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Abstract
Amethod based on multi-agent reinforcement learning is proposed to tackle the challenges to capture escaping Tar-
get by Unmanned Ground Vehicles (UGVs). Initially, this study introduces environment and motion models tailored
for cooperative UGV capture, along with clearly defined success criteria for direct capture. An attention mechanism
integrated into the Soft Actor-Critic (SAC) is leveraged, directing focus towards pivotal state features pertinent to
the task while effectively managing less relevant aspects. This allows capturing agents to concentrate on the where-
abouts and activities of the target agent, thereby enhancing coordination and collaboration during pursuit. This focus
on the target agent aids in refining the capture process and ensures precise estimation of value functions. The re-
duction in superfluous activities and unproductive scenarios amplifies efficiency and robustness. Furthermore, the
attention weights dynamically adapt to environmental shifts. To address constrained incentives arising in scenar-
ios with multiple vehicles capturing targets, the study introduces a revamped reward system. It divides the reward
function into individual and cooperative components, thereby optimizing both global and localized incentives. By fa-
cilitating cooperative collaboration among capturing UGVs, this approach curtails the action space of the target UGV,
leading to successful capture outcomes. The proposed technique demonstrates enhanced capture success compared
to previous SAC algorithms. Simulation trials and comparisons with alternative learning methodologies validate the
effectiveness of the algorithm and the design approach of the reward function.

Keywords: Multi-agent, cooperative capture, soft actor-critic algorithm, attention mechanism, reward function de-
sign
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1. INTRODUCTION
Multi-agent target capture involves a collection of intelligent agents that work together using collaborative
processes to efficiently capture targets by employing specific techniques for optimizing their formation [1].
Collaborative encirclement has the ability to assist various tasks, including search [2], interception, formation
transformation, and cooperative transportation. It can also be utilized in areas such as autonomous drone
control [3], autonomous vehicle tracking control [4], missiles, and defense systems [5]. Furthermore, it is consid-
ered a fundamental aspect in the field of multi-agent collaboration. The solution approaches for multi-agent
collaborative pursuit can be categorized into two groups: non-learning and learning techniques [6].

The research on non-learning collaborative pursuit mostly centers around the domain of differential games.
This involves converting collaborative pursuit problems into differential game problems in order to facilitate
collaboration and cooperation among intelligent agents. Isaacs perceives the encirclement problem as a dy-
namic game where players do not cooperate. He represents it as a system with decision-making that interacts
and evolves over time. Tominimize an objective function and find a solution, he employs differential games [7].
Dong et al. introduced a hybrid algorithm that combines improved dynamic artificial potential fields (APFs)
and differential games to tackle the issues of high computational cost and limited universality in chase and
evasion game algorithms [8]. Sun et al. utilized differential game theory to devise individualized guidance laws
for the motion process of many pursuers, effectively accomplishing the task by dividing the process into two
distinct portions [9]. While differential games can be employed to address collaborative pursuit problems, the
intricacy of the problem renders the computation of the objective function highly challenging when multi-
ple pursuers are involved. Moreover, the solution becomes intricate and time-consuming due to the rapid
expansion of the state space and decision space [10]. The graph search approach [11] investigates efficient tech-
niques for enabling trackers to locate evaders on interconnected graphs. In contrast to the differential game
technique, the graph search method does not depend on solving the objective function and instead empha-
sizes path design and optimization of search tactics. This enhances the resilience of the graph search method
when confronted with intricate and ever-changing surroundings, enabling it to promptly adjust to various pur-
suer behaviors and environmental alterations. It possesses the benefits of being simple, intuitive, and highly
scalable. Athanasios converted the encirclement problem into a graph node problem and introduced an iter-
ative greedy node search algorithm based on this approach. This program effectively apprehended fugitives
through testing conducted in indoor environments [11]. While this strategy may be effective in apprehending
fugitives in specific situations, creating precise graph structures in dynamic, unfamiliar, or intricate settings
can be challenging and time-consuming, ultimately influencing the effectiveness and precision of the search.
The collaborative capture challenge is utilized to examine team collaboration capture approaches, as it bears
a resemblance to biological predation processes. The bio-heuristic technique, in contrast to the differential
game method and graph search method, places greater emphasis on team cooperation and cluster behavior.
It draws inspiration from biological systems to gain collective knowledge and possesses enhanced robustness
and adaptive capabilities. Janosov et al. introduced a cluster pursuit approach that draws inspiration from
biological predatory systems in nature [12]. Wang et al. established the capture circumstances from a biological
standpoint and devised an effective control technique by considering operational costs and their associated
coefficients [13]. Biological heuristic techniques have limited adaptability and lack universality [14].

