs that have been used to generate genetic models. Therefore, acute rat models can be used to 
test combinations and variations of SNP targeting molecules to advance personalized therapies.

CONCLUSION
Huge strides have been made towards generating genetic rat models in the past 20 years. These genetic 
models are an important asset for research on NDs to study physiological and pathophysiological 
mechanisms. Rats add to the functional understanding of disease by allowing electrophysiological 
measurements, harvesting of primary cell cultures and a wider range of surgical procedures. They offer the 
possibility to evaluate therapeutic effects more precisely due to their genetic similarities to humans, larger 
body size compared to mice, and the associated possibility of multiple sampling of biofluids over time. 
Many behavioral tests have been developed in rats, enabling a more robust assessment of behavioral 
phenotypes in rat models. Moreover, rats display a more complex behavioral repertoire than mice, allowing 
more sophisticated extrapolation to the human condition. Often efforts are being made to provide a 
complete characterization of the models, offering a good starting point to find an adequate fit for the 
biological question to be answered. Despite the long list of advantages rats offer, they are less represented in 
biomedical studies than mice. One reason for this is that genetic models have been generated with a delay 
due to the technically challenging manipulation of the rat genome. This, economic reasons, and the 
multifactorial etiology of many NDs have made phenotypic rat models commonly used models in 
preclinical research. Still today, they fill a gap when genetic models cannot reproduce certain aspects of 
disease, highlighting that in most cases only a combination of readouts, models, and model species can 
answer biomedical questions adequately. New rat models have been developed and characterized recently 
and can offer additional insight into disease mechanisms. Whether rats as models, combined with improved 
study design, can increase the translational value of biomedical research remains to be seen.
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