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Abstract
Radiological imaging has a critical role in the diagnosis of sarcomas and in evaluating therapy response 
assessment. The current gold standard for response assessment in solid tumors is the Response Evaluation Criteria 
in Solid Tumors, which evaluates changes in tumor size as a surrogate endpoint for therapeutic efficacy. However, 
tumors may undergo necrosis, changes in vascularization or become cystic in response to therapy, with no 
significant volume changes; thus, size assessments alone may not be adequate. Such morphological changes may 
give rise to radiographic phenotypes that are not easily detected by human operators. Fortunately, recent advances 
in high-performance computing and machine learning algorithms have enabled deep analysis of radiological images 
to extract features that can provide richer information about intensity, shape, size or volume, and texture of tumor 
phenotypes. There is growing evidence to suggest that these image-derived or “radiomic features” are sensitive to 
biological processes such as necrosis and glucose metabolism. Thus, radiomics could prove to be a critical tool for 
assessing treatment response and may present an integral complement to existing response criteria, opening new 
avenues for patient assessment in sarcoma trials.
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INTRODUCTION
In the era of precision oncology, it is crucial to robustly evaluate therapeutic efficacy. In clinical trials, this 
evaluation is applied under predefined conditions to test new agents and quantify their level of antitumor 
activity. Methodology to evaluate treatment response has greatly evolved over the past decades, from a 
subjective evaluation reported by the treating physician to a complex set of objective criteria attempting to 
standardize the response evaluation process[1-3]. Traditional or gold standard response criteria are based on 
changes in tumor size as measured on radiological imaging. However, size criteria alone may be insufficient 
when assessing response in certain tumors, such as soft tissue sarcomas (STSs). In addition to being 
potentially difficult to measure, some STSs may not change in size in response to therapy, at least initially[1].

The World Health Organization (WHO) first established a standardized approach to evaluating treatment 
responses of solid tumors based on size changes[2,4]. For all intents and purposes, the WHO criteria were a 
precursor to the Response Evaluation Criteria in Solid Tumors (RECIST)[2,5]. Tumors were to be selected 
and measured in two dimensions (cross-product of the longest diameter and the longest perpendicular 
diameter) using a ruler or calipers; percent increases or decreases in the sum of areas would indicate 
progressive disease or partial response (PR), respectively[4]. However, the WHO criteria had its limitations. 
Notably, variance among research groups and the arrival of new imaging technologies [computed 
tomography (CT) and magnetic resonance imaging (MRI)] led to some confusion about how to integrate 
three-dimensional measures into response assessment[6]. Issues such as these necessitated clarification and 
modification of the WHO criteria, which ultimately led to the inception of RECIST in the year 2000.

The changes introduced by RECIST represented an improvement from WHO criteria[6]. Measuring all 
lesions in two dimensions was time-consuming, with a high risk of measurement error. Instead, RECIST 
used a one-dimensional measurement of lesion diameter. The limitations of measurable lesions were 
clarified in RECIST as well. Up to 10 lesions (maximum of 5 lesions/organ) could be measured, provided 
they met minimum size requirements (e.g., a diameter of 10 mm on spiral CT or 20 mm on non-spiral CT 
or MRI). With RECIST 1.1 came even more improvements, such as the inclusion of functional imaging and 
measurement definition of pathologic lymph nodes.

Currently, RECIST 1.1 is the gold standard for the radiological assessment of treatment response in solid 
tumors[6,7]. It forms the basis for progression-free survival determination and defines progressive disease as 
at least a 20% increase in the sum of diameters of up to five target lesions (maximum of two lesions/organ), 
taking as reference the smallest sum of diameters on the study and an absolute lesion increase of at least 
5 mm or the appearance of new lesions. A complete response is the disappearance of all target lesions, and a 
PR is defined as at least a 30% decrease in the sum of the target lesions. Stable disease is defined as fitting the 
criteria neither for progressive disease nor a PR.

