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Abstract
Genomic aberrations comprise hallmarks of multiple myeloma (MM), a plasma cell malignancy with an overall 
poor prognosis. MM is heterogeneous and has different molecularly-defined subtypes according to varying clinical 
and pathological features. Hyperdiploidy or non-hyperdiploidy has usually been identified as early initiating genetic 
events that can be followed by secondary aberrations, including copy number changes, secondary translocations, 
and different epigenetic modifications, which cause immortalization of plasma cell and disease progression. Even 
though recent advances in drug discovery have offered new perspectives of treatment, MM remains incurable. 
However, understanding the molecular complexity of MM would allow patients to get precision treatment. Our 
review focuses on current evidence in myeloma biology with special attention to genomic and molecular variations.
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INTRODUCTION
Multiple myeloma (MM) is an incurable neoplasm of terminally differentiated B lymphocytes called plasma 
cells, which occurs in bone marrow and secretes immunoglobulin[1]. MM mainly affects elderly people, and 
the median diagnosed age is 69[2]. It has a poor prognosis, and the 5-year overall survival rate is 48.5%[1].
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Genomic aberrations are central to the development and progression of multiple myeloma[3]. Genomic 
instability affects all levels of the genome and leads to two types of aberrations: large-scale and small-scale[3]. 
Large-scale aberrations include insertions, deletions, translocations, and inversions[4]. These aberrations can 
be revealed in tumor cells during the metaphase of the mitotic cycle using traditional Giemsa banding and 
spectral karyotyping[5]. Similarly, fluorescence in situ hybridization and other molecular cytogenetic 
approaches can identify large-scale aberrations in interphase cells[6]. Small-scale aberrations include small 
insertions and deletions (indels), loss of heterozygosity, copy number changes, and base substitution 
mutations[3]. Next-generation sequencing (NGS) is a collection of methods that can identify small-scale 
aberrations and includes whole-genome sequencing and protein-encoding exome sequencing (WES)[7,8]. 
Recently, transcriptome-wide sequencing has allowed for the identification of subtypes stratified by cells of 
origin and genomic/epigenetic alterations[9]. To this end, analysis of a 70-gene prognostic signature 
developed by the University of Arkansas for Medical Sciences has been used and validated to stratify risk for 
relapse and survival[10]. Furthermore, transcriptome sequencing-based stratification can predict response to 
MM therapy, as shown with MCL1-M co-expression and bortezomib response[11].

In the cytogenetic approach, MM initiation and progression involve primary and secondary events. Primary 
events responsible for plasma cell immortalization are further categorized into two subtypes: hyperdiploid 
(HRD) and non-hyperdiploid (non-HRD). HRD subtype is correlated with trisomies of the odd-numbered 
chromosomes (3, 5, 7, 9, 11, 15, 19, and 21). Non-HRD subtype involves balanced chromosomal 
translocations, with more than 90% of non-HRD cases affecting the transcriptionally active IgH locus on 
14q32. The primary translocations t(4;14), t(6;14), t(11;14), t(14;16), and t(14;20) cause over-expression of 
oncogenes MMSET/FGFR3, CCND3, CCND1, MAF, and MAFB[12,13]. These primary translocations can be 
found in about 50% monoclonal gammopathy of undetermined significance (MGUS) patients as an early 
event, which takes place in the lymphoid germinal center during physiological class-switch recombination 
and somatic hypermutation[14]. Either directly or indirectly, HRD and non-HRD events can cause 
dysregulation of the G1/S cell cycle transition point through the over-expression of cyclin D genes, which is 
a key to an early molecular abnormality in myeloma[15]. The secondary events involved in myeloma 
progression occur later in the disease and include secondary translocations: t(8;14) linked with MYC 
overexpression, loss of heterozygosity, copy number variations (CNV), acquired mutations, and epigenetic 
modifications[1,14].

One of the pivotal aspects of MM is the recognizable clinical phase linked to each step of MM development. 
MGUS and smoldering multiple myeloma (SMM) are both early premalignant phases. MGUS is 
asymptomatic and is characterized by a < 10% plasma cell count in the bone marrow and a progression rate 
of 1% per year to MM. SMM follows MGUS; it is also an asymptomatic phase with > 10% intramedullary 
clonal plasma cells and 10% per year progression risk to MM. Thirdly, overt MM presents clinical features 
of hypercalcemia, renal dysfunction, anemia, and bone disease (the acronym CRAB). Lastly, plasma cell 
leukemia (PCL) is characterized by extramedullary plasma cell clones and rapid progression to death. 
Hence, the disease continuity between MGUS, SMM, and MM involves genomic hierarchy, including 
germline events that increase predisposition to MM, followed by early initiating events, and later gaining of 
genomic aberrations that ultimately trigger disease progression and treatment resistance[15].

GENETIC PREDISPOSITION
The inherited susceptibility to MM is well established, with an estimated heritability of about 15% and 17% 
for MGUS and MM respectively[16]. In 2010, a Swedish study comprising 13,896 MM patients revealed first-
degree relatives of MM patients having a higher relative risk (RR) to develop MM (RR = 2.1), MGUS (RR = 
2.1), acute lymphoblastic leukemia (RR = 2.1) and, to a lesser extent, solid tumors (RR = 1.1)[17]. There is a 
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4.25-fold risk of MM in first-degree relatives (95%CI: 1.81-8.41) that was observed in the 1961-2003 Swedish 
national cancer registry data[18]. Similarly, among the first-degree relatives observed in Minnesota and Mayo 
Clinic cohorts exhibited the increased risk of MGUS (RR = 3.3; 95%CI: 2.1-4.8) and MM (RR = 2.0; 95%CI: 
1.4-2.8)[19]. While the familial clustering of MM indicates a genetic predisposition to the disease, only 
recently (2012) has GWAS identified single-nucleotide polymorphisms associated with MM risk[20]. In 
addition to identifying multiple risk loci, GWAS has provided innovative insights into genetic-related 
risk[20]. Inherited variations at loci 2p23.3, 3p22.1, and 7p15.3 are associated with a genetic predisposition to 
MGUS and involves gene pairs 2p: DNMT3A and DTNB, 3p: ULK4 and TRAK1, and 7p: DNAH11 and 
CDCA7L[21,22]. Chubb et al.[23] verified that the seven common variant loci 2p23.3, 3p22.1, 3q26.2, 6p21.33, 
7p15.3, 17p11.2, and 22q13.1 may account for 13% of the familial risk of MM. Further studies have 
confirmed more candidate loci summarized in Table 1. Additionally, rare variants such as LSD1/KDM1A, 
KIF18A, USP45, ARDID1A, CDKN2A, and DIS3 may be contributed to missing heritability[16]. The reliable 
identification of these susceptible risk variants would be an important advancement in the early detection of 
MM. Furthermore, it could postulate potential personalized treatments or gene knockdown to limit 
progression to MM in the future.