The advancement of reinforcement learning theory in recent years has stimulated study in the disciplines of
decision-making and planning. Several techniques, including Q-learning, Deep Deterministic Policy Gradi-
ent (DDPG), and Proximal Policy Optimization (PPO), have been utilized to address a wide range of intricate
challenges. Bilgin et al. utilized the algorithm to address the challenge of capturing a solitary target agent on
a grid map within the context of reinforcement learning-based capture and escape problems. This approach
was employed in situations where two agents attempt to apprehend a solitary agent [15]. Wang et al. intro-
duced a decentralized collaborative pursuit technique incorporating a communication feature. The coopera-
tive chase control problem was resolved by implementing a centralized critic and distributed actor structure,
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together with a learning-based communication system [16]. Du et al. introduced a novel reinforcement learn-
ing approach that combines cellular data parameter sharing with curriculum learning. This method allows
Unmanned Ground Vehicles (UGVs) to share observation information and acquire effective methods for en-
circling, attacking, shrinking, and capturing targets [17]. Qu et al. employed the Multi-Agent Posthumous
Credit Assignment (MA-POCA) algorithm with a centralized training distributed execution architecture to
train a pursuit strategy. This method allows numerous unmanned surface vehicles to independently evade
barriers and collaboratively capture targets [14]. De Souza et al. employed the Twin Delayed DDPG (TD3)
algorithm and implemented a group reward system that incentivizes the construction of a good capture con-
trol strategy [6]. Zhang et al. introduced the Dueling Double Deep Q Network (DDQN)-based Adaptive Co-
operative (DACOOP) algorithm, which integrates reinforcement learning and APFs as predefined rules to
synchronize the chasing strategy of a group of robots pursuing a fleeing soldier. They demonstrated that the
algorithm outperformed APF and Dueling DDQN (D3QN) in terms of success rate in cooperative chasing
scenarios [18]. Hüttenrauch et al. employed the Trust Region Policy Optimization (TRPO) algorithm to tackle
the multi-agent capture problem and embedded mean feature embedding as a state observation to solve the
problem of high-dimensional information perception by agents [19]. Liu et al. introduced a novel approach
that integrates the double fuzzy system with Q-learning and Q-value table fuzzy inference system (QTFIS) to
address the challenges of solving problems in continuous space and surpass the limitations of low-dimensional
space. The proposed technology aims to tackle the problem of tracking and capturing unmanned aerial vehi-
cles [20]. Zhang et al. introduced a method to address the problem of intercepting multiple spacecraft during
orbit chasing and escaping. This method involves using deep reinforcement learning (DRL) to generate a cap-
ture zone (CZ) embedding strategy and a barrier inverse solution neural network (BISNN) to determine an
approximately optimal guidance law within the CZ. This approach was described in detail in their paper [21].
dos Santos et al. developed a parallel optimization algorithm to minimize the capture time in the capture
and escape problem. They utilized the pruning technique of the pac-dot strategy to decrease the number of
states and transitions, thereby reducing the computational resources needed for the game and enhancing the
scalability of the technology [22]. Wang et al. introduced a collaborative approach for capturing strategies that
relies on sensing information instead of communication. This approach is based on the Multi-Agent DDPG
(MADDPG) algorithm and employs centralized training and distributed execution to govern the highly coop-
erative capture agents [23]. Despite the significant progress made in using reinforcement learning to address
the roundup problem, there are still obstacles that need to be overcome. For instance, in the majority of re-
search, the effectiveness of rounding is evaluated based on whether the rounding algorithm is able to confine
the target intelligence inside the prescribed parameters, notwithstanding the significant constraints imposed
by rounding. Information in multi-intelligent systems typically encompasses numerous dimensions, resulting
in complex state issues characterized by a high number of dimensions. This exacerbates the intricacy and
computational load of the state space, perhaps resulting in the inability to devise an efficient rounding strategy
throughout the rounding process. The attention mechanism has garnered significant attention and research
in addressing complex spatial training problems with high dimensions. This is because it possesses the abil-
ity to concentrate on crucial information within the model, resulting in enhanced model performance. The
attention mechanism in neural networks allows for the assignment of varying weights to different parts of the
input, enhancing flexibility and accuracy in information processing [24]. Zhang et al. integrated the attention
mechanism with DDQN to address the path planning and obstacle avoidance challenges faced by UGVs in
urban airspace. This integration resulted in a reduction in domino conflict counts and minimized deviation
from the reference path [25]. Peng et al. proposed DRL-GAT-SA (DRL based on Graph Attention Networks) to
tackle the issue of self-driving cars reacting to pedestrians with unpredictable movements. This approach com-
bines Graph Attention Networks with DRL. The system, which incorporates Attention Networks and Simplex
Architecture, ensures the safety of vehicle driving and efficiently prevents crashes [26].

This paper focuses on the problem of capturing in the absence of boundary conditions. The main contribu-
tions are as follows: Firstly, we provide the necessary conditions for successfully determining the capturing of
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UGVs in the absence of boundary conditions, taking into account practical application scenarios. Secondly,
we propose a solution method based on the Soft Actor-Critic (SAC) reinforcement learning framework to
address the capturing problem. Additionally, we introduce an attention mechanism in the Critic network to
tackle issues arising from the environment and prevent collisions. The attention mechanism addresses the
challenges posed by high-dimensional difficulties resulting from environmental factors and changes in the
status of intelligences. By separating the incentive function into individual and collaborative rewards in order
to optimize both global and local rewards, the UGV is directed to gain a more efficient comprehension of the
roundup task and afterward make decisions. Ultimately, the enhanced algorithm proposed in this research is
validated by both simulation and experimentation, with the experimental findings confirming the efficacy and
applicability of the method presented.

2. DESCRIPTION OF MULTI-UGV ENCIRCLEMENT
The assumption is that the capturing UGV carries out the duty of capturing in a specific area, while the target
UGV possesses a certain level of mobility and can evade the capturing UGV by using information about its
position and speed. This allows the target UGV to keep a distance from the capturing UGV and reach a safe
area.

In a finite two-dimensional area, there exist 𝑛(𝑛 >= 3) UGVs designed to encircle and capture a target UGV in
motion. This mission scenario, as depicted in Figure 1, demonstrates that the three capturing UGVs, including
𝑃1, 𝑃2, and 𝑃3, are positioned within the designated area along with the target UGV including 𝑇 . They are
equipped with sensors that enable them to perceive each other. 𝑉1, 𝑉2, 𝑉3 and 𝑉𝑇 represent the velocities of
three pursuing autonomous vehicles and the target autonomous vehicle, respectively. 𝑉𝑖 > 𝑉𝑇 (𝑖 = 1, 2, 3). At
the start, it is assumed that the capturing UGV and the target are unaware of each other’s presence. However,
once the capturing UGV recognizes the target, it promptly travels towards the target location. The primary
objective of the capturing UGV is to successfully encircle the target UGV by gradually approaching it. Upon
detecting the approach of the capturing UGV, the target UGV will employ an escape strategy to distance itself
as much as possible from the capturing UGV. The capturing UGV is considered successful in capturing the
target UGV when it effectively forms a circle around it through coordination and cooperation. Conversely, it
is deemed unsuccessful.