Limitations of RECIST
While RECIST represents a common language of treatment efficacy for clinical researchers across disease 
sites and clinical trial settings, it has limitations. Systemic therapy with traditional chemotherapeutic agents 
is a cornerstone of sarcoma treatment. These agents are cytotoxic and act primarily through the inhibition 
of cell division. Growth inhibition of neoplastic cells is indicated by a change in tumor size hence its use as a 
radiographic biomarker of treatment response. However, in response to systemic therapy, a sarcoma may 
undergo necrosis, change in vascularization or become cystic, with no significant change in tumor size[8]. 
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Likewise, while cytotoxic agents remain the mainstay for most sarcomas, the use of targeted therapies is 
increasingly common. Molecular-targeted therapy and immunotherapies may induce changes associated 
with an improvement in outcomes that do not correlate with an immediate change in tumor size. A notable 
example of this is gastrointestinal stromal tumors (GISTs), where the Choi response criteria are more 
sensitive and more precise than RECIST in assessing response to imatinib mesylate[9] through the inclusion 
of tumor density changes[10]. Irrespective of treatment, the one-size-fits-all approach of measuring diameter 
changes is simply not an optimal criterion for assessing response to therapy in sarcomas, given their 
heterogeneity in response.

Another limitation of RECIST is that, within its framework, for patients with multiple lesions, the selection 
of target lesions in different organs may vary between operators. Further, linear measurements of tumor size 
may have limitations related to variability in technical and imaging factors, tumor enhancement and 
morphology, and reader decisions. These variational factors pose a challenge when comparing tumor size 
changes throughout the course of a clinical trial. One solution would be to measure the entire tumor 
volume, which would subsequently improve our ability to reliably detect small changes in lesion 
measurements. Currently, volume-based measurement of lesions is not included in RECIST because of 
limitations in past diagnostic imaging techniques and available methods of measurement. However, 
improvements in imaging hardware and increasingly-available tumor segmentation software can turn the 
possibility of measuring tumor volumes into a reality.

Radiomics to the rescue
Imaging procedures produce large volumes of digital imaging data from regional to whole-body scans, 
capturing different aspects of human anatomy and physiology. Despite their outward complexity, however, 
radiological images are simply a collection of two-dimensional arrays of numeric values. Inherently a 
quantitative construct, these images present an opportunity for mathematical manipulation of their 
constituent numeric values - the data contained within the image. Radiomics is an emerging field that 
converts imaging data into quantitative imaging features, also called “radiomic features”[11,12]. These features 
may provide richer information about intensity, shape, size or volume, and texture of tumor phenotypes 
that may or may not be overtly perceptible to the human eye[13].

The computation of radiomic features relies on lesion segmentation - that is, the location and subsequent 
delineation of boundaries of the said lesion in a medical image[14]. In the context of radiation therapy, 
manual segmentation is routinely performed by experts to define the treatment target and normal 
structures[14]. Similar to the choice and measurement of target lesions in RECIST 1.1, manual delineation is 
time-consuming and subjective. The effect of inter- and intra-observer segmentation variability and its 
effect on downstream radiomic analyses has been described extensively[15]. In an effort to minimize this 
variability and thereby promote the reproducibility and translatability of radiomic studies, segmentation can 
also be performed semi-automatically (using established techniques such as region growing) or fully-
automatically (using deep learning algorithms)[16]. With improvements in algorithms and computer 
hardware (i.e., graphical processing units or GPUs) in recent years, fully-automatic segmentation using 
deep learning has begun to establish itself as state-of-the-art for medical image segmentation[16]. Algorithms 
have been applied to auto-segment targets and normal tissues in many anatomical sites, including the 
thorax, abdomen, pelvis, head and neck, and brain[16]. Some applications have produced better results than 
the measured inter- and intraobserver contouring variability, which may lend itself to increased acceptance 
and adoption of fully-automated segmentation into clinical practice. This, in theory, presents the 
opportunity to interrogate all lesions above a certain size within selected organs, as opposed to limiting 
assessments to selected lesions.
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Radiomics for STS
Radiomics has been deployed for the prediction of either diagnosis or prognosis in STS. Specific tasks 
include benign versus malignant tumor discrimination, grading, tumor histotype discrimination, survival, 
local and/or metastatic relapse and response to therapy. The latter, although relatively unexplored in STS, 
can complement existing response criteria through the interrogation of other potentially valuable metrics. 
Tian et al. evaluated the role of CT texture analysis in assessing the pathological response of STS treated 
with neoadjuvant immunotherapy plus radiotherapy (RT) in comparison to tumor size, density, and 
perfusion[17]. The percent change in a CT-derived textural feature after eight weeks had a significant 
correlation with tumor necrosis in surgical specimens, whereas those of size, density, and perfusion did not. 
This would suggest that textural metrics may be sensitive to underlying tumor biology. Towards a related 
endpoint, Escobar et al. revisited a dataset originally presented for the prediction of metastatic relapse[18,19]. 
The authors produced quantitative maps within the tumor to highlight the signal that contributes to 
decision making within a predictive framework. Analysis of these maps identified two biological patterns 
that are consistent with STS grading systems and knowledge: necrosis development and glucose metabolism 
of the tumor. Crombé et al. evaluated heterogeneity in tumor vascularization through texture analysis 
towards improved predictions of patients’ outcomes and response evaluation[20]. In their analysis of 25 STS 
patients, the area under the receiver operating characteristics curve (AUC) of predictive models ranged 
from 0.77 to 0.90(R2-1).

