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Abstract
Organic solar cells (OSCs) have experienced rapid development and achieved significant breakthroughs in power 
conversion efficiencies owing to the emergence of non-fullerene acceptors (NFAs) with ladder-type multiple fused 
ring structures. However, the high synthetic complexity and production cost of multiple fused ring NFAs hinder the 
commercial prospects of OSCs. In this context, the development of non-fused ring acceptors (NFRAs) with simple 
structures and facile synthesis has been proposed. In this mini review, we summarize the important progress in this 
field spanning from molecular design strategies to structure-performance relationships. Ultimately, with the aim of 
realizing the practical application of NFRAs in OSCs, we discuss the current challenges and future directions in 
terms of achieving high performance and low synthetic complexity simultaneously. These discussions provide 
valuable insights into the development of new NFRAs.

Keywords: Organic solar cells, non-fullerene acceptors, non-fused ring acceptors, low cost, device performance

INTRODUCTION
Organic solar cells (OSCs) have attracted considerable attention in recent years due to their advantages that 
include solution processability, lightweight, flexibility and semitransparency[1-6]. Generally, OSCs consist of a 
bulk heterojunction active layer, which employs a p-type polymer as the electron donor and an n-type small 
molecule as the electron acceptor[7]. Over a long period, the electron acceptors become dominated by 
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fullerene derivatives[8,9]. However, the maximum power conversion efficiency (PCE) of fullerene-based 
OSCs is limited to ~12%[10] due to the inherent defects associated with fullerene derivatives, such as a narrow 
light-absorbing range, low absorption coefficient and nonadjustable energy levels[8,9].

In this context, non-fullerene acceptors (NFAs) that can overcome the drawbacks of fullerene acceptors 
have emerged. In 2015, Lin et al.[11] reported the first high-performance NFA, ITIC, which features an 
acceptor-donor-acceptor (A-D-A) structure with a central electron-donating multiple fused ring core and 
two terminal electron-withdrawing groups. Compared with fullerene-based acceptors, NFAs exhibit 
obvious advantages, including a broad absorption range, excellent absorption coefficient, tunable energy 
levels and ordered packing structures[12-14]. Generally, the optoelectronic properties and packing structures of 
NFAs can be regulated by changing the central D and terminal A units[15,16]. As a result, NFAs have rapidly 
led the development of OSCs in recent years[17] and the PCEs of OSCs based on A-D-A-type NFAs have 
surpassed 16%[18,19]. More encouragingly, Y6, a superior NFA with 2,1,3-benzothiadiazole (BT) as the central 
electron-deficient core in the A-DA'D-A structure was proposed by Yuan et al.[20] in 2019, which 
demonstrated a remarkable PCE of 15.7% in its first report. Currently, the PCEs of OSCs based on Y6 or its 
derivatives have exceeded 19% in single-junction devices[20-33] and tandem devices[34].

As shown in Figure 1A, high-performance NFAs, such as ITIC and Y6, consist of a multiple fused ring 
framework in their central core. Therefore, they are usually referred to as fused ring acceptors (FRAs). The 
central fused-ring core in FRAs is multifunctional[12,17,35-39]. First, it serves as an electron-donating donor unit 
to generate the intramolecular charge transfer (ICT) effect and thus extends the absorption range of the 
resulting FRAs to the near-infrared (NIR) waveband. Second, its coplanar backbone can facilitate the 
delocalization of π-electrons, enhance intermolecular π-π interactions and charge transport. Third, it offers 
positions for introducing suitable side chains, which provide appropriate solubility and tune the packing 
structures in the solid state. However, FRAs usually suffer from high synthetic complexity and production 
costs, thus hampering their large-scale synthesis and limiting the commercialization of OSCs[40-44].