2.1. The kinematics model of an UGV
The study presents a two-wheel differential model for the UGV, considering it to be a rigid body controlled by
the rotational speeds of its two wheels. The two-wheel differential model is illustrated in Figure 2. The motion
model of the UGV can be expressed by


¤𝑥
¤𝑦
¤𝜃

 =

𝑐𝑜𝑠𝜃 0
𝑠𝑖𝑛𝜃 0

0 1

 ·
[
𝑣

𝑤

]
(1)

where 𝑥 and 𝑦 represent the current position of the UGV, and 𝑡ℎ𝑒𝑡𝑎 is the yaw angle. 𝑣 and 𝑤 represent the
instantaneous linear velocity and the instantaneous angular velocity, respectively [27].

The model takes in a motion velocity vector comprising linear and angular velocities and generates an output
position vector. This position vector determines the subsequent moment’s location of the cart model based on
the provided velocity and angular velocity information.

http://dx.doi.org/10.20517/ir.2024.03


Su et al. Intell Robot 2024;4(1):39-60 I http://dx.doi.org/10.20517/ir.2024.03 Page 43

Figure 1. The task scenario description.

Figure 2. Differential Drive Kinematic Model.

2.2. Strategy for the escape of UGV
The UGV being targeted follows a predetermined path from a specific beginning point to a specific endpoint.
When it finds a roundup vehicle, it will employ specific rules to evade capture. When the target vehicle detects
that the distance between itself and the surrounding vehicle is 0.5m or less, it evades based on factors such
as the distance from the endpoint, the distance from the surrounding vehicle, and the heading angle. Unless
there is a requirement to evade, the target vehicle will persist in its initial velocity and angular velocity.

2.3. Explanation of the process of encirclement
This work employs a reinforcement learning control approach to enable the apprehending vehicle to navigate
from its starting point toward the target vehicle and successfully apprehend it while avoiding any collisions. An
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Figure 3. Ideal Capture Circle.

optimal encirclement circle is achieved when the 𝑛(𝑛 > 3) capturing UGVs called 𝑃𝑖 are evenly spaced around
the target UGV 𝑇 . The distance separating the capturing UGVs and the target UGV is 𝑑𝑃𝑖 . The relative angle
between the capturing UGV, 𝑃𝑖 , its clockwise direction UGV, 𝑃𝑖 , and the target UGV, 𝑇 represents the angle
produced by the neighboring intelligences, which is called 𝜃𝑖𝑇 𝑗 . The following prerequisites are required for
successful completion: it is necessary to adhere to the criteria for the formation of the capture radius, where
𝑑𝑚𝑖𝑛 represents theminimum collision distance, and 𝑑𝑚𝑎𝑥 represents themaximum successful capturing radius.
This paper uses three capturing UGVs as examples to demonstrate the distribution of capturing UGVs around
a target UGV.The goal is to maintain the motion state of the capturing UGV while allowing for a certain angle
of deviation. The specific deviation angle can be set accordingly, such as 10◦. In conclusion, the roundup angle
conditions are as follows: 110◦ ⩽ 𝜃𝑖𝑇 𝑗 ⩽ 130◦. The requirements for rounding distance and angle limitations
can be expressed by {

𝑙𝑖𝑚𝑡→∞𝑑𝑚𝑖𝑛 < 𝑑𝑃𝑖 < 𝑑𝑠𝑢𝑐𝑐𝑒𝑠𝑠 (𝑖 ∈ 𝑁)
lim𝑡→∞ |𝜃𝑖𝑇 𝑗 − 120◦ | ≤ 10◦(𝑖, 𝑗 ∈ 𝑁; 𝑖 ≠ 𝑗) (2)

By taking three pursuit unmanned vehicles 𝑃1, 𝑃2, and 𝑃1 as examples, it is assumed that these vehicles are
distributed counterclockwise around the target unmanned vehicle, with 𝑃1 positioned to the upper right of
the target unmanned vehicle. The ideal capture encirclement is illustrated in Figure 3, where 𝑃1, 𝑃2 and
𝑃3 represent the capturing UGVs, and 𝑇 denotes the target UGV. The distance between 𝑃1, 𝑃2, 𝑃3 and 𝑇
is denoted as 𝑑𝑃1 , 𝑑𝑃2 , 𝑑𝑃3 , respectively, and each falls within the range of 𝑑𝑚𝑖𝑛 to 𝑑𝑠𝑢𝑐𝑐𝑒𝑠𝑠; 𝜃𝑇 refers to the
heading angle of the target UGV; 𝛼1 represents the angle between the target line of sight from capturing UGV
𝑃𝑖 and 𝑇 and the x-axis; The ideal angle formed by the vertex of 𝑇 and 𝑃𝑖 and the clockwise direction of
called is 120◦. The optimal position of 𝑃1 is determined by (𝑥𝑇 + 𝑑𝑃1 · 𝑐𝑜𝑠𝛼1, 𝑦𝑇 + 𝑑𝑃1 · 𝑠𝑖𝑛𝛼1). The ideal
position of 𝑃2 is derived from (𝑥𝑇 + 𝑑𝑃1 · 𝑐𝑜𝑠(120◦ − 𝛼1), 𝑦𝑇 − 𝑑𝑃1 · 𝑠𝑖𝑛(120◦ − 𝛼1)), and the ideal position
of 𝑃3 is obtained through (𝑥𝑇 − 𝑑𝑃1 · 𝑐𝑜𝑠(𝛼1 − 60◦), 𝑦𝑇 − 𝑑𝑃1 · 𝑠𝑖𝑛(𝛼1 − 60◦)). Traditional algorithms are
algorithms that rely on established rules and predetermined tactics to solve issues by manual design [8]. These
techniques encompass search, optimization, and planning. Nevertheless, conventional algorithms have certain
drawbacks: they heavily depend on predetermined rules and strategies, making it challenging to adapt to
intricate and unpredictable situations. Additionally, handling high-dimensional problems becomes difficult
due to variations in the UGV’s state or alterations in the environment. Expressing the cooperative clustering
behavior of numerous capturing UGVs using an objective optimization function is challenging.
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Figure 4. SAC Structure Diagram.

Reinforcement learning involves actively learning from interactions with the environment to optimize a spe-
cific objective by maximizing the desired reward. Typically, reinforcement learning algorithms are trained in
simulated environments tominimize the need for computational resources. These algorithms have the capacity
to learn independently and continuously improve. By interacting with the environment, the agent can adjust
its strategy based on feedback signals to adapt to changes and uncertainties. Reinforcement learning algo-
rithms can be applied in various situations by interacting with the environment to accommodate environmen-
tal changes. Additionally, they are capable of effectively dealing with state spaces that are high-dimensional,
continuous, and complex. This study utilizes reinforcement learning methods to address the constraints of
conventional algorithms in the context of capturing.

3. MULTI-UGV ROUNDUP BASED ON SAC
SAC is an algorithm that utilizes strategy gradient and incorporates the concept of maximum entropy rein-
forcement learning. Unlike other algorithms that rely on value function, SAC aims to enhance the ability to
explore by maximizing the entropy of the strategy. This allows the strategy to effectively explore the environ-
ment and prevent getting stuck in local optimal solutions, thereby improving algorithm convergence. The
schematic diagram of the SAC is depicted in Figure 4.

The SAC algorithm typically employs a configuration consisting of one Actor network, two Critic networks,
and twoTarget Critic networks. TheActor network is responsible for generating the action strategy by selecting
an action based on the current state and updating its parameters using the gradient descent method. The Critic
network is used to estimate the Q-value function by estimating the Q-value of the action based on the current
state and selected action. It calculates the Temporal Difference (TD) error based on the Bellman equation and
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uses this error to calculate the gradient of the Critic network. The parameters of the Critic network are then
updated using the gradient descentmethod. The gradient of the Critic network is computed, and its parameters
are modified using the gradient descent technique. A target Critic network is employed to provide a consistent
target Q-value, minimizing fluctuations during training, and updating the parameters through a soft update
strategy. SAC utilizes a maximum entropy objective function to optimize the strategy. The primary objective
of this function is to optimize the expected return while maintaining an exploratory strategy.

3.1. Designing algorithms
SAC algorithm incorporates the entropy of the strategies into the learning objective of the strategy network.
This allows for the exploration of new strategies while maximizing the expected cumulative payoff [28]. By
doing so, SAC avoids the limitations of a global strategy generation approach and enhances the algorithm’s
ability to explore and generalize effectively. As the number of intelligences grows, the multi-intelligence envi-
ronment becomes more intricate and unpredictable, potentially resulting in dimensional explosion or failure
to converge. SAC struggles to handle the issue of high-dimensional state space. The conventional Critic net-
work of SAC is not sufficiently accurate in handling state features, particularly when there are numerous state
features. This is because it treats all state features equally, which can result in over-estimation of the Critic. This
paper introduces an attention mechanism to the Critic network in the SAC algorithm. This allows the network
to prioritize important state features and selectively process different features. As a result, the onlooker intel-
ligences can focus on the behaviors and positions of other intelligences, leading to improved cooperation and
better pursuit of the target intelligences. To improve the efficiency of the algorithm, it is important to accu-
rately capture the critical information of the task and estimate the true value function accurately. This will
help avoid unnecessary activities or wasteful situations. Additionally, it is necessary to adaptively adjust the
attention weights based on changes in the environmental state. This will enable better adaptation to changes in
the behavior and state of the UGV. This, in turn, mitigates the over-estimation problem, thereby reducing the
problems associated with high dimensional state spaces, boosting the efficiency and performance of learning
and enhancing robustness.

The attention mechanism involves transforming the input matrix x into a novel representation that incorpo-
rates contextual information y. The differential parameter matrix, denoted as W𝑞 , W𝑘 , W𝑞 , is utilized to
create a representation of the input data by incorporating contextual information y, which can be expressed
by

y = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(
(x𝑇W𝑞)(x𝑇W𝑞)𝑇√

𝑑𝑘
) (3)

where
√
𝑑𝑘 is the normalization coefficient; 𝑑𝑘 is the dimension of W𝑞 (and W𝑘 ). Figure 5 illustrates the

functioning of the attention mechanism.

In Figure 5, 𝑥𝑖 denotes the contribution of UGV 𝑖, as given in

𝑥𝑖 =
∑
𝑗≠𝑖

𝛼𝑖𝜈 𝑗 =
∑
𝑗≠𝑖

𝛼𝑖ℎ(𝑔 𝑗 (𝑜 𝑗 , 𝑎 𝑗 )) (4)

where 𝑓𝐿 , 𝑔𝐿 indicate neural networks. 𝑣 𝑗 can be denoted by 𝑔 𝑗 . ℎ is the activation function. 𝛼 𝑗 can be
expressed by

𝛼 𝑗 ∝ 𝑒𝑥𝑝((W𝑘𝑔 𝑗 (𝑜 𝑗 , 𝑎 𝑗 ))𝑇W𝑞𝑔𝑖 (𝑜𝑖 , 𝑎𝑖)) (5)

The strategy entropy is represented as 𝐻 (𝜋), as given in
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Figure 5. The working principle of the attention mechanism.