Traditional radiomics approaches use images collected at a single time point (i.e., at baseline), ignoring the 
changes that occurred during treatment or subsequently in follow-up[21]. The radiomic features from this 
single image are typically linked to clinical and biological endpoints. Nevertheless, in response to treatment, 
a tumor may undergo morphological changes, such as fibrotic or necrotic processes. These processes may 
bring about a change in tumor heterogeneity, ultimately changing the data contained within the image. 
Delta-radiomics quantifies the change in radiomics features (and hence change in intratumoral 
heterogeneity) during or after treatment, providing additional information about tumor response to 
treatment [Figure 1]. Recent studies have highlighted the utility of a delta-radiomics approach for 
differential diagnosis, survival estimation and the evaluation of treatment response[22]. A retrospective study 
by Crombé et al. investigated the potential of an MRI-based delta-radiomics approach to improving early 
response assessment in 65 high-grade STS patients treated with neoadjuvant chemotherapy. In the training 
cohort (n = 50), the best performance was obtained with a random forest model that was able to predict 
early response better than RECIST 1.1 with an AUC of 0.86, accuracy = 88.1%, sensitivity = 94.1%, and 
specificity = 66.3% at cross-validation. The test cohort achieved higher sensitivity and specificity but lower 
AUC and accuracy values (98.0%, 27.8%, 0.63% and 74.6%, respectively)[23]. Lin et al. proposed a CT-based 
delta-radiomics nomogram for the evaluation of pathologic response in 191 high-grade osteosarcomas 
treated with neoadjuvant chemotherapy with promising results[24]. Eight delta-radiomics features differed 
significantly between response categories with AUC 0.871 (95%CI: 0.804-0.923) in the training cohort 
(n = 137), and 0.843 (95%CI: 0.718-0.927) in the validation cohort (n = 54)[24]. Gao et al. explored radiomics 
features from longitudinal diffusion-weighted MRIs for pathologic treatment effect prediction in 30 patients 
with localized STS undergoing hypofractionated preoperative RT[25]. Using features from all time points and 
corresponding delta radiomics, the best predictive model achieved an AUC of 0.91; notably, prediction 
AUC values using single or multiple time points without delta radiomics were all below 0.74. Hence, the 
authors concluded that the inclusion of delta radiomics of mid- or post-treatment relative to the baseline 
can drastically boost predictive performance. (R2-2) While the number of sarcoma-specific studies is 
limited, similar approaches for treatment response evaluation have successfully been explored in other 
cancers, including colorectal, lung, breast, pancreatic, prostate and melanoma[22]. Hence, quantifying the 
change in intratumoral heterogeneity using a delta-radiomics approach may prove to be a valuable tool 
when assessing treatment response in sarcoma clinical trials. Upon further prospective validation in 
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Figure 1. Increasing the complexity of measurement can provide additional information about the tumor’s radiographic phenotype, 
beyond tumor size. With advances in computation and algorithms, this information could potentially augment existing response 
criteria.

multicentre studies, this innovative approach may very well become a welcome modification to our gold 
standard size-based assessment criteria.

INTEGRATING RADIOMICS INTO CLINICAL TRIALS
By nature, clinical trials are designed to generate primary evidence on treatment efficacy, effectiveness and 
safety. A significant advantage of integrating radiomics analyses into clinical trials is that they leverage 
routinely collected imaging studies that are used to evaluate treatment efficacy. However, whether radiomic 
analysis is included as a trial objective (exploratory or otherwise) or considered as a contingency, it is 
important to be aware of the translational challenges in radiomics. Challenges include a lack of 
reproducibility and interpretability as well as over-fitting on small datasets, i.e., the predictive value is poor 
on new data. The latter, in particular, rings true in the analysis of STS patients, who are often found in 
smaller datasets due to the rarity of the cancer.

While the advent of publicly-available imaging datasets helps to address the sample size challenge, 
reproducibility and interpretability remain active areas of research in radiomics. Several initiatives and/or 
investigator-driven studies have proposed frameworks for analysis and quality control for enhanced 
reproducibility[26-31]. Arguably the greatest challenge for radiomics in sarcoma trials, however, is the 
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generalizability of radiomic features across centers.  Most imaging studies have been limited to analyses on 
single-center, homogeneous datasets carefully constructed using acquisition protocols that aim to minimize 
instrument-related variability in the data. All the same, the rarity and heterogeneity of STS pose a challenge 
to the design and conduct of adequately powered clinical trials[1]; hence, patients are often pooled from 
multiple centers for sufficient power. Variability in scanner hardware and acquisition protocols is 
unavoidable in this context.

This clearly presents a quantitative challenge as radiomic features are sensitive to this type of variation[15], 
which can be compounded with intra-center inconsistencies. One potential solution to minimize this 
variation would be to update the prospective trial protocol with a standardized imaging protocol. It is a 
commonplace for trial protocols to state when a patient should be imaged and how their disease should be 
monitored. As an example, a protocol may specify the imaging modality (i.e., CT or MRI), the method of 
assessment (i.e., RECIST 1.1), and for serial assessments, stipulate that the same imaging modality be 
utilized for all assessments. Of course, from a logistical standpoint, there is no guarantee that, within the 
same center, a single patient will be imaged using the same scanner for multiple assessments or multiple 
patients will be imaged using the same scanner for a single assessment. It would be a fallacy to suggest that 
imaging all patients on the same scanner for all assessments would be a trivial undertaking as well; however, 
even the incorporation of similar reconstruction techniques across centers would greatly improve the 
generalizability of radiomics features, which would increase their potential for clinical translatability.

New horizons
While radiomic features are typically linked to clinical and biological endpoints, there are growing research 
efforts to integrate radiological parameters with other information extracted from different sources. 
Radiogenomics is a notable example of such integration, where imaging characteristics and corresponding 
gene expression profiles are combined to identify optimal markers of treatment response and patient 
prognosis[11]. Radiology and pathology correlations have also been explored, in which diagnostic 
information from tissue is aligned with medical imaging[32,33].

Clinical trials are becoming increasingly complex, with large amounts of diverse data being collected. Before 
initiating treatment on any trial, patients are screened; this generates a plethora of information in the 
process, including, but not limited to demographics, performance status, medical history, plasma, stool and 
tissue collection, swab samples and tumor assessments with imaging. These different types of data can 
potentially offer alternative and complementary data streams to assess treatment response in addition to 
radiomics. Evaluating the tumor microbiome is a promising new approach for improving our 
understanding of treatment efficacy. Tinoco et al. found a specific relationship between microbial presence 
and histological sarcoma subtype, which also statistically correlated with overall survival[34]. Liquid biopsy 
and subsequent interrogation of levels of ctDNA and next-generation sequencing can also offer a non-
invasive means that could be leveraged for treatment response assessment. Madanat-Harjuoja et al. 
demonstrated that detection of ctDNA is associated with outcome and objective response to chemotherapy 
in patients with advanced LMS[35]. While integrating these complementary data with radiological parameters 
remains an open challenge, the development of such integrative biomarkers is an exciting new frontier.

CONCLUSION
Substantial effort was required to develop the initial RECIST criterion and its subsequent modifications. 
While size-based criteria like RECIST are often used and historically accepted because of their relative 
simplicity, anatomic tumor response criteria are not without limitations. Sarcomas are a wildly diverse 
group of cancers that may not change in size in response to therapy. Hence, a one-size-fits-all approach to 
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measuring diameter changes is not an optimal criterion for assessing response to therapy. Imaging-based 
response evaluation has a pivotal role in the evolution of treatment response evaluation. While unclear what 
the future will hold, it should be interesting to see how response criteria evolve in the wake of improved 
imaging technologies and algorithms. At the confluence of these improvements lies the ability to extract 
potentially critical data for treatment response evaluation. We would be remiss to ignore the potential.
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