To overcome the drawbacks associated with FRAs, the strategy of using non-fused rings in place of the 
central fused rings of FRAs was proposed[45]. The acceptors generated with this strategy are usually known as 
non-fused ring acceptors (NFRAs), which possess the advantages of simple structures and facile synthesis. 
As shown in Figure 1B, the most important structural characteristic of NFRAs is that each unit of the 
central core is connected by a single bond. The synthetic complexity and production costs of this kind of 
NFAs can be greatly reduced due to the fact that the single-bond connected structures are much easier to 
build than fused-ring structures[46,47]. The absorption spectra, energy levels and molecular packing of NFRAs 
could be also finely tuned by choosing appropriate building blocks[48-50]. Compared with FRAs, NFRAs have 
more conformational isomers since the single bonds for connecting adjacent units in NFRAs are rotatable, 
which is harmful to the ordered molecular packing of NFRAs in the solid state[51]. This leads to enhanced 
reorganization energy and hampers charge transport[17,52-54]. To solve this problem, noncovalent through-
space intramolecular interactions, including O···S, N···S, H···S and F···S, were explored to lock the 
conformation of NFRAs. With these interactions, the rotation of single bonds could be effectively restricted 
and thus rigid and coplanar structures can also be formed in NFRAs[55-58]. As a result, ordered molecular 
packing in the solid state and efficient electron transport can be realized in NFRAs. So far, the PCEs 
afforded by NFRAs have exceeded 15%[59], which are fully comparable to those achieved by A-D-A-type 
FRAs and are approaching those offered by Y6-derived acceptors.

In this mini review, we summarize the progress of NFRAs in recent years. According to the electronic 
structure of the building blocks, NFRAs can be classified as A-D-D'-D-A or A-D-A'-D-A-type structures, 
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Figure 1. (A) Representative chemical structures of FRAs with A-D-A (ITIC) and A-DA'D-A (Y6) structure. (B) Comparison between 
FRAs and NFRAs in structures and characteristics.

where D and A denote electron-donating and electron-accepting units, respectively. Moreover, fully non-
fused ring structures have also been developed recently. For each kind of NFRA, the relationships between 
chemical structure and device performance are discussed. Finally, we discuss the challenges and future 
directions of NFRAs with the aim of achieving high device performance and low production costs 
simultaneously.

NFRAS WITH A-D-D'-D-A STRUCTURE
The chemical structures of representative NFRAs with the A-D-D'-D-A framework are shown in Figure 2. 
The first NFRA (DF-PCIC) for OSCs was reported by Li et al.[45] and possesses an A-D-D'-D-A structure 
[Figure 3A]. The central non-fused ring core of DF-PCIC is 2,5-difluorobenzene (DFB, D'), which is 
connected to two cyclopentadithiophene (CPDT, D) units by single bonds. The coplanar conformation of 
DF-PCIC was locked by the F···H noncovalent interaction between the fluorine atoms on DFB and the 
hydrogen atoms on adjacent CPDT units. Meanwhile, the bulky substituents attached on the sp3 carbon 
atoms of the CPDT unit can effectively suppress excessive intermolecular aggregation, thus resulting in 
appropriate phase separation in bulk heterojunction blends. DF-PCIC shows a similar light absorption 
range [Figure 3B] and energy levels as ITIC but also has obvious advantages in synthesis simplicity. After 
device optimization based on DF-PCIC:PBDB-T, a remarkable PCE of 10.14%, with a short-circuit current 
density (JSC) of 15.66 mA cm-2, an open-circuit voltage (VOC) of 0.91 V and a fill factor (FF) of 72.00% was 
obtained. Moreover, the relevant OSCs exhibited excellent morphological and device stability. Notably, the 
JSC of the solar cell based on DF-PCIC:PBDB-T was only 15.66 mA cm-2, which is much lower than the 
values obtained by representative FRAs. Generally, the optimal OSCs based on IT-4F and Y6 can afford JSC 
values of ~21 and ~26 mA cm-2, respectively[20].
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Figure 2. Chemical structures of representative non-fused ring acceptors with A-D-D'-D-A structure.