The African American (AA) population has a higher prevalence of MGUS and MM than Caucasian 
Americans (CA) of European ancestry[30,31]. A study by Costa et al.[32] reported a 2.24-fold higher incidence 
of MM in AA men compared to CA men. Also, MM occurs in the AA population at an early age of 65.8 
compared to age 69.8 in the CA population[33]. When considering polygenic risk scores (PRS), people of 
African ancestry in the top 10% PRS had a 1.82-fold (95%CI: 1.56-2.11) increased risk for MM compared to 
those with an average risk[34]. Although the confounding factors of healthcare inequalities, lifestyle, and 
environmental factors are significant, racial genetics is crucial in the etiology of MM in the AA 
population[20].

A study involving GWAS analysis revealed a stronger association between the 7p15.3 (rs4487645) locus and 
MM in AA[35]. The expression quantitative trait locus analysis on the biological function of the 7p15.3 
(rs4487645) risk locus showed that the C risk allele is linked to elevated CDCA7L (cell division cycle-
associated 7 like)[36]. The elevated CDCA7L attributes to the emergence of an IRF4 binding site on the 
7p15.3 enhancer[37], hence, connecting the germline risk of MM to a genetic pathway IRF4-MYC.

Similarly, an NGS study about acquired somatic mutations in MMmyeloma has underlined new insights 
into racial differences between AA and CA patients. It demonstrated higher mutation frequency in genes 
ABI3BP, ANKRD26, AUTS2, BCL7A, BRWD3, DDX17, GRM7, IRF4, MYH13, PARP4, PLD1, PTCHD3, 
RPL10, RYR1, SPEF2, STXBP4, and TP53 among AA than in CA myeloma patients[3]. Besides, myeloma 
MM-associated translocations t(11;14), t(14;16), and t(14;20) also play a critical role in racial AA vs. CA 
disparity[38].

TRANSLOCATIONS IN MYELOMA
Translocation (4;14) (p16.3;q32.3)
The translocaton t(4;14) is seen in 15% of MM cases and has a poor prognosis[39,40]. This translocation results 
in the over-expression of two genes: FGFR3 (70% of cases) and MMSET (all cases)[41,42]. FGFR3 up-
regulation results in the ectopic expression of the FGFR3 tyrosine kinase receptor types[43]. MMSET is a 
methyltransferase protein. Its up-regulation leads to enhanced methylation of histone H3K36, which 
modulates the expression of several genes. MMSET also regulates the methylation of histone H4K20, 
subsequently affecting the recruitment of tumor protein p53binding protein 1 (TP53BP1) at the site of DNA 
damage[44]. Both MMSET and FGFR3 over-expression up-regulate CCND2 and in some instances CCND1 
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Table 1. Susceptible loci for multiple myeloma

Study Locus Candidate gene

Broderick et al.[21], 2012 
Martino et al.[24], 2012

2p23.3 
3p22 
7p15.3

DNMT3A 
ULK4 
CDCA7L

Koura et al.[22], 2013 2p23.3 
3p22.1 
7p15.3 
8q24

DNMT3A 
ULK4 
CDCA7L 
MYC

Chubb et al.[23], 2013 3q26.2 
6p21.3 
17p11.2 
22q13.1

TERC 
PSORS1C2 
TNFRSF13B 
APOBEC

Weinhold et al.[25], 2014 2p23.3 
3p22.1 
3q26.2 
6p21.3 
7p15.3 
17p11.2 
22q13.1

DNMT3A 
ULK4 
TERC 
PSORS1C2 
CDCA7L 
TNFRSF13B 
APOBEC

Ziv et al.[26], 2015 16p13 FOPNL

Mitchell et al.[27], 2016 5q15 
6p22.3 
6q21.3 
7q36.1 
8q24.1 
9p21.3 
16q23.1 
20q13.1

ELL2 
JARID2 
ATG5 
SMARCD3 
CCAT1 
MTAP 
RFWD3 
PREX1

Went et al.[28], 2018 2q31.1 
5q23.2 
7q22.3 
7q31.33 
16p11.2 
19p13.11 
22q13.1

SP3 
CEP120 
CCDC71L 
POT1 
PRR14 
KLF2 
CBX7

Duran-Lozanzo et al.[29], 2021 13q13.3 SOHLH2

via unknown mechanisms[12]. Notwithstanding t(4;14) being associated with a poor prognosis of MM, 
treatment of MM with bortezomib, a proteasome inhibitor (PI), results in an increased survival rate in these 
patients[45].

Translocation (6;14) (p21;q32)
The translocation t(6;14) is rare and is present in only 2% of MM patients[1]. It has a neutral prognosis. This 
translocation causes the juxtaposition of CCND3 to the IGH enhancers, thus directly up-regulating CCND3 
expression[46].

Translocation (11;14) (q13;32)
The translocation t(11;14) is the most frequent translocation present in MM (15%-20% patients)[1]. It has a 
neutral prognosis, although t(11;14) patients show significant heterogeneity and may present as PCL[14]. This 
translocation up-regulates a cyclin D gene in the CCND1 form. Gene studies demonstrated that the over-
expression of CCND1 and CCND3 results in the deregulation of common downstream transcriptional 
events[47]. The central role of cyclin D gene deregulation in MM provided insight into research on cyclin D 
inhibitors in vitro. Human trials on cyclin D inhibition therapy for MM are also under consideration[48].
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Translocation t(14;16) (q32.3;q23)
The translocation t(14;16) shows up in 5%-10% MM patients[1]. This translocation is associated with a poor 
prognosis; however, a large retrospective analysis of 1003 patients with t(14;16) revoked its prognostic 
significance[49]. The t(14;16) gives rise to over-expression of the MAF gene splice variant c-MAF, which is a 
transcription factor that up-regulates a couple of genes, including CCND2, by directly binding to its 
promoter[50]. MAF up-regulates the expression of APOBEC3A and APOBEC3B, two DNA-editing enzymes, 
in MM tumors carrying t(14;16). This leads to a mutational pattern termed as APOBEC signature with a 
high mutation rate[51].

Translocation t(14;20) (q32;q12)
The translocation t(14;20) is the rarest of 5 major translocations detected in only 1% MM patients, and has a 
poor prognosis. However, paradoxically, long-term stable disease is found in the MGUS and SMM 
stages[52]. It results in over-expression of the MAF gene paralog - MAFB[53]. Mutant MAFB is seen in 25% of 
patients with MM harboring t(14;20)[54]. Microarray studies have shown that MAFB over-expression results 
in CCND2 deregulation like c-MAF[47]. Tumors with t(14;20) have the APOBEC mutational signature, which 
is induced by the up-regulated APOBEC4[51].

Secondary translocation affecting MYC
Secondary translocations are independent of class-switch recombination and occur later in the disease[14]. 
The c-MYC proto-oncogenes at 8q24 is the key target of secondary translocations. c-MYC over-expression 
is associated with poor prognosis and has a robust correlation to high levels of serum β2 microglobulin[55]. 
The most common secondary translocation in MM is t(8;14), involving the IGH at 14q32.3[56]. The other 
partner loci in the remaining 40% MYC translocations include IGL at 22q11.2, IGK at 2p11.2, FAM46C at 
1p12, FOXO3 at 6q21, and BMP6 at 6p24.3[51]. Importantly, all these translocations are unbalanced and 
associated with kataegis, which is a pattern of localized hypermutation linked with the deregulation of 
APOBEC activity near the translocation breakpoints. As APOBEC works on single-stranded DNA exposed 
around the translocation locate, kataegis occurs next to the point of chromosomal rearrangements[1].

COPY NUMBER VARIATIONS
CNVs involve either gain or loss of DNA. It comprises focal deletions/amplification, chromosomal arm 
loss/gain, and hyperdiploidy. CNVs contribute to genomic instability either via over-expression of proto-
oncogenes or loss of tumor suppression genes. Therefore, CNVs act as important driver events in MM 
development and progression[1,3,57].

Hyperdiploidy
HRD is defined by a chromosome count greater than the diploid number of chromosomes (> 46). In MM, 
HRD involves trisomies of the odd-numbered chromosomes (3, 5, 7, 9, 11, 15, 19, and 21) and is noticed in 
approximately 50% of MM cases[51,58,59]. The underlying mechanism for HRD is unknown, but one 
hypothesis suggests that single disastrous mitosis causes the gain of all chromosomes rather than their serial 
gathering over time[60]. However, the contribution of HRD to myelomagenesis is unknown. In addition to 
the dysfunction of cyclin D genes, GEP studies have validated the involvement of many protein synthesis 
genes in hyperdiploid tumors. These include MYC, NF-κB, and MAPK signaling pathways[61]. From a 
prognostic perspective, HRD is associated with more favorable survival outcomes than hypodiploidy[62]. 
Furthermore, patients harboring trisomy 3 and trisomy 5 have better overall survival in comparison to 
trisomy 21[63]. In contrast, HRD MM with co-existent cytogenetic lesions like del(17p) t(4;14) and gain of 1q 
has a poor prognosis compared to HRD MM alone[64].
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Gain of 1q
The gain of 1q arm is present in 30 to 40% of MM cases and is associated with a poor prognosis[14]. The 
amplification process involves 1q12 pericentromeric region instability due to hypomethylation and jumping 
translocation of the whole 1q arm[65]. Gene studies have shown a minimally amplified region between 1q21.1 
and 1q23.3 carrying candidate oncogenes including CKS1B, ANP32E, BCL9, PDZK1, ADAR1, PSMD4, 
ILF2, IL6R, and MCL1[1,66]. The protein phosphatase 2A inhibitor ANP32E involved in chromatin 
remodeling and transcriptional regulation is independently associated with short survival[67]. The identified 
specific inhibitors of the candidate genes and pathways may help in the treatment of patients with 1q 
gain[14].

Loss of 1p
Loss of 1p is present in 30% of MM cases and may involve whole arm deletion or interstitial deletion. 1p loss 
correlates to poor prognosis[68]. 1p12 and 1p32.3 are two important regions involved in myelomagenesis[1]. 
Both these regions experience hemizygous or homozygous deletions[14]. Tumor suppressor gene FAM46C is 
located on 1p12, and its expression has been verified as positively correlated with ribosomal proteins, 
eukaryotic initiation, and elongation factors involved in protein translation[7]. Similarly, FAF1 and CDKN2C 
are located on 1p32.3[1]. The protein encoded by FAF1 is involved in apoptosis initiation via the Fas 
pathway, while CDKN2C is a cyclin-dependent kinase 4 (CDK4) inhibitor which negatively regulates the 
cell cycle[1]. 1p32.3 deletion correlates to a poor prognosis in MM patients undertaking an autologous stem 
cell transplantation (ASCT) and a neutral prognosis in those receiving non-intensive treatment[68].

Loss of chromosome 13/13q
Loss of chromosome 13 is present in 45%-50% of MM cases, and primarily in non-HRD tumors. 85% of 
cases involve whole 13q arm deletion whereas 15% encompass interstitial deletions[14]. The minimal deleted 
region located between 13q14.11 and 13q14.3 also contains some genes related to MM progression, 
including RB1, RCBTB2, RNASEH2B, EBPL, mir15a, and mir161. The under-expression of RB1, a tumor 
suppressor gene, results in negative cell cycle regulation[57]. In 90% of cases, del(13/13q) occurs concurrently 
with t(4;14) as determined by conventional cytogenetic studies and is linked with poor prognosis[69]. In the 
absence of concurrent lesion, del(13/13q) lacks prognostic significance. Hence, the correlation between 
del(13/13q) and poor prognosis can only be seen in some patients with other high-risk genetic lesions[70].

17p deletion
The chromosome 17 deletion is a late disease event. It is hemizygous and involves the whole p arm[14]. The 
most common gene deregulated in 17p deletion is the tumor suppressor gene TP53[71]. GEP has shown that 
monoallelic 17p deletions in MM samples exhibit remarkably lower TP53 compared to non-deleted 
samples[57]. TP53 influences DNA repair, cell cycle arrest, and apoptosis in response to DNA damage as a 
transcriptional regulator[14]. In MM, 17p deletion is related to more extramedullary involvement, an 
aggressive disease phenotype, and a shortened life span. It is hypothesized that PCL is the main 
consequence of TP53 dysfunction[72,73].

Miscellaneous chromosomal gains & losses
Focal CNVs have extracted the list of potential driver genes affected by these changes. Gain of 8q24.21 can 
be discovered in 14% MM patients and disturbs MYC genes[1]. A gain of 11q13.2 is found in 15% of patients 
and involves the oncogene CCND1. CCND1 is also affected by chromosomal translocations and somatic 
mutations[1]. 11q deletion is detected in 7% MM cases and downregulates tumor suppressor genes BIRC2 
and BIRC3[57]. Deletion of 14q occurs in 38% of cases and involves TRAF3 (tumor suppressor gene)[1]. 16q 
deletion is another common event (in 35% myeloma cases) and reduces the expression of the tumor 
suppressor genes CYLD and WWOX (implicated in apoptosis)[57]. Del(8p) and del(12p) are independent 
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adverse prognostic markers[14]. Del 8p downregulates the TRAIL gene. TRAIL gene is linked with TNF-
induced apoptosis. Its downregulation facilitates the immune escape of malignant clones from cytotoxic T 
lymphocytes and natural killer cells[74].

DEREGULATED CELLULAR PATHWAYS
Several signaling pathways are dys-regulated in MM and contribute towards pathogenesis by influencing 
proliferation, apoptosis, survival, migration, and drug resistance[75].

NF-κB pathway
NF-κB is a group of transcription factors that play important roles in cell proliferation, differentiation, and 
survival, as well as in inflammation and immunity[76]. The NF-κB pathway is active in 50% of MM cases and 
involves both plasma cells and bone marrow stromal cells (BMSCs)[77]. Activation of NF-κB within MM cells 
involves either activation of oncogenes or inactivation of tumor suppressor genes in the pathway[78]. Genes 
encoding components of the NFκB pathway include TRAF3, CYLD, LTB, IKBKB, CARD11, BIRC2, BIRC3, 
and TRAF3IP1[54]. The NF-κB pathway does not influence the survival in MM[14]. The pathway involves the 
proteasome protein complex, thereby suggesting the role of proteasome inhibitors in MM treatment[78].