𝐻 (𝜋) = −𝐸𝜋 [𝑙𝑜𝑔(𝜋)] (6)

The policy of the SAC algorithm can be expressed by

𝜋∗ = 𝑎𝑟𝑔max
𝜋
𝐸𝜏∼𝜋 [

∞∑
𝑡=0

𝛾𝑡 (𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛼𝐻 (𝜋(𝑎𝑡 , 𝑠𝑡)))] (7)

This paper employs the attention mechanism in the Critic network of SAC to prioritize the features associ-
ated with the Q-value. By disregarding or minimizing less relevant states, the Critic network can enhance
its learning capabilities and more efficiently approximate the value function. Consequently, this approach re-
duces computational complexity and accelerates the learning process. Modify the 𝑄 − 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 of the SAC
algorithm according to

𝐽𝑄 (𝜃) = 𝐸(𝑠𝑡 ,𝑎𝑡 )∼𝐷 [
1
2
𝑄
𝜓
𝜃 (𝑠𝑡 , 𝑎𝑡) − 𝑄̂(𝑠𝑡 , 𝑎𝑡))2] (8)

where 𝑄𝜓𝜃 (𝑠𝑡 , 𝑎𝑡) represents the 𝑄 value obtained by the Critic network with attention mechanism when re-
ceiving states and actions. It may be computed using Equation (4). On the other hand, 𝑄̂(𝑠𝑡 , 𝑎𝑡) refers to the
𝑄 value generated by the Target Critic network; 𝐷 is the empirical cache. 𝜃 adopts gradient descent update, as
defined in

5𝐽𝑄 (𝜃) = 5𝜃𝑄𝜃 (𝑎𝑡 , 𝑠𝑡) − 𝑟 (𝑠𝑡 , 𝑎𝑡) (𝑄𝜃 (𝑠𝑡 , 𝑎𝑡) − 𝛾𝑉𝜓 (𝑠𝑡)) (9)

The strategy parameters are updated by minimizing the KL-divergence between the parametric strategy and
the Boltzmann distribution, as derived in
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𝐽𝜋 (𝜙) = 𝐸𝑠𝑡∼𝐷 [𝐷𝐾𝐿 (𝜋𝜙 (·|𝑠𝑡) | |
𝑒𝑥𝑝(𝑄𝜃 (𝑠𝑡 , ·))

𝑍𝜃 (𝑠𝑡)
)] (10)

𝑍𝜃 is the distribution function of the standard distribution. The gradient of Actor can be expressed as

5𝜙𝐽𝜋 (𝜙) = 5𝜙𝑙𝑜𝑔𝜋𝜙 (𝑎𝑡 |𝑠𝑡) + (5𝑎𝑡 𝑙𝑜𝑔𝜋𝜙 (𝑎𝑡 |𝑠𝑡) − 5𝑎𝑡𝑄(𝑠𝑡 , 𝑎𝑡)) 5𝜙 𝑓𝜙 (𝜀𝑡 ; 𝑠𝑡) (11)

The state variables can be expressed by

𝑆 =
{
𝑑𝑃1 , 𝑑𝑃2 , 𝑑𝑃3 , 𝑑12, 𝑑13, 𝑑23, 𝜃1𝑇2, 𝜃1𝑇3, 𝜃2𝑇3, 𝑣𝑇1 , 𝑣𝑇2 , 𝑣𝑇3 , 𝜃1, 𝜃2, 𝜃3, 𝜃𝑇

}
(12)

where 𝑑𝑃1 , 𝑑𝑃2 , 𝑑𝑃3 denote the distance between the capturing UGV and the target UGV; 𝑑12, 𝑑13, and 𝑑23
denote the distance between the three capturing UGVs; 𝜃1𝑇2, 𝜃1𝑇3, and 𝜃2𝑇3 denote the angle formed by the
capturing UGV with its clockwise UGV and the target UGV; 𝑣𝑇1 , 𝑣𝑇2 , and 𝑣𝑇3 denote the difference between
the speeds of the capturing UGV and the target UGV; 𝜃1, 𝜃2, 𝜃3, and 𝜃𝑇 denote the yaw angle of the capturing
UGV and the target UGV. Action variables: they refer to the speed and angular velocity of the UGV during
capturing, including 𝐴 = {𝑣1, 𝜔1, 𝑣2, 𝜔2, 𝑣3, 𝜔3}. The speed range is [0𝑚/𝑠, 0.5𝑚/𝑠], and the angular velocity
range is [−1.0𝑟𝑎𝑑/𝑠, 1.0𝑟𝑎𝑑/𝑠].

In this research, we design an architecture for the Actor network that includes a feature input layer to receive
un-normalized observations. The architecture consists of two fully connected layers with 256 and 128 neurons,
respectively. The ReLU activation function is used in both layers. Within the branch responsible for calculating
the average value of the action distribution, we implemented a fully connected layer consisting of 64 neurons.
This was followed by the ReLU activation function and another completely connected layer with the same
number of neurons as the action dimension. The purpose of this design was to represent the mean value of
the action distribution. Furthermore, we incorporate a separate component for the standard deviation of the
action distribution. This component comprises a fully connected layer with the identical number of neurons
as the action dimension. It is then followed by a ReLU activation function and a softplus activation function,
which guarantees that the standard deviation remains positive.

This research introduces a feature input layer in the Critic network to receive un-normalized observations.
The layer consists of two fully connected layers with 256 and 128 neurons, respectively, and utilizes a ReLU
activation function. The output of the action path is additionally linked to the output of the observation value
path. Within the observation value path, two supplementary fully connected layers are incorporated. These
layers consist of 128 and 64 neurons, respectively, and employ the ReLU activation function. Furthermore, an
attention mechanism was incorporated by including a completely linked layer with 128 neurons and another
fully connected layer with 64 neurons, both utilizing the ReLU activation function. The attention weights
in relation to the attention mechanism were computed using a fully connected layer consisting of 16 neurons.
Subsequently, the attention weights aremultiplied with the observation path output to create weighted observa-
tions. The weighted observations are linked to the output of the action path and thereafter undergo processing
via the fully connected layer. Ultimately, a completely linked layer with a single neuron is employed to rep-
resent the Q-value of the output. Table 1 displays the parameters associated with the algorithm. The training
framework diagram, which is based on the algorithm developed in this paper, is depicted in Figure 6. The
neural network architecture is depicted in Figure 7.

http://dx.doi.org/10.20517/ir.2024.03


Su et al. Intell Robot 2024;4(1):39-60 I http://dx.doi.org/10.20517/ir.2024.03 Page 49

Table 1. Algorithm parameter

Neural Network/Training Parameter Value

EntropyWeight /w 0.1
Target Smooth Factor/ 5e-4
Experience Buffer Length/N 1e7
Policy Update Frequency/K 2
Critic Update Frequency/M 2

Figure 6. The algorithm training framework diagram proposed in this paper.

3.2. Configuration of the reward function
The selection of the reward function is crucial in the field of reinforcement learning. It has a direct impact on
the performance and efficacy of the UGV during the learning phase. Hence, it is imperative to devise a rational
incentive mechanism that can steer the autonomous vehicle toward the intended path of learning. This paper
proposes a method of decoupling the reward function, which involves separating the reward function into
individual and collaborative rewards. The goal is tomaximize both the global reward and the local reward. The
individual reward focuses on bringing multiple UGVs closer to the target UGV.The collaborative reward aims
to minimize the action space of the target UGV by promoting cooperative behavior among the surrounding
UGVs. The ultimate objective is to form an optimal encircling circle and capture the target UGV. The reward
function is formulated in the following manner in this paper.

3.2.1. The reward function based on distance
During the pursuit process, the distance between the pursuing UGV and the target UGV should generally be
less than the maximum successful capture distance yet greater than the collision distance. In the reinforce-
ment learning training process, it is necessary to assign rewards and penalties to the pursuing UGV.Therefore,
within this reward function, when the distance between the pursuing UGV and the target UGV is less than the
maximum successful capture distance (set to 0.3m in this simulation), a positive reward is granted. Conversely,
when this distance exceeds the maximum successful capture distance (i.e., 0.3m), a penalty is applied, and the
larger the distance, the greater the penalty, as validated by
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Figure 7. Algorithm neural network architecture diagram in this paper.

𝑅𝑃𝑖 =


−(𝑑𝑃𝑖 − 0.232) 𝑑𝑃𝑖 ≤ 0.232𝑚

−(𝑑𝑃𝑖 − 0.232) × (𝑑𝑃𝑖 − 0.3) 0.232𝑚 ≤ 𝑑𝑃𝑖 ≤ 0.3𝑚
𝑒𝑑𝑝𝑖−0.3 − 1 𝑑𝑃𝑖 > 0.3𝑚

(13)
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3.2.2. The reward function based on Angular
In order for the roundup to be successful, it is necessary to round up UGVs where the distance between
the target UGV and the rounding UGV is less than 0.3m. Additionally, it is important to ensure that the
rounding UGVs are evenly distributed around the target UGV, forming a circular arrangement. In this study,
the desired number of UGVs for the roundup is 3. Therefore, the expected range of the rounding angle is as
follows: [110◦, 130◦]. When the angle 𝜃𝑖𝑇 𝑗 falls within the specified range, a reward of 1 is given; when the
angle exceeds 130◦ or is less than 110◦, a penalty is imposed, and the penalty rises as the angle increases. The
angle reward function is defined by

𝑅𝑎𝑛𝑔𝑙𝑒𝑖 =


−(𝜃𝑖𝑇 𝑗 − 110)2 0◦ ≤ 𝜃𝑖𝑇 𝑗 ≤ 110◦

1 110◦ ≤ 𝜃𝑖𝑇 𝑗 ≤ 130◦

−(𝜃𝑖𝑇 𝑗 − 130)2 𝜃𝑖𝑇 𝑗 > 130◦
(14)

3.2.3. Creating an optimal circular enclosure incentive
Typically, the proximity and orientation of the UGV can only indicate that the capturing UGV is near the
target UGV, but they cannot serve as the primary criteria for the success of the enclosure. Due to the inherent
randomness of the training process, it is not feasible to reliably determine the effectiveness of rounding based
solely on the distance and angle parameters. Thus, using a rounding circle reward system can establish a distinct
objective, enhance collaboration among the rounding UGVs, and facilitate their comprehension of the notion
of capturing. More precisely, when a circular formation is created among UGVs for the purpose of rounding,
supplementary incentives can be provided as the primary criterion for accomplishing successful rounding. This
can enhance the collaboration between the capturing UGVs and raise the likelihood of successful capturing.
Simultaneously, the reward function can incorporate the distance and angle between the rounding UGVs to
holistically account for the collaborative synergy between the UGVs and effectively guide their training. The
reward for forming the capture circle is defined by

𝑅𝑐𝑖𝑟𝑐𝑙𝑒 = 30 0.232 < 𝑑𝑃𝑖 < 0.3; 110◦ < 𝜃𝑖𝑇 𝑗 ≤ 130◦(𝑖, 𝑗 ∈ 3; 𝑖 ≠ 𝑗);𝑇 ∈ 4𝑃1𝑃2𝑃3 (15)

3.3. Penalty functions
A penalty is a punitive consequence employed to indicate to an UGV that a particular behavior is undesirable
and should not be executed. Punishment can be administered to the UGV when it exhibits poor performance
during roundups, such as making incorrect decisions, disregarding limitations, or causing unfavorable out-
comes. Through the implementation of suitable penalties and halting of training, the UGV can acquire the
ability to refrain from carrying out undesirable activities, hence enhancing its overall performance and efficacy.
This document outlines the penalties imposed in the event of a collision involving an UGV when the vehicle
deviates significantly from the target UGV or when it exceeds the designated boundaries. The penalty function
is formulated in the following manner in this paper.

3.3.1. Collision penalty
This paper sets the collision distance to 0.232m. The distance between the capturing UGVs is determined
as 𝑑𝑖 𝑗 (𝑖 ≠ 𝑗) when the capturing UGV collides with the target UGV, resulting in punishment and training
termination. Similarly, when there is a collision between the capturingUGVs, punishment is given and training
is stopped. The collision punishment function can be defined by

𝑃𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = −10 𝑑𝑃𝑖 ≤ 0.232; 𝑑𝑖 𝑗 ≤ 0.232 (16)
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3.3.2. Distance penalty
In this research, we establish a condition where training is halted and a penalty is imposed when the distance
between the capturing UGV and the target UGV exceeds 2m. Themathematical representation of this penalty
is given by

𝑃𝑙𝑜𝑛𝑔𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = −10 𝑑𝑃𝑖 ≥ 0.232 (17)

To enhance the UGV’s learning and adaptability to the task while preventing it from getting stuck in an unpro-
ductive cycle or failing to finish the mission, a negative reward term of -0.1 is included in the reward function.
The overall reward function can be defined by

𝑅𝑒 = 0.6 ×
3∑
1
𝑅𝑃𝑖 + 0.4 ×

3∑
1
𝑅𝐴𝑛𝑔𝑙𝑒𝑖 + 𝑅𝑐𝑖𝑟𝑐𝑒𝑙 + 𝑃𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 + 𝑃𝑙𝑜𝑛𝑔𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 0.1 (18)

4. EXPERIMENT AND ANALYSIS
The SAC algorithm is employed to train an UGV for capturing. The objective is for the UGV to move to
a designated endpoint while following specific obstacle avoidance rules, thus creating a dynamic simulation
scenario. During the training process, the UGV is given a reward value for successfully capturing, and the re-
sulting effect diagram is analyzed to compare the impact of different reward functions on the training outcome.
Once the training is completed, the trained strategy will be applied to a physical object for validation.

4.1. Simulation validation and analysis
This research introduces a borderlessmulti-UGV fencing environment in a two-dimensional continuous space.
The experiment involves three fencing UGVs and one target UGV. The duration of each simulation step is 30
seconds, and there are a total of 300 steps every round. Figure 8 displays the starting position and initial
heading angle of the UGVs. The blue UGV represents the target UGV, while the red ones represent the three
rounding UGVs, namely UGVs 1, 2, and 3. The initial positions of the target UGV and the capturing UGVs
are respectively given as (0.51m, 0.48m), (0.91m, 1.0m), (-0.12m, 0.52m), and (0.0m, 0.0m).

Figure 9 displays the average reward for 20,000 training rounds. The blue curve represents the average reward
function curve obtained by combining the reward function proposed in this paper with the SAC algorithm. On
the other hand, the yellow curve demonstrates the average reward function obtained by using the traditional
reward function combined with the TD3 algorithm. Upon comparing the proposed algorithm and the SAC
algorithm with the proposed reward function to the TD3 method, it is evident that the proposed one exhibits
superior exploratory capabilities. It effectively guides the UGV to consistently explore new policies while
maintaining stability and comparable exploratory performance to the SAC algorithmwithout the enhancement.
Furthermore, the average reward achieved by the suggested algorithm, utilizing the reward function outlined
in this research, surpasses that of both the SAC algorithm without any enhancements using the conventional
reward function and the TD3 method employing the reward function devised in this paper. Furthermore, the
reward function curve of the suggested algorithm can achieve stability at a faster rate compared to the SAC
algorithm.

In order to further verify the performance of the algorithm provided in this work, the SAC algorithm and the
method proposed in this paper are simulated and compared. The trajectory diagramproduced by the suggested
method is depicted in Figure 10. The SAC algorithm generates a trajectory diagram, which is depicted in
Figure 11. Based on Figure 10 and Figure 11, it is clear that the three Pursuing UGVs move closer to the target
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Figure 8. Initial UGV position.

Figure 9. Average reward curve during the training process.

UGV from their starting positions. Pursuing UGVs 2, 3, and 4 effectively encircle the target UGV from three
different directions: above, to the left, and below. The black solid line represents the triangular area formed by
Pursuing UGVs 1, 2, and 3. During the progression of the roundup, the three Pursuing UGVs gradually move
closer to the target UGV and create a circular formation for the roundup. This circular formation, similar to
the triangular shape depicted in the algorithm provided in Figure 10, is smaller, thus capable of constraining
themovement of the target UGV. Furthermore, the trajectories followed by the UGVs are depicted in Figure 11.
The UGVs utilizing the algorithm presented in this study exhibit a higher rate of change and a reduced turning
amplitude, suggesting that they possess greater responsiveness and the ability to make strategic decisions with
increased speed.
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Figure 10. trajectory maps of pursuit for the Algorithm: (A) Encirclement Trajectories at 0s; (B) Encirclement Trajectories at 4.7s; (C)
Encirclement Trajectories at 6.9s; (D) Encirclement Trajectories at 10.9s.

Table 2. Different algorithm experimental results

Algorithm The average distance/m Consumption Time/s Capture Formation Time/s Success rate

Traditional 3.81 20.23 8.9 66%
SAC 3.59 11.7 7.4 83%
Ours 3.28 10.8 7.0 92%

Figure 12 illustrates the change in distance between the captured UGV and the target UGV. It is evident that
as the capturing process progresses, the distance gradually decreases and converges to 0.3m. The proposed
algorithm in this paper results in a faster reduction in distance compared to the SAC algorithm, ultimately
achieving a smaller distance between the captured UGV and the target UGV. Figure 13 illustrates the variation
in angles between the UGV and its adjacent UGVs during the process of capturing the UGVs. The figure
demonstrates that the suggested method guarantees a uniform distribution of surrounding UGVs around the
target UGVs, forming a circular enclosure. This is in contrast to the SAC approach. To assess the stability
and generalizability of the proposed approach, we conducted 100 experiments. The results, comparing the
performance of various methods in the task of capturing, are presented in Table 2. The initial speed parameters
of the four UGVs are identical, and their speed ranges are within a specified range.
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Figure 11. Trajectory maps of pursuit for SAC: (A) Encirclement Trajectories at 0 s; (B) Encirclement Trajectories at 4.9 s; (C) Encirclement

Trajectories at 7.2 s; (D) Encirclement Trajectories at 11.7 s.

Figure 12. The distance change curve between the pursuing vehicle and the target vehicles: (A) the distance change curve between the
pursuing vehicle and the target vehicles by SAC; (B) the distance change curve between the pursuing vehicle and the target vehicles by the
algorithm in this paper.
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Figure 13. The angle change curve between the pursuing vehicle and its adjacent vehicles: (A) the absolute angle change curve between
the pursuing vehicle and its adjacent vehicles by SAC; (B) the absolute angle change curve between the pursuing vehicle and its adjacent
vehicles by the algorithm in this paper.

Table 3. Specifications of the UGV

Type Parameters

Shape and size(mm) 119.75 ×105.01×79.07
Wheelbase(mm) 84.67
Wheel diameter(mm) 60.5
Drive mode Dual-wheel differential
Speed range(m/s) 0-0.5

4.2. Physical experiment verification and analysis
In order to confirm the practicality and implementation of the method described in this research, the col-
laborative fencing algorithm suggested is used for a multi-UGV experimental platform. The UGV platform
comprises XX, and the positioning system uses the positioning camera to acquire data on the UGV’s position,
velocity, and azimuth by identifying the QR code on the vehicle’s body. Table 3 displays the specifications of
the UGV.

Figure 14 depicts the footage captured by the visual positioning camera during the encirclement and capture
process. It is evident from the images that the three capturing UGVs initiate movement from their initial
position and successfully encircle the target UGVs, ultimately achieving the objective of rounding them up.

Figure 15 depicts the trajectory of UGVs during the cooperative capture process, implemented with the im-
proved algorithm proposed in this paper. From the figure, it is evident that the three capturing vehicles start
from their initial positions and move towards the target unmanned vehicle to accomplish the capture task ul-
timately. The black solid line depicts the extent of the triangle formed by UGVs 1, 2, and 3. From the graphic,
it is evident that as the roundup advances, the three Pursuing UGVs progressively converge toward the target
UGV and establish a circular formation. The precise coordinates of the UGVs, after capturing, are as follows:
UGV 1 at (1.19, 1.85), UGV 2 at (1.05, 2.11), UGV 3 at (0.96, 1.66), and UGV 4 at (1.50, 1.88). The distances
between the target UGV and the surrounding UGVs 1, 2, and 3 can be calculated to be 0.29 m, 0.29 m, and
0.30 m, respectively. These distances are all less than or equal to the rounding distance of 0.3 m. The angles
formed between UGV 1 and the target UGV, UGV 2 and the target UGV, and UGV 3 and the target UGV are
124.12, 118.32, and 117.56 degrees, respectively. All of these angles fall within the specified range.

http://dx.doi.org/10.20517/ir.2024.03


Su et al. Intell Robot 2024;4(1):39-60 I http://dx.doi.org/10.20517/ir.2024.03 Page 57

Figure 14. Footage of the trapping process using visual positioning cameras: (A) initial trapping location; (B) Trapping process location at
8 seconds; (C) Successful trapping location at 12 seconds; (D) Successful trapping location at 15.4 seconds.

Figure 16 illustrates the curve depicting the change in distance and angle of the target UGV during the cap-
turing process. The figure shows that as the capturing process progresses, the distance between the capturing
UGV and the target UGV gradually decreases and converges to 0.3m. However, the distance between the cap-
turing UGV 2 and the target vehicle is greater than 0.3m, with a difference of 0.01m from the expected value
of 0.3m, which may be due to the size of the physical objects and the delay in information transmission. This
figure illustrates that the relative angles of the two fence UGVs are approaching 120 degrees. This demonstrates
the algorithm’s stability and capacity to migrate.

5. CONCLUSIONS
The paper addresses the issue of cooperative capture among unmanned vehicles, considering practical task
requirements and constraints, and establishes a kinematic model while defining conditions for direct capture
success. Within the SAC framework, an attention mechanism is integrated into the Critic network to tackle
the issue of network instability caused by high dimensions, constructing a training framework. To align with
task requirements, state and action spaces of reinforcement learning are optimized, introducing a reward func-
tion strategy that combines individual and collaborative rewards. This reward function is divided into two
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Figure 15. Trajectory maps of pursuit for the Algorithm: (A) Encirclement Trajectories at 4 seconds; (B) Encirclement Trajectories at 8
seconds.; (C) Encirclement Trajectories at 12 seconds; (D) Encirclement Trajectories at 15.4 seconds.

Figure 16. The distance and angle change curve between the pursuing vehicle and the target vehicle:(A) the distance change curve between
the pursuing vehicle and the target vehicle; (B) the absolute angle change curve between the pursuing vehicle and its adjacent UGVs.

components: firstly, continuous individual rewards prompt vehicles to swiftly approach the target, facilitat-
ing effective capture and enhancing model training efficiency. Secondly, sparse collaborative rewards guide
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mutual cooperation among vehicles, culminating in a formation for capture and task achievement. Finally,
a simulation environment is developed and utilized to train the cooperative capture strategy. Simulation ex-
periments demonstrate that the proposed algorithm, in comparison to SAC, exhibits higher average rewards
during training, faster convergence rates, and an ability to swiftly form a cooperative encirclement posture and
accomplish cooperative capture in the context of unmanned vehicle cooperative capture tasks. Moreover, it
displays shorter vehicle travel paths, reduced capture time, and higher capture success rates. Compared to the
SAC algorithm, it demonstrates a 10.8 % enhancement in task success rates and a 7.6% reduction in capture
time.
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