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INTRODUCTION

Cell death is a critical and inevitable phase common 
to all cell types. A deeper understanding of cell death 
in its form and nature is critical to shed new light 
on the emergence, development and treatment of 
diseases. Many different types of cell death patterns 
have been discovered in the last years; among that 
pyroptosis is one of the most recent. It is now widely 
accepted that this mechanism contributes to the 
development of neurological diseases. In this review, 
we first describe the definition of the pyroptosis and its 
basic mechanisms and discuss how pyroptosis and its 
relevant molecules participate in neurological diseases 
and their progression.

THE HISTORY OF PYROPTOSIS AND ITS 
CHARACTERISTICS

The understanding of cell death has changed a lot 
through decades. Nowadays we believe that cell death 
can be roughly divided into necrosis and programmed 
cell death, the latter one, including apoptosis, oncosis, 
autophagy, etc., as well as pyroptosis that will be 
discussed in this review.

Pyroptosis was first observed in 1992 when Zychlinsky 
et  al. described that Shigella flexneri can induce 
programmed cell death in macrophage, but this process 
was mediated by a caspase-1, and the iconic molecule 
in apoptosis, caspase-3, was not apparently involved. 
This observation suggested that such programmed 
cell death was different from apoptosis.[1] Subsequent 
studies confirmed that in S. flexneri specific caspase-1 
blocker Ac-YVAD-CHO inhibited programmed cell death 
of macrophages, whereas caspase-1 knockout could 
protect macrophages from death following S. flexneri 
infection.[1,2] In contrast, caspase-3 specific blockers 
and caspase-3 knockout macrophages did not show any 
effects.[3] Then, in 2001, Cookson and Brennan found a 
type of caspase-1 dependent cell death in Salmonella 
infected macrophages, and for the first time named it 
“pyroptosis”, its meaning deriving from the Greek root 
pyro (fireworks) and ptosis (to-sis) (death).[4]

In the process of the pyroptosis, activated caspase-1 
mediates massive generation of pro-inflammatory 
cytokines, interleukin (IL)-1β, IL-18,[5] leading to 
cell morphological changes similar to apoptosis, 
such as nucleus pycnosis, DNA fragmentation and 
TUNEL staining positivity, etc. However, in contrast 
to apoptosis, in pyroptotic cell, the integrity of the 
cell membrane is not preserved and micro-pores with 
diameter about 1-2 nm are formed on it, resulting in 
potassium efflux, intracellular and extracellular ion 
imbalance, cell swelling and rupture. Meanwhile, 
the pro-inflammatory cytokines and cytoplasmic 
components are released to the extracellular space, 
causing focal inflammation and cell death.[6]
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Lately, researchers realized that a variety of bacterial 
and nonbacterial stimuli  (e.g.  substance related 
to autoimmune diseases and cardiovascular and 
cerebrovascular diseases[7-9]) can drive programmed 
cell deaths similar to pyroptosis. Meanwhile, in 
addition to macrophages, there are a variety of cells 
(such as dendritic cells, etc.) undergoing programmed 
death involving caspase-1 activation, thereby different 
from caspase-3 mediate apoptosis. Moreover, cells 
undergoing pyroptosis exhibit a series of cellular 
changes from complete necrosis to complete the 
apoptosis.[10-12]

MECHANISMS OF PYROPTOSIS

Pyroptosis and caspase-1 are closely associated. 
Caspase family is a group of proteases with high 
homology, and it can be divided into two categories 
according to its relationship with apoptosis and 
pyroptosis. One includes apoptosis-related proteases, 
for instance caspase-3, the executor of apoptosis, and 
also caspase-2, 6, 7, 8, 9, 10 etc. Caspase-3 is activated 
by co-action of caspase-2, 6, 7, 8, 9, 10 etc., and activated 
caspase-3 could induce DNA dissolution, proteolysis, 
and downstream events leading to apoptosis. The 
second is inflammation-associated proteases, including 
caspase-1 and caspase-4, 5, 11, 12, 13, 14 etc., taking 
part in cytokines-mediated inflammatory response.[13] 
Caspase-1 is not involved in apoptosis, but represents 
the key factor in pyrotosis. Caspase-1 is an IL-1β 
converting enzyme. Pro-caspase-1 does not have 
biological activity when produced. Its molecular weight 
is 45 kDa, constituted by the three domains, including 
the caspase activation and recruitment domains (CARD) 
structure in NH2-terminal, a large subunit about 20 kDa, 
and a small subunit about 10 kDa. Then, pro-caspase-1 
is converted into heterodimer in the cytoplasm, and 
further assembled into biologically active tetrameric 
caspase-1.[13] This activation process is regulated by 
a multi-protein complex in the cytoplasm named 
inflammasome.[14]

Inflammasome is a multi-protein complex composed 
by NOD-like receptors  (NLRs), proteins containing 
NATCH, leucine-rich repeat and PYD domains (NLRP1 
NLRC4 NLRP3 NAIP5 and NLRC5), or absent in 
melanoma 2  (AIM2), or Caspase-1 etc. Some of the 
inflammasomes also contain apoptosis-associated 
speck-like proteins containing CARD  (ASC). Recent 
studies have confirmed that retinoic acid-inducible 
gene I  (RIG-I), one of the receptors of some RNA 
viruses, can form inflammasome with ASC, without 
the participation of NLRs.[15] Under the regulation of 
inflammasome, pro-caspase-1 is activated, promoting 
the processing and maturation of pro-inflammatory 
factors such as IL-1 and IL-18.

NOD-like receptors are one of the pattern recognition 
receptors  (PRR); they can be assembled into 
inflammasome under the stimulation of pathogens or 
other dangerous signals. According to different NLRs, 
the inflammasome can be classified into four types, 
NLRP-1, 3, 4 Ice Protease-Activating Factor (IPAF), 
5. During pathogen stimulation, effector domains of 
NLRs are exposed to activating caspase-1 through 
CARD-CARD and PYD-PYD interactions or with 
the help of ASC directly. Different types of NLRs 
respond to different stimuli. NALP3 is sensible to 
perforin, extracellular adenosine triphosphate (ATP), 
urate crystals, DNA and RNA in virus and ultraviolet. 
IPAF is sensible to extracellular pathogens, such as 
Pseudomonas, and intracellular pathogens such as 
Salmonella, Listeria, Shigella, Legionella bacteria. 
Legionella also needs the help of NALP5-5 to activate 
caspase-1.[16,17] AIM plays an important role in viral 
infections; its function is to identify DNA cytoplasm. It 
is a cytoplasmic DNA transducer, one of PRRs sensible 
to extrinsic DNA. It belongs to HIN-200 family, with 
a PYD domain in amino-terminal and an HIN-200 
domain in carboxy-terminal.[18] In virus-infected cells, 
AIM2 and caspase-1 can form inflammasome to induce 
innate immunity and resist intracellular bacteria and 
DNA viruses.[19] RIG-I also binds to the adaptor ASC to 
trigger caspase-1-dependent inflammasome activation 
by a mechanism independent from CARD and NLRP3 
in RNA infection.[15] The effects of ASC are to combine 
caspase-1 and NLRP1, NLRP3, AIM2, RIG-I together. 
The mechanism is mediated by the PYD domain in the 
carboxyl terminus of ASC combined with PYD domain 
in NLRP1 NLRP3 and AIM, with the CARD domain 
in N-terminal of ASC combined with pro-caspase-1’s 
CARD domain. In addition, ASC can be assembled into 
ASC dimer without the participation of NLRs, and ASC 
dimer can activate caspase-1 directly. This ASC dimer 
has been named Pyroptosome recently.[20]

The activators of the inflammasomes can be divided into 
two categories: pathogen associated molecular patterns 
activate a host-defense reaction, and damage associated 
molecular patterns activate a self-defense mechanism in 
response to danger signals.[21] Activators include bacteria, 
virus, fungus, protozoa, microbial proteins, crystalline 
urea, RNA, Alum, ATP, potassium efflux, fatty acids, Aβ, 
and most recently, degraded mitochondrial DNA.[22-24] 
Overall the assembly and activation of inflammasomes 
are cell-type and stimulus-specific.[25,26]

With inflammasome, pro-caspase-1 is activated to 
caspase-1. Its function includes conversion of the pro-IL-
1β and pro-IL-18 into active IL-1β and IL-18. When bound 
to their receptors, IL-1R and IL-18R, they lead to nuclear 
factor-κB dependent gene transcription.[27,28] IL-1β is a 
key molecule in inflammasome initiation and IL-18 can 



	 Neuroimmunol Neuroinflammation | Volume 1 | Issue 2 | September 201462

regulate the function of interferon-γ in T-cell and natural 
killer cell.[27,28] Finally, they can recruit and activate 
other immune cells and induce the synthesis of other 
inflammatory cytokines, chemokines, and adhesion 
molecules, expanding local inflammation response.[13] 
Moreover, cell membrane integrity is destroyed by 
micro-pores formation on it, which is caused by 
caspase-1, IL-1β and IL-18. These micro-pores lead to a 
series of pyroptoic processes such as cytoplasm release, 
cell osmotic lysis and inflammatory reaction.[13,29] In 
addition, during the process of the pyroptosis, caspase-1 
is involved in chromosomes and DNA degradation. 
A specific endonuclease is activated by caspase-1. Once 
activated, this endonuclease can mediate degradation 
of DNA, which differs from the DNA degradation 
occurring in apoptosis.[29] More experiments have 
confirmed that the degradation of cytoskeletal proteins 
is also associated with pyroptosis and that this process 
is related with treatment and processing of substrates 
by caspase-1.[30]

PYROPTOSIS AND NEUROLOGICAL DISEASES

Pyroptosis is closely related to neurological diseases. 
Pyroptosis and its relative mechanisms participate 
in acute and chronic aseptic inflammation in the 
nervous system. Our immune system could recognize 
disease-associated molecules through PRR. In the 
central nervous system  (CNS), PRR are expressed 
mainly on microglial, macrophages and astrocytes. 
They are distributed on the surface of membranes to 
recognize extracellular signals (i.e. toll like receptors), 
or in the cytoplasm to transmit intracellular signal 
(i.e. NLR receptor).

There are several NLRP1 and NLRP3 inflammasomes 
expressed in the nervous system.[31] Mouse microglial 
cells could express NLRP3 and NLRP4 inflammasome, 
and they can respond to stimulation of dangerous 
signals.[32-35] Additional evidences indicate that 
inflammasomes can be expressed in nonmyeloid cells 
of the nervous system. Meanwhile, many studies have 
proven that caspase-1, IL-1β and IL-18 could be activated 
and NLRs inflammasomes can be assembled in neurons 
under stress conditions.[36-40] In addition, recent studies 
have also shown that NLRP2 inflammasomes can be 
expressed in astrocytes.[41,42] In the CNS, microglia, 
astrocytes and neurons can all undergo pyroptosis 
and express its related downstream molecules and 
receptors, thus taking part in the immune reaction to 
local inflammation.[27,28,43] In fact, in diseases such as 
viral encephalitis, stroke, Alzheimer’s disease  (AD) 
and multiple scleroses (MS), many studies have shown 
massive expression of IL-1β and IL-18 etc., in the 
nervous system.[39,44-46] However, further investigation 
is required to elucidate mechanisms.

Pryoptosis and infection diseases in the nervous system
Pyroptosis and its related molecules may participate 
in the development of nervous system encephalitis 
and meningitis. These phenomena have a different 
prognosis in bacterial and virus infection. For 
example, in Streptococcus pneumoniae meningitis 
participation of NLRP3 inflammasome aggravate the 
damage caused by the disease. IL-1β and IL-18 are 
not involved in growth inhibition of bacteria, but 
contribute to exacerbate the inflammatory response 
in the nervous system.[47-49] Some studies indicate 
that mouse microglia and peripheral macrophages 
infected with Staphylococcus aureus, Mycobacterium 
tuberculosis and Legionella pneumophila in vitro may 
activate the NLRP3 or NLRP4 inflammasome thus 
inducing pyroptosis.[32,50,51]

However, in viral encephalitis caused by West Nile 
virus (WNV), influenza A virus, and herpes simplex 
virus, IL-1β and IL-18 can increase survival rate 
of neurons by inhibiting viremia.[39,52-54] In WNV 
encephalitis, it was observed that the production 
and release of IL-1β increased in neurons, and IL-1β 
inhibited the replication of WNV. The survival rate 
decreased in NLRP3 and ASC knockout mice infected 
by WNV. ASC knockout mice can experience excessive 
immune response after WNV infection, and this will 
contribute to neuronal damage.[39] Japanese encephalitis 
virus can activate NLRP3 inflammasome in microglia, 
promote the release of IL-1β and IL-18.[34] In CMV 
retinitis, it was also observed microglia death through 
pyroptosis pathway.[55] But their influence on prognosis 
is not yet clear.

Pyroptosis and acute aseptic disease in the nervous system
In acute aseptic nervous system damage (such as stroke or 
traumatic brain injury), local autoimmune activation can 
cause nerve injury. Studies have demonstrated that mice 
with caspase-1 defection may have a certain resistance to 
stroke, which indicated that pyroptosis and its relative 
mechanisms exacerbate brain damage in stroke.[56] IL-18 
knockout mice didn’t show any kind of protective effects 
in stroke. In contrast, some IL-1 receptor antibodies 
could still have a protective effect(s) to neurons, even 
after the occurrence of stroke. This suggests that the 
protective effect is not only dependent on IL‑1β, but 
also IL-1α. IL-1β and IL-1α defected mice have a better 
resistance to stroke.[57] Although IL-1α and caspase-1 do 
not have a direct relationship, caspase-1 may have an 
indirect protective effect (s) by influencing IL-1R2 and 
caspase-1 dependent nonclassical secretion system.[58,59] 
Meanwhile, inflammasome also been observed in a 
study of excitotoxic injury in kainate model.[38]

Similarly, in the rodent model, antibodies for ASC or 
NLRP1 can reduce injury of brain trauma or stroke.[60,61] 
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A study demonstrated that MCAO could induce NLRP1 
and NLRP5 inflammasome expression in rat neurons.[62] 
Traumatic brain injury patients with higher NLRP1 level 
in cerebrospinal fluid may have a worse prognosis.[63]

Pyroptosis and chronic aseptic disease in the nervous system
Chronic aseptic diseases have a great influence on 
the structure and function of CNS. MS is a typical 
one. In MS, T cells and macrophages move into CNS. 
A  study of NLRP3 and ASC knockout mice found 
that autoimmune encephalitis depends on the NLRP3 
inflammasome.[64,65] Inhibition of NLRP3 expression and 
subsequent reduction of IL-1β and IL-18 secretion can 
restrain the activation of T cell and its migration into 
CNS, so as to mitigate the autoimmune encephalitis.[64-66]

In cuprizone-induced CNS autoimmune inflammation 
and demyelination model, IL-1β and IL-18 play a 
different role in demyelination. IL-1β knockout mice 
have a similar MS phenotype to wild-type animals, 
but the process of remyelination is delayed. This 
suggests that IL-1β may promote recovery from MS.[67] 
In contrast, in IL-18 knockout mice, the disease is 
reduced, and the speed of myelination is faster.[68] In 
NLRP3 knockout mice, the onset is delayed in cuprizone 
induced demyelination, but the extent of remyelination 
is identical to those of wild-type.[68] Therefore, the 
pyroptosis and its relative mechanisms are involved 
in the pathological process, and IL‑1β and IL-18 have 
opposite effects on the recovery of the disease.

Besides, accumulating evidences suggest that 
the immune system participates in the process of 
amyotrophic lateral sclerosis  (ALS), AD, Parkinson’s 
disease and Huntington’s disease.[69] Amyloid beta is 
the main components of senile plaques in AD, it is 
also one of the first molecules found to be involved in 
the relationship between chronic aseptic diseases and 
inflammasome.[33] LPS sensitized macrophages exposed 
to fibrillar amyloid-beta activate caspase-1 and induced 
the release of IL-1β. This process is dependent on 
NLRP3, endosomal rupture and cathepsin B release.[33] 
A similar phenomenon was found in α-synuclein in 
Parkinson’s disease and prion protein.[70,71] However, 
to elucidate the function of IL-1β, different studies 
have reached different conclusions. Some indicate 
that in Il-1α knockout mice, injecting human amyloid 
beta into encephalocoele would activate microglia, so 
as to reduce neuron survival rate.[72] However, other 
experiments show that over-expression of IL-1β in 
hippocampus could reduce senile plaque formation 
by recruiting macrophage.[73]

In ALS, mutation of superoxide dismutase 1 (SOD1) 
leading to accumulation of toxic protein is one of the main 
pathogenic factors. Mutant SOD1 in cultured microglia 

activates caspase-1 and the amount of subsequent IL-1β 
is proportional to the concentration of mutant SOD1 
added. In this process, the activation of inflammasome 
requires endosomal rupture and participation of ASC. 
However, it is not clear which specific inflammasome 
is involved. Caspase-1 or IL-1β defect would improve 
the survival rate of mice expressing toxic SOD1, which 
indicates that pyroptosis and its relative mechanisms 
could exacerbate ASL.[74]

CONCLUSION

Recent findings of the pyroptosis and inflammasome 
have provided insight into a new mechanism that 
may contribute to neuronal and glial cell death during 
neurological diseases. Multiple potential targets 
upstream and downstream of pyroptosis signaling and 
targeting its expression, assembly, activity and products, 
may pave the way for newly therapeutic drugs that may 
rescue inflammation in neurological diseases. However, 
it is important to note that although some aspects of 
the inflammatory response will not only exacerbate 
brain injury, it is also likely that other components 
will provide a beneficial contribution to brain recovery. 
Elucidating the role of these components will represent 
a challenge for future research. Unquestionably, 
still a lot needs to be done to clarify the role of the 
inflammasome during the recovery phase following 
neurological diseases.
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