Cell proliferation pathways
The cell proliferation pathways in MM include the MAPK pathway, the JAK-STAT pathway, and the 
phosphatidylinositol-3 kinase (PI3K) pathway.

The MAPK pathway
The MAPK pathway is a chain of proteins that communicate signals from cell surface receptors to the DNA 
in the cell nucleus[79]. The pathway is activated from inflammatory cytokines TNF-a, IL-6, and IGF-1 and, in 
return, triggers the downstream kinase cascades RAS, RAF, MEK, and MAPK, thus regulating gene 
expression. Two dominant oncogenes involved in this pathway include NRAS and KRAS[80]. Their mutations 
are frequently subclonal and are involved in disease progression. RAS mutations indicate a poor prognosis, 
aggressive phenotype, and shortened survival[51]. The involvement of RAS mutations across various cancers 
has given insight into the research on therapeutic inhibitors within this area[14]. Likewise, activation of 
mutation in the BRAF-MAPK signaling pathway, which encodes serine/threonine-protein kinase suggests 
the potential use of BRAF inhibitors in MM patients with BRAF mutations[81].

The JAK-STAT pathway
The JAK-STAT pathway is activated in both MM cells and BMSCs in approximately 50% of cases[82]. 
Cytokine IL-6 signaling induces JAK-STAT activation and myelomagenesis[14]. The over-activation of 
STAT3, a STAT family transcription factor, causes over-expression of Bcl-x an anti-apoptotic protein, and 
therefore triggers chemoresistance[83]. The in vitro inhibition of STAT3 with atiprimod, curcumin, and the 
JAK2 kinase inhibitor AG490 have already shown fair results for inhibition of IL-6-induced MM survival[84]. 
In addition, STAT3 inhibition has shown sensitization of the U266 cell line to apoptosis from conventional 
chemotherapy agents[85]. Hence, these results highlight the prospective conjoined role of STAT3 inhibitors 
and conventional chemotherapy in myeloma treatment[14].

The PI3K pathway
PI3K-Akt is a signal transduction pathway that supports cell growth and survival in response to extracellular 
signals[86]. The PI3K (phosphatidylinositol 3-kinase) gets activated with IL-6 and IGF-1 action on tyrosine 
kinase receptors, leading to phosphorylation of the serine-threonine-specific kinase AKT (serine/threonine 
kinase). AKT, in return, activates its downstream genes, including mTOR, GSK-3B, and FKHR, therefore 
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regulating cell proliferation and apoptosis resistance[14]. The phosphorylated AKT is a marker indicative of 
pathway activity, which is observed in approximately 50% of MM cases[87]. Therapeutic targeting of PI3K is 
an area of interest in MM research[14].

Cell cycle deregulation
The deregulation of the G1/S cell cycle transition point via cyclin D gene overexpression is central to an 
early molecular abnormality in MM[14]. Additionally, the defect of negative cell cycle regulatory genes is 
another major event that destabilizes cell cycle regulation. CDKN2C (Cyclin-Dependent Kinase Inhibitor 
2C) downregulation either by 1p deletion or DNA methylation deregulates the G1/S transition[68]. Similarly, 
CDK inhibitors p15, p16, and p18 are important in the regulation of progression through the cell cycle. 
Studies have shown that hypermethylation and homozygous deletions of p15, p16, and p18 genes lead to 
uncontrolled growth and MM progression[88]. Treatment with the demethylating agent 5-deoxycytidine 
restores p16 protein expression and induces G1 growth arrest in MM cell lines[75]. p21, another potent 
cyclin-dependent kinase inhibitor, binds to and inhibits the activity of CDK2, CDK1, and CDK4/6 
complexes. It protects the MM cells from apoptosis by the induction of cell cycle arrest and subsequent 
DNA repair, hence inducing resistance to apoptosis by chemotherapy and radiotherapy[89]. Furthermore, 
RB1 (tumor suppressor gene) inactivation also affects the G1/S transition and may occur because of 
monosomy 13, homozygous deletion, or mutational inactivation[57].

Defective DNA repair
The DNA repair score is a predictive factor for progression-free and overall survival of MM patients. The 
score’s strength is based upon the influence of aberrant DNA repair in MM[90]. The understanding of DNA 
repair mechanisms in MM is important for developing therapeutic approaches based on the concept of 
synthetic lethality. It states that a combination of deficiencies in two genes (e.g., gene X and a DNA repair 
gene) causes cell death, whereas a deficiency in only one of the genes (gene X) does not[3]. For example, poly 
ADP-ribose polymerase (PARP) inhibitors are used to treat solid tumors deficient in BRCA1 and BRCA2 
function, which are important for maintaining the error-free homologous recombination (HR) pathway of 
DNA repair. PARP is a family of proteins involved in several cellular processes (e.g., DNA repair, genomic 
stability, and programmed cell death). PARP1 expression is linked with shortened survival and high-risk 
disease in MM patients[91]. PARP inhibitors have given promising results in cancers with defective HR-
mediated DNA repair mechanisms, as MM backbone drugs proteasome inhibitors (e.g., bortezomib) affect 
the apoptotic sensitivity of MM cells[91]. Therefore, bortezomib-induced impairment of homologous 
recombination in MM cells can pharmacologically sensitize them to PARP inhibition, resulting in synthetic 
lethality[91]. We recently found that a noncoding RNA MALAT1 is critical for PARP1 binding to LIG3 to 
mitigate an alternative end-joining DNA repair pathway and may serve as a novel therapeutic target for 
MM[92,93].

Abnormal RNA editing
Post-transcriptional RNA processing is important for the maintenance of genomic stability in MM[94]. MM 
patients may harbor mutations in genes controlling RNA processing and protein translation. DIS3 gene on 
13q22.1 encodes an exonuclease involved in regulating the abundance of RNA species. In MM patients, loss 
of DIS3 function is linked to monoallelic mutation or deletion. Exosomes play a vital role in regulating the 
mRNA pool. Therefore, loss of DIS3 activity may contribute to oncogenesis of MM due to protein 
translation deregulation. Similarly, the role of FAM46C in translational control and recurrent mutation in 
myelomagenesis is of biological relevance[95]. RNA processing includes splicing pattern modification of 
transcripts involved in DNA repair[96]. This alternative splicing of DNA repair depends upon the proper 
activity of RNA-binding proteins (RBPs)[97]. Genetically aggressive myeloma patients who have 1q21 
amplification usually have 1q21-induced over-expression of the RBP-ILF2 (interleukin enhancer-binding 
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factor 2). As ILF2 is a key regulator in HR repair in MM, high ILF2 expression promotes resistance to 
genotoxic reagents by modulating the translocation of YB1 (Y-box binding protein 1). Therefore, blocking 
the ILF2 signaling pathway may improve the effect of DNA-damaging agents in MM therapy[98].

Deregulated plasma cell differentiation
IRF4 (interferon regulatory factor 4), also known as MUM1, is involved in the regulation of interferon 
transcription and B cell proliferation and differentiation[14]. An in vitro RNA-interference study discovered 
that IRF4 is necessary for the survival of MM cell lines[99]. IRF4 is also important therapeutically, as the 
backbone MM drug lenalidomide indirectly downregulates IRF4 by downregulating cereblon, the primary 
target of the CRBN-IKFZ1/3-IRF4-MYC pathway[100,101]. IRF4 acts as a transcription factor for BLIMP1, 
another transcription factor pivotal in plasma cell differentiation. A study by Chapman et al.[7] identified 2 
out of 38 patients with MM harboring an identical mutation (K123R) in the DNA-binding domain of IRF4. 
The same study group also harbored loss of function mutations in BLIMP1 usually identified in diffuse large 
B-cell lymphoma[7,102]. However, the role of differentiation pathway dysfunction in myelomagenesis needs 
further investigation as MM is a malignancy of terminally differentiated plasma cells.

Bone disease in myeloma
Bone disease in MM is associated with shorter overall survival and presents as focal/diffuse pain, 
pathological fractures, cord compression, and hypercalcemia. It is common in patients with hyperdiploidy, 
t(4;14), and MAF translocations[103]. A recent GEP study has identified approx. 50 genes linked with bone 
disease, with DKK1 and FRZB being the most prominent. DKK1 and FRZB are Wnt pathway inhibitors and 
induce osteoblast differentiation inhibition and increase bone resorption via RANKL/OPG ratio 
imbalance[104,105]. The antibody against DKK1 is an important therapeutic area to approach bone disease in 
MM patients. Anti-DKK1 antibody has resulted in improved bone disease outcomes and myeloma cell 
growth inhibition in pre-clinical models[106].

EPIGENETIC MODIFICATIONS
First, genomic instability is the hallmark of MM, and dysfunctional DNA damage response is one of the 
many driving contributing factors[3]. SIRT6 (NAD-dependent deacetylase) is highly expressed in MM cells 
and is linked with poor prognosis. Its expression is an adaptive response to maintain genomic stability. 
SIRT6 interacts with the promoter area of transcription factor ELK1 and ERK signaling-related genes. SIRT6 
also downregulates the MAPK pathway gene expression and signaling. Moreover, the inactivation of ERK2 
signaling increases DNA repair via checkpoint kinase 1 and confers resistance to DNA damage[107]. RecQ 
helicase, a DNA unwinding enzyme, is involved in maintaining chromosome stability. MM cells have a 
higher expression of RECQ1, which is associated with poor prognosis. RECQ1 over-expression helps MM 
cells escape from cytotoxicity of melphalan and bortezomib. On the contrary, knockdown of RECQ1 
suppresses cell growth and stimulates apoptosis in MM cells; RECQ1 depletion promotes double-strand 
breaks on DNA in MM cells and sensitizes them to PARP inhibitors. RECQ1 downregulation can also be 
induced by DNMT inhibitor treatment through dysregulation of miR-203 in MM. Hence, PARP inhibitors 
combined with DNMT inhibitors constitute an important therapeutic approach for MM patients[3,108].

The HOXA9 gene encodes a DNA-binding transcription factor involved in cell differentiation, 
morphogenesis, and gene expression regulation. It is regulated by histone methyltransferases, and 
knockdown of it in MM cell lines incurs a competitive disadvantage as compared to those with intact 
HOXA9 gene expression. This indicates the role of HOXA9 expression in myelomagenesis and the 
utilization of epigenetic changes for devising new therapeutic targets in MM[7].
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Secondly, studies have revealed that miRNAs may act as both tumor suppressors and oncogenes in various 
cancers. Substantial work has been done to investigate the role of miRNAs in MM. Studies indicate that 
miRNAs can negatively regulate genes and pathways relevant to myelomagenesis via transcriptional control 
through promoter methylation[14]. For example, miR-137 maintains genomic instability in an aurora kinase 
A (AURKA)-dependent manner, while miR-22 regulates DNA ligase III in MM[109,110]. In short, miRNA 
deregulation is a key contributor to malignancy, and further research will unravel potential treatment 
targets.

Third, DNA methylation regulates gene expression and contributes to MM progression from MGUS to 
PCL. DNA methylation is found at higher frequencies in promoter regions, repeat sequences, and 
transposable elements of genes. MM has a recognized pattern of global DNA hypomethylation and gene-
specific hypermethylation affecting cell adhesion, proliferation, the stromal-clone relationship, cell cycle 
progression, and transcription, predominantly in t(4;14) tumors, resulting in MMSET gene over-
expression[111].

CLONAL HETEROGENEITY
Intraclonal heterogeneity is a common feature of MM and occurs in the milieu of selection events in the 
tumor microenvironment[1]. The clonal evolution in MM follows the Darwinian model, which involves the 
random acquisition of genetic changes that offer a survival advantage[14]. WES sequencing analysis shows 
that clonal heterogeneity begins from a premalignant stage and follows either linear or branching evolution 
patterns. Linear evolution involves the emergence of a new subclone or predominance of a pre-existing 
subclone, resulting in the stepwise acquisition of driver mutations. Branching evolution involves the 
emergence of one or more subclones via divergent mutational pathways, while other subclones decline in 
frequency or disappear[2]. Another factor is clonal stability, where similar clonal and subclonal heterogeneity 
is found before and after treatment, which would equally repopulate the tumor. The study of intraclonal 
heterogeneity is important to improve the understanding of disease pathogenesis, as the genetic aberrations 
in the predominant clonal population at the time of sampling may not apply to all subclonal populations. 
Thus, such heterogeneity may explain relapse and drug resistance to anticancer treatments[14].

BONE MARROW MICROENVIRONMENT
A complex interaction exists between malignant plasma cells and non-malignant stromal cells in the bone 
marrow microenvironment. This interaction involves adhesion molecules and autocrine/paracrine cytokine 
signaling. The cytokines secreted by the stromal cells include IL-6, VEGF, IL-1b, IL-10, TNF-a, TGF-b, 
MMP-1, osteoprotegerin (OPG)/RANKL MIP-1a, FGFs, and IGFs[112]. IL-6 is the most significant with a 
role in B cell differentiation; however, in MM, it induces proliferation and apoptosis inhibition. The IL-6 
receptor has two subunits: IL-6Ra and gp130 (a transmembrane signal transducer). IL-6 combines with IL-
Ra, which then mediates signals via gp130. IL-Ra subunit has an agonist action. In contrast, gp130 may 
competitively inhibit the growth-promoting effects of IL-6/IL-6R complex at higher concentrations[113]. 
IL-6-IL-6R interaction activates 3 downstream pathways: STAT1/STAT3 pathway, STAT3/STAT3 pathway, 
and Ras/MAPK pathway[114].

Similarly, VEGF, FGFs, and HGFs play a role in angiogenesis and IL-1b, RANKL, and HGFs in osteoclast 
activation. TNF-a, IGFs, IL-1b, and VEGF have a direct effect on MM cells[75]. Some factors secreted by bone 
marrow are known to influence the efficacy of chemo and radiation therapy and have a role in disease 
progression. For example, MM cell interaction with fibronectin in the extracellular matrix up-regulates p27, 
which induces drug resistance[115]. Likewise, the binding of MM cells to hyaluronic acid synergizes IL-6 
signaling and reduction in adhesion molecules CD56; very late antigen 4 facilitates the transition to the 
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extramedullary phase[75].

MULTIPLE MYELOMA TREATMENT
ASCT is standard care for MM. However, the foremost decision in MM patient management is ASCT 
eligibility. Patients less than 65 years of age with no severe comorbidities are usually eligible for ASCT. 
Furthermore, no definitive clinical data is available to support that ASCT is better in the early stage of 
disease than in later/relapsed cases[116]. All transplant-eligible MM patients must receive primary induction 
therapy. The induction therapy combination regimens are given in Table 2.

Lenalidomide is a derivative of thalidomide, which is also an immunomodulatory drug (IMiD) but has 
more powerful anti-tumor and anti-inflammatory effects. It induces MM cell growth arrest, binding 
inhibition to BM-ECM and stromal cells, and downregulation of IL-6 and NF-κB[117]. While lenalidomide 
has a partial response rate of 24%-29% in treatment-refractory MM patients, combinatory lenalidomide and 
dexamethasone has peaked partial remission to an additional 29% in the lenalidomide-responsive patient 
group[118].

Over time, more powerful triplet combinations of lenalidomide/dexamethasone with a monoclonal 
antibody (elotuzumab - anti-CD319, daratumumab - anti-CD38) or a PI (bortezomib, carfilzomib, 
ixazomib) have evolved with significant improvement in the progression-free survival (PFS) and overall 
survival (OS)[119,120]. Combination treatment strategies apply the concept of using therapies with distinct 
mechanisms of action[121]. The triple combination therapy trials of proteasome inhibitor and monoclonal 
antibodies are summarized in Tables 3 and 4.

Once remission is achieved, stem cells are harvested via apheresis. Maintenance therapy after 
transplantation includes (1) oral lenalidomide - 10 mg/day for the first 3 months; (2) oral Ixazomib - 3 mg 
on day 1, 8, and 15 in 28-day cycles in cycles 1 through 4 and increased to 4 mg from cycle 5 if tolerated; 
and (3) intravenous bortezomib - 1.3 mg/m2 on days 1, 4, 8 and 11 every 3 months.

Despite these treatment advancements, a considerable number of MM patients have shown resistance to PI, 
IMiDs, and monoclonal antibodies. A retrospective study has revealed that refractoriness results in only 5.6 
months median OS in MM patients[110]. Hence, there is an urgent need to devise more effective therapeutic 
interventions for this patient population[121,122].

Conventional chemotherapy
Conventional chemotherapy can serve as salvage therapy in relapsed/refractory MM (RRMM) patients non-
responsive to the triple-drug combination therapies. Due to intense toxicity, these cytoreduction agents are 
used for short periods of time and serve best as a bridge to more effective therapies[121]. A study of 
dexamethasone without thalidomide administration with an infusion of cisplatin, doxorubicin, 
cyclophosphamide, and etoposide [D(T)PACE] resulted in an overall response rate (ORR) of 49%, median 
PFS of 5.5 months, and OS of 14 months[123]. Among patients that proceeded to ASCT, median PFS was 13.4 
months, and OS was 20.5 months. Another study compared the outcome of three chemotherapy regimens 
(1) dexamethasone, cyclophosphamide, etoposide, and cisplatin; (2) bortezomib, thalidomide, 
dexamethasone, cisplatin, doxorubicin, cyclophosphamide, and etoposide (VTD-PACE); and (3) 
cyclophosphamide, vincristine, doxorubicin, and dexamethasone (CVAD) in RRMM. The three salvage 
regimens demonstrated similar overall RR (55%), PFS (4.5 months), and OS (8.5 months)[124].
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Table 2. Induction therapy for transplant-eligible patients

1. Lenalidomide/Dexamethasone

2. Bortezomib/Thalidomide/Dexamethasone

3. Bortezomib/Lenalidomide (Revlimid)/Dexamethasone (VRd, RVd)

4. Bortezomib/Doxorubicin/Dexamethasone

5. Bortezomib/Cyclophosphamide/Dexamethasone (CyBorD, VCD)

6. Daratumumab/Bortezomib/Thalidomide/Dexamethasone (dara-VTD)

Table 3. Triple combination monoclonal antibody with lenalidomide and dexamethasone trials

Trial title Trial ID Phase Treatment

AMN006 NCT03695744 II Daratumumab + Bortezomib + Dexamethasone

CANDOR NCT03158688 III Daratumumab + Carfilzomib + Dexamethasone

Phase III trial comparing Poma, Dexa with/without Dara in 
RRMM with 1 prior therapy but not Lenalidomide & PI

 
NCT03180736

III Daratumumab + Pomalidomide + Dexamethasone

VELCADE NCT02541383 III Daratumumab + Bortezomib + Thalidomide + 
Dexamethasone

CASTOR NCT02136134 III Daratumumab + Bortezomib + Dexamethasone

POLLUX NCT02076009 III Daratumumab + Dexamethasone + Lenalidomide

ALCYONE NCT02195479 III Daratumumab + Melphalan + Bortezomib + 
Prednisolone/Dexamethasone

Phase II single-arm study of Elotuzumab with Lenalidomide + 
Dexamethasone in newly diagnosed or RRMM

NCT02159365 II Elotuzumab + Lenalidomide + Dexamethasone

Phase II study of elotuzumab in combination with Poma, Bort, & 
Dexa in RRMM

NCT02718833 II Elotuzumab + Pomalidomide + Bortezomib + 
Dexamethasone

Single arm open-label anti-SLAMF7 mAB therapy after ASCT NCT03168100 II Elotuzumab + Bortezomib + Lenalidomide + 
Dexamethasone

ELOQUENT 3 NCT02654132 II Elotuzumab + Pomalidomide + Dexamethasone

HRMM NCT01668719 I/II Bortezomib + Lenalidomide + Dexamethasone +/- 
Elotuzumab

ELOQUENT 2 NCT01239797 III Lenalidomide + Dexamethasone +/- Elotuzumab

RRMM: Relapsed refractory multiple myeloma; PI: proteasome inhibitor, Poma: pomalidomide; Dexa: dexamethasone; Bor: bortezomib; mAB: 
monoclonal antibody.

Table 4. Proteasome inhibitor combination therapy trials

Trial title Phase Treatment

IFM2005-01 III Bortezomib + Dexamethasone vs. Vincristine + Doxorubicin + Dexamethasone

DSSM-XI II Bortezomib + Cyclophosphamide + Dexamethasone

GIMEMA III Bortezomib + Thalidomide + Dexamethasone vs. Thalidomide + Dexamethasone

GEM05-MEN0S65 III Bortezomib + Thalidomide + Dexamethasone vs. Thalidomide + Dexamethasone vs. Chemotherapy + 
Bortezomib

IFM2013-04 III Bortezomib + Thalidomide + Dexamethasone vs. Bortezomib + Cyclophosphamide + Dexamethasone

HOVON-65/GMMG-
HD4

III Doxorubicin + Bortezomib + Dexamethasone vs. Vincristine + Doxorubicin + Dexamethasone

IFM2009 III Bortezomib + Lenalidomide + Dexamethasone +/- ASCT

CASSIOPEIA III Daratumumab + Bortezomib + Thalidomide + Dexamethasone vs. Bortezomib + Thalidomide + 
Dexamethasone

ENDEAVOR III Carfilzomib + Dexamethasone vs. Bortezomib + Dexamethasone

A.R.R.O.W III Weekly vs. Biweekly Carfilzomib + Dexamethasone

ASPIRE III Carfilzomib + Lenalidomide + Dexamethasone vs. Lenalidomide + Dexamethasone

DKd 1b Daratumumab + Carfilzomib + Dexamethasone

TOURMALINE-MM1 III Ixazomib + Lenalidomide + Dexamethasone vs. Bortezomib + Dexamethasone
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Bendamustine is a bifunctional alkylating agent. A retrospective study of bendamustine monotherapy and 
corticosteroid combination has resulted in 3% “very good” partial response, 33% partial response, 26% stable 
disease, and 20% progressive disease, along with a median PFS of 7 months and OS of 17 months in 
RRMM[125]. The combination regimens of bendamustine with thalidomide, lenalidomide plus 
dexamethasone, and bortezomib plus dexamethasone have also demonstrated good tolerability and 
improved efficacy in early trials of RRMM[126,127].

Histone deacetylase inhibitors (HDACi) target the effects of epigenetic modification and have demonstrated 
positive outcomes in RRMM patients, especially when used in combination with PIs. In the phase III 
PANORAMA-1 trial, RRMM patients received panobinostat plus bortezomib and dexamethasone versus 
placebo plus bortezomib and dexamethasone. The results demonstrated a clinically significant improvement 
with a median PFS of 11.99 months vs. 8.08 months[128]. Similarly, the PANORAMA-2 trial tested 
panobinostat combination therapy in bortezomib-refractory patients with a subsequent 34.5% ORR and 6 
months median response duration[129]. Another HDACi vorinostat was tested in the VANTAGE 095 trial 
involving heavily pretreated RRMM refractory to bortezomib and immunomodulators. A combination of 
vorinostat and bortezomib resulted in an ORR of 17%, median response duration of 6.3 months, PFS of 3.1 
months, and OS of 11.2 months[130]. Furthermore, the phase III VANTAGE 088 trial compared the outcome 
of vorinostat plus bortezomib with the bortezomib group alone. The study’s results included a PFS of 7.63 
months vs 6.83 months and an ORR of 56.2% vs 40.6%[131].

Salvage ASCT
Salvage ASCT is an important therapeutic choice for RRMM. Several retrospective studies have 
demonstrated post-reinduction salvage ASCT success in MM patients who relapsed after first ASCT or 
RVD-alone treatment[132]. Although most patients with RRMM were not candidates for salvage ASCT due to 
age and comorbidities, those who underwent salvage ASCT exhibited a PFS of 7 to 22 months. The foremost 
factor predicting improved PFS and OS after salvage ASCT is the duration of remission after initial 
ASCT[121].

Selinexor
Selinexor is an oral, slowly reversible, first-in-class, potent selective inhibitor of nuclear export compound 
that specifically blocks exportin 1 (XPO1). The Food and Drug Administration has approved selinexor for 
RRMM patients who have had 4 previous therapies and disease refractoriness to 2 PIs, 2 IMiD agents, and 
anti-CD38 mAb[133]. The Selinexor trials are summarized in Table 5.

Immunotherapies for multiple myeloma
Advances in cellular immunotherapy - CAR (chimeric antigen receptor) T-cell therapy, B cell maturation 
antigen (BCMA)-targeted therapies, and bispecific T cell engager (BiTE) and tri-specific T cell engager 
(TiTE) - have good prospects in MM therapy[121]. In CAR T-cell therapy, T cells are modified to express 
CARs genetically through introducing fusion proteins that have an antigen recognition region and a co-
stimulation domain. CAR T-cells targeting BCMA, CD138, CS1 glycoprotein antigen (SLAMF7), and light 
chains are in active development for RRMM treatment[134]. BCMA is a type of surface receptor, which 
belongs to the tumor necrosis factor superfamily. It is expressed in advanced B cell differentiation stages, 
and predominantly in plasma cells. Several BCMA-targeted therapeutics, including antibody-drug 
conjugates (e.g., belantamab mafodotin GSK2857916), CAR-T cells, BiTEs, and TiTE have also resulted in 
incredible clinical response in RRMM[135]. Tables 6 and 7 summarize immunotherapy clinical trials for MM.
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Table 5. Selinexor combination trials

Trial title Phase Drug combination Dose Results

STORM Trial 
NCT02336815

II Selinexor + Dexamethasone Selinexor - 80 mg oral day 1 & 3 of 
each week 
Dexa - 20 mg prior to each dose

Partial response 26% 
Clinical benefit rate (CBR) 39% 
Median response duration 4.4 months 
Median PFS 3.7 months 
Median OS 8.6 months 
Pt with molecular response had medial OS 
of 15.6 months

BOSTON Trial 
NCT03110562

III Selinexor + Dexamethasone + 
Bortezomib (SVd)

Selinexor - 100 mg once weekly 
Dexa - 40 mg weekly 
Bortezomib - 1.3 mg/m2

PFS 13.93 months in SVd arm vs. 9.46 
months in Vd arm

Further, 10 combination therapies of Selinexor in 11 treatment arms are under investigation in the STOMP Trial (NCT02343042).

Table 6. BCMA and non-BCMA CAR - T cell clinical trials in MM

Clinical trial Phase No. of 
Pt. Dose Outcome

Anti-BCMA CAR-T cell 
(NCT02215967)

I 12 0.3, 1.0, 3.0, 9.0  ×  106 CAR 
cells/kg

PR 3, SD 8, sCR 1

bb2121 Anti-BCMA CAR-T cell 
(NCT02658929)

I 33 50, 150, 450, or 800  ×  106 
CART cells

ORR 85%, sCR 12, CR 3, VGPR 9, PR 4, 
SD 4, PD 1

bb21217 Anti-BCMA CAR-T cell 
(NCT03274219)

I 8 150  ×  106 CAR T cells sCR 1, VGPR 3, PR 2, -ve MRD 3

LCAR-B38M Anti-BCMA CAR-T cell 
(ChiCTR-ONH-17012285)

I 17 0.21-1.52  ×  106 CAR T cells/kg ORR 88.2%, sCR 13, VGPR 2, NR 1

LCAR-B38M Anti-BCMA CAR-T cell 
(NCT03090659) 
LEGEND-2 Trial

I/II 57 0.07-2.1  ×  106 CAR T cells/kg ORR: 88%, CR 39; VGPR 3, PR 8, -ve 
MRD 36

JCARH125 Anti-BCMA CAR-T cell 
(NCT03430011) 
EVOLVE Trial

I/II 19 50-150  ×  106 CAR T cells/kg sCR 2, CR 1, VGPR 2, PR 2, MR1

CT053 Anti-BCMA CAR-T cell 
(NCT03915184)

- 16 0.5-1.8  × 108 CAR T cells ORR 100%, CR 2, PR 4, VGPR 6

MCARH171 Anti-BCMA CAR-T cell 
(NCT03070327)

I 11 72, 137, 475, 818 × 106 CAR T 
cells

ORR 64%, VGPR 2

CT103A Anti-BCMA CAR-T 
(ChiCTR1800018137)

I 9 1, 3, 6 × 106 CAR T cells/kg ORR 100%, CR 4; VGPR1, PR 4

CD3ζ & 4-1BB Anti-BCMA CAR-T cell 
(NCT02546167)

I 25 1-50 × 107 CAR T cells sCR 1, CR 1, VGPR 5, PR 5

P-BCMA-101 CAR-T cell 
(NCT03288493)

I 12 48-430 × 106 CAR+ T cells sCR 1, nCR 1, VGPR 1, PR 2

CD4+: CD8+ BCMA CAR-T cell 
(NCT03338972)

I 7 5-15 × 107 CAR T cells ORR 100%

Anti-CD19 non-BCMA CAR-T cell 
(NCT02135406)

I 10 1.1-6.0 × 108 CAR T cells VGPR 6, PR 2; PD 2

Anti-CD138 non-BCMA CAR-T cell 
(NCT01886976)

I/II 5 0.44-1.51 × 107 CAR+ T cells/kg SD 4, PD 1

κ light chain non-BCMA CAR-T cell 
(NCT00881920)

I 16 
(7MM)

0.2-2.0 × 108 CAR+ T cells/m2 4 SD of 7 MM

ORR: Overall response rate; VGPR: very good partial response; CR: complete response; PR: partial response; sCR: stringent complete response; 
MRD: minimal residual disease.

Targeted therapy for multiple myeloma
Clonal heterogeneity and clonal competition in the MM cancer cells have signified the role of targeted 
therapy (precision medicine) in patient management. Therefore, the identification of driver mutations is 
central to designing personalized targeted therapy. In addition, novel vaccines and immune-checkpoint 
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Table 7. BCMA targeted ADC and bispecific T-cell therapy clinical trials

Clinical trial Phase No. of 
Patients Dose Outcome

Belantamab mafodotin 
(GSK2857916) 
DREAMM-1 (NCT02064387)

I 35 3.4 mg/kg every 3 weeks

DREAMM-2 (NCT03525678) II 196 2.5 or 3.4 mg/kg every 3 weeks

ORR 60%, sCR 2 (6%), CR 3 
(9%), VGPR 14 (40%), mPFS 
12 months, mDOR 14.3 months 
2.5 mg/kg cohort 
ORR 30 (31%), sCR/CR 3 (3%), 
VGPR 15 (15%), PD 56 (58%), 
mPFS 2.9 months 
3.4 mg/kg cohort 
ORR 34 (34%), sCR/CR 3 (3%), 
VGPR 17 (17%), PD 55 (56%), 
mPFS 4.9 months

BCMA/CD3 (AMG 420) 
(NCT02514239)

I 42 0.2-800 μg/day, 4 weeks infusion + 2 weeks off, for 
up to 5 cycles. Average 2.5 ± 2.6 cycles

ORR 31%, sCR 14%, CR 7%, 
VGPR 4.8%, PR 4.8%

BCMA(bivalent)/CD3 
(monovalent) (CC-93269) 
(NCT03486067)

I 19 0.15-10 mg/day for a 28-day cycle (D1, 8, 15, and 22 
for Cycles 1-3; D1 and 15 for Cycles 4-6; and on D1 for 
Cycle 7). Median 4 cycles Median DOT 14.6 weeks

12 patients w/dose of ≥  6 mg; 
ORR 10 (83.3%); sCR/CR 4 
(33.3%), VGPR 7 (58.3%)

BCMA/CD3, IgG2a backbone 
(PF-06863135) (NCT03269136)

I 17 Once weekly non-continuous infusion in 6 dose-
escalation groups

Minimal response 1 (6%), SD 6 
(35%), PD 9 (53%)

BCMA/CD3 (REGN5458) 
(NCT03761108)

I 7 6 mg/kg, 16 weekly doses + maintenance 12 doses 
per 2 weeks

ORR 4 (53.3%)

PD: Progressive disease; SD: stable disease; mDOR: median duration of response; mPFS: median progression-free survival; ORR: overall response 
rate; VGPR: very good partial response; CR: complete response; PR: partial response; sCR: stringent complete response; MRD: minimal residual 
disease.

Table 8. Targeted therapy in multiple myeloma

Mutations Targeted therapy Mutations Targeted therapy

1. KRAS mutation Selumetinib[136] 5. BRAF mutation Vemurafenib[130]

2. NRAS mutation Cobimetinib[137] 6. BCL-2 mutation 
(t 11:14)

BCL-2 Inhibitors[138] 
- Venetoclax 
- Navitoclax

3. MYC Translocations BET inhibitors[139] 7. FGFR3 mutation 
(t 4:14)

BGJ398[140] 
AZD4547[141]

4. MEK mutation MEK inhibitor[142] 
- Trametinib 
- Cobimetinib

8. del 1p (CDKN2C), 
t 11:14 (CCND1) 
t 6:14 (CCND3)

 
Palbociclib[143]

9. Immune Checkpoint Inhibitors- Nivolumab, Atezolizumab[144]

inhibitors address another area of therapy development based on mutational landscapes. This would enable 
powerful therapeutic combinations for high-risk MM patients previously treated with a non-personalized 
approach. Table 8 includes examples of therapies targeting specific mutations in MM.

CONCLUSION
Genetic studies in MM patients have revealed mutational landscapes and a clearer understanding of disease 
pathophysiology and molecular heterogeneity. Hence, instead of a single treatment approach, a series of 
genetically-targeted treatment combinations based on the genetic subtypes would be effective. However, 
further studies using single-cell RNA sequencing technology are required on MM patient samples to extend 
our knowledge of clonal evolution and to precisely identify resistance mechanisms for novel therapeutic 
target identification. With current drug development, including antibody-drug, MM patients will eventually 
develop drug resistance. Obviously, there are patients either intrinsic-resistant or acquired-resistant to 
multiple drug treatments. There are very active drug development and clinical trials ongoing to develop 
bispecific antibody-drug conjugation to overcome multiple drug resistance, including single antibody-drug 
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treatment.
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