To overcome the low JSC of DF-PCIC, a new NFRA (HF-PCIC) with stronger electron-withdrawing end 
groups was developed by the same group. This new molecule exhibited an obvious bathochromic 
absorption spectrum owing to the enhanced ICT effect[60]. As a result, a higher JSC of 17.81 mA cm-2 and a 
PCE of 11.49% were realized for OSCs based on HF-PCIC. Furthermore, 5,5-bis(4-hexylphenyl)-5H-
dithieno[3,2-b:2',3'-d]pyran (DTP), which features a stronger electron-donating ability than CPDT was also 
used to construct NFRAs with the aim of extending the light absorption range[61]. Interestingly, the two 
isomers DTP-out-F and DTP-in-F exhibited similar spectra and energy levels but entirely different stacking 
orientations in the solid state. Due to the formation of the favorable face-on orientation in DTP-in-F-based 
donor:acceptor blend films observed from grazing incidence wide-angle X-ray scattering (GIWAXS) 
patterns [Figure 3C], DTP-in-F offered a higher PCE (10.66%) than DTP-out-F (3.97%) in OSCs.
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Figure 3. Chemical structure, conformation (A) and absorption spectra (B) of DF-PCIC. (C) Wide-angle X-ray scattering patterns of 
DTP-out-F and DTP-in-F. (D) Simulated molecular conformation by density functional theory calculations for simplified molecules of 
DC6-IC and DOC-IC. (E) Absorption spectra of J52 and BN-nF in films. These figures are reproduced with permission from John Wiley 
and Sons[45,62], the Nature Publishing Group[48] and the American Chemical Society[61], respectively.

Although favorable coplanar conformations of DF-PCIC and HF-PCIC were obtained by the F···H 
noncovalent interaction, the F atoms often reduce the electron-donating ability of the central phenylene 
unit, thereby resulting in a narrower absorption spectra. Alternatively, Huang et al.[48] developed a set of 
NFRAs (DOC6-IC, DOC8-IC, DOC2C6-IC, and DOC2C6-2F) by employing the O···S noncovalent 
interaction between the central 2,5-bis(alkyloxy)phenylene unit and two flanking CPDT units. These 
NFRAs all exhibited a favorable coplanar conformation and wide absorption range with an onset 
approaching 850 nm in films. Furthermore, the solubility of the NFRAs and the morphology of the blend 
films could be finely tuned by changing the lateral substituents on the central phenylene unit. Among these 
NFRAs, DOC2C6-2F offered the highest PCE of 13.24% associated with a JSC of 21.35 mA cm-2 and a very 
low non-radiative recombination voltage loss of only 0.27 V. According to density functional theory (DFT) 
calculations [Figure 3D], the reference molecule DC6-IC without the O···S noncovalent interaction 
exhibited twisted molecular backbone and thus suffered from imbalanced charge transport and a much 
poorer PCE (6.87%). Based on the excellent performance of DOC2C6-2F, Zhang et al.[62] further broadened 
the absorption range of DOC2C6-2F by introducing π-extended end groups to increase JSC, wherein the 
degree of multi-fluorination was also finely tuned.

As shown in Figure 3E, all three novel NFRAs (BN-0F, BN-2F and BN-4F) exhibited redshifted and 
extended absorption spectra in films relative to DOC2C6-2F. Among these molecules, the device based on 
BN-2F:J52 exhibited an outstanding PCE of 14.53% in lab conditions and a certified PCE of 13.80% due to 
the significantly increased JSC (25.25 mA cm-2). This impressive JSC is close to those of Y6-based high-
performance devices, indicating the significant potential of NFRAs.
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Table 1. Device performance of organic solar cells based on representative A-D-D'-D-A-type non-fused ring acceptors

Acceptor Donor VOC (V) JSC (mA cm-2) FF (%) PCE (%) Ref.

DF-PCIC PBDB-T 0.91 15.66 72.00 10.14 [45]

HF-PCIC PBDB-TF 0.91 17.81 70.77 11.49 [60]

DTP-in-F PM6 0.91 18.54 63.20 10.66 [61]

DTP-out-F PM6 0.86 10.16 45.40 3.97 [61]

DOC2C6-2F PBDB-T 0.85 21.35 73.15 13.24 [48]

DC6-IC PBDB-T 0.99 11.19 62.21 6.87 [48]

BN-0F J52 0.84 21.91 60.10 11.00 [62]

BN-2F J52 0.81 25.25 70.78 14.53 [62]

BN-4F J52 0.79 25.76 64.91 13.24 [62]

FOC2C6-2FIC PBDB-T 0.87 19.66 72.10 12.36 [57]

o-DOC6-2F PBDB-T 0.89 18.58 71.84 11.87 [63]

BDTC-4Cl PBDB-T 0.86 18.56 59.50 9.54 [64]

CTIC-4F PCE10 0.70 23.40 64.00 10.50 [65]

CH3-2F PBDB-T 0.77 22.76 69.85 12.28 [66]

VOC: Open-circuit voltage; JSC: short-circuit current density; FF: fill factor; PCE: power conversion efficiency.

To date, in addition to the above mentioned building blocks, fluoro-4-alkyloxybenzene (FOC2C6-2FIC)[57], 
1,2-dialkyloxybenzene (o-DOC6-2F)[63], benzo-[1,2-b:4,5-b']dithiophene (BDTC-4Cl)[64], thiophene 
(CTIC-4F)[65], thiophene[3,2-b]thiophene (CH3-2F)[66] and IC-2Cl have been introduced into NFRAs as 
electron-donating or electron-withdrawing units. The relevant performance data of the above NFRAs are 
listed in Table 1.

NFRAS WITH A-D-A'-D-A STRUCTURE
With the exception of the A-D-D'-D-A-type structure, in light of numerous easily-available electron-
withdrawing units, significant attention has been drawn to research into A-D-A'-D-A-type NFRAs featuring 
electron-withdrawing units as the central core, such as BT[50,58,67], benzotriazole (BTz)[68-70], benzo-[1,2-c:4,5-
c’]dithiophene-4,8-dione (BDD)[71,72], benzobis(thiazole) (BBTz)[73], quinoxaline (Q)[74], thieno[3,4-c]pyrrole-
4,6-dione (TPD)[71,75], isoindigo (IID)[76] and so on [Figure 4]. Among them, BT and BTz have been widely 
adopted as A' units to construct NFRAs for their unique merits: (1) quinoidal structures are beneficial for 
broadening the absorption range; (2) the 5,6-positions of BT and BTz can be readily functionalized; and (3) 
the N···S noncovalent interaction can be formed between the BT/BTz core and adjacent thiophene rings.

In 2020, Pang et al.[50] reported an A-D-A'-D-A-type NFRA with BT as an A' core (BTCIC-4Cl). The 
absorption of BTCIC-4Cl was extended to the NIR waveband with an onset of 946 nm in the solid state, 
corresponding to an optical band gap (Eg

opt) of 1.31 eV in terms of the quinoidal character of the BT unit 
and enhanced ICT effect [Figure 5A]. However, as shown in Figure 5B, the introduction of the BT unit 
significantly down-shifted the lowest unoccupied molecular orbital (LUMO) energy level of BTCIC-4Cl, 
which deteriorated the VOC. After device optimization, a moderate photovoltaic performance of BTCIC-4Cl 
was achieved, with a PCE of 10.50%, a VOC of 0.75 V and a JSC of 21.00 mA cm-2. Based on the above-
mentioned results, Wang et al.[58] then systematically investigated the effects of H (BT-IC4F), F (BT2F-IC4F) 
and alkoxy chains (BTOR-IC4F) at the 5,6-positions of the BT core on the molecular configuration and 
device performance. The ladder-like molecular structures locked by the N···S, F···S and O···S noncovalent 
interactions were formed for these acceptors, as suggested by DFT calculations. Compared with BT-IC4F 
and BT2F-IC4F, the higher molar extinction coefficient, better solubility and elevated LUMO energy level of 
BTOR-IC4F have endowed more superior performance of OSCs. Consequently, the highest PCE of 11.48% 
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Figure 4. Chemical structures of representative non-fused ring acceptors with A-D-A'-D-A structure.

was achieved for PBDB-T:BTOR-IC4F-based devices, with a JSC of 20.57 mA cm-2 and a VOC of 0.80 V.

In contrast, BTz with a weaker electron-withdrawing ability is conducive to further increasing the VOC
[77]. 

The first NFRA (NTTI) bearing fluorinated BTz as the A' core was reported by Lv et al.[77]. However, due to 
the insertion of F atoms, a strong electron-withdrawing element, a similar VOC compared to BTOR-IC4F 
was presented[77]. Alternatively, with the aim of enhancing the LUMO energy level of NFRAs, a new 
molecule (BTzO-4F) was reported by Liu et al.[68], which adopted the alkoxy-substituted BTz unit as the A' 
core. After device optimization, an outstanding PCE of 13.80% with a high VOC of 0.84 V was achieved for 
the photovoltaic device based on PBDB-T:BTzO-4F, which demonstrates the excellent potential of NFRAs 
for high-performance OSCs.
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Figure 5. Ultraviolet-vis-NIR absorption spectra (A) and energy levels (B) of BTCIC and BTCIC-4Cl. FTPS-EQE (C) and wide-angle X-
ray scattering patterns (D) of organic solar cells based on J52:NFRAs. These figures are reproduced with permission from the American 
Chemical Society[50] and John Wiley and Sons[69], respectively.

Later, terminal side chains, referred to the introduction of additional side chains attached to the terminal β-
position of fused-ring cores, were adopted in NFRAs to lock the conformation of end groups, which have 
been widely applied in high-performance NFAs, especially in Y6 derivatives[20,56,69,78,79]. Compared with the 
counterpart BTzO-4F (herein renamed as NoCA-1), the terminal side chains on NoCA-5 played a 
significant role in shifting up the LUMO energy level, promoting crystallinity, improving molecular rigidity 
and reducing the reorganization energy. In particular, the Urbach energy (Eu) is decreased in the blend of 
NoCA-5:J52 [Figure 5C], suggesting that the energetic disorder has been effectively reduced in this blend. 
Moreover, favorable molecular stacking has been formed in the NoCA-5:J52 blend [Figure 5D]. As a result, 
NoCA-5:J52-based OSCs delivered a remarkable PCE of 14.82%, whereas the NoCA-1:J52-based devices 
only gave a PCE of 11.71%.

The BDD unit, possessing a weak electron-withdrawing character, has been widely applied to construct 
high-performance polymer donors, such as PBDB-T[80] and PM6[81]. Recently, a set of NFRAs based on the 
BDD unit as the central A' core has also been reported. In 2021, two simple electron acceptors, BDDEH-4F 
and BDDBO-4F, featuring separated BDD units with different side chains as the A' core, were reported by 
Wu et al.[82]. These molecules were synthesized by a three-step synthesis via direct heteroarylation without 
any hazardous organostannanes or ligands involved. The devices based on BDDEH-4F:PM6 exhibited a 
higher PCE of 12.59% and a larger JSC of 22.57 mA cm-2 due to the more balanced carrier mobilities and 
suitable phase separation in the active layer compared with that of BDDBO-4F with longer alkyl side chains 
(PCE of 9.80%). Other modifications on BDD-based NFRAs, including replacement of the D units 
(BDIC2F), have also been reported, where similar photovoltaic performance was reported[71,72]. A few other 
electron-deficient building blocks were also used as the central A' units to construct NRFAs [Figure 4], 
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which played a unique role in adjusting the absorption, energy level, molecule conformation and active 
layer morphology[69,71,73-77]. The relevant performance data are listed in Table 2.

NFRAS WITH FULLY NON-FUSED STRUCTURES
Notably, the CPDT unit, serving as the most common D unit in NFRAs, not only possesses outstanding 
electron-donating ability, but also enables the introduction of bulky substituents for providing sufficient 
steric hindrance and suppressing excessive intermolecular aggregation. However, the intrinsic fused ring 
structure of CPDT inevitably raises the production costs of NFRAs. Therefore, NFRAs with fully non-fused 
structure have emerged [Figure 6]. The first fully non-fused ring acceptor (PTICH) was reported by 
Yu et al.[83] in 2019, where thiophene, rather than CPDT, was used as the D unit. The same as other NFRAs, 
the coplanar conformation of PTICH was locked by the O···H noncovalent interaction between the central 
2,5-bis(alkyloxy)phenylene unit and flanking thiophene units [Figure 7A]. Furthermore, terminal side 
chains, including alkyl chains (PTIC) and oxyalkyl chains (PTICO), were adopted to lock the conformation 
of end groups, which significantly reduced the conformational disorder of the molecules. After device 
optimization, a PCE of 10.27% was obtained for the PTIC:PBDB-TF-based devices, representing a new 
molecule design strategy with a low synthetic complexity index. Moreover, the unique structural features, 
including the hindered outward-chain and planar sp3 carbon-free backbones of PTIC, played important 
roles in enhancing the intrinsic photostabilities [Figure 7B] of the molecule, which in turn benefitted the 
device stability[84].

liu et al.[84] further investigated the device stabilities of A-D-A-type NFAs with fused (IT-4F), non-fused 
(HF-PCIC) and fully non-fused (PTIC) backbones under continuous one-sun-equivalent irradiation. As 
shown in Figure 7C, the PBDB-TF:PTIC-based device maintained ~72% of its initial PCE value for 500 h of 
illumination, thereby greatly outperforming the PBDB-TF:IT-4F and PBDB-TF:HF-PCIC-based devices. 
These results demonstrated that intrinsic photostability and device stability are not limitations to NFRAs. It 
should be noted that PTIC in neat films exhibited strong molecular stacking, high crystallinity and 
dominant edge-on orientation from the results of GIWAXS. To optimize the solid stacking and orientation 
of PTIC, a new NFRA (PTB4Cl) with two-dimensional phenyl chains featuring larger steric hindrance was 
developed by the same group[85]. Compared with PTIC, PTB4Cl exhibited bi-model face-on and edge-on 
orientations, whereas PTIC exhibited a nearly pure edge-on orientation, showing only an OOP (100) peak. 
After device optimization, a higher PCE of 12.76% was obtained for PTB4Cl:PBDB-TF-based devices 
associated with extended exciton lifetimes and increased charge transfer rates.

Different from the strategy of noncovalent interactions afforded by PTB4Cl, the use of peripheral aromatic 
substituents with large steric hindrance is also an effective method for constructing the coplanar 
conformation of fully non-fused ring acceptors. Two novel tetrathiophene-based fully non-fused ring 
acceptors (m-4TBC-2F and o-4TBC-2F) were reported by Chen et al.[49], which feature different substitution 
positions of alkoxy chains in peripheral phenyl. According to DFT calculations, the huge steric hindrance 
caused by the alkoxy chains on the peripheral phenyl led to a large dihedral angle (74°) between the 
molecule backbone and peripheral phenyl, thus resulting in a coplanar backbone of o-4TBC-2F. However, 
m-4TBC-2F with smaller steric hindrance and smaller dihedral angles between the molecule backbone and 
peripheral phenyl (46°) displayed a much more twisted backbone conformation [Figure 7D]. Therefore, the 
optimized devices based on o-4TBC-2F showed a higher PCE of 10.26% than its counterpart m-4TBC-2F 
(2.63%), benefitting from the higher carrier mobilities, lower energy loss and extended absorption spectra. It 
is noteworthy that there still existed a dihedral angle above 10° between the two central thiophene rings for 
o-4TBC-2F.
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Table 2. Device performance of organic solar cells based on representative A-D-A'-D-A-type non-fused ring acceptors

Acceptor Donor VOC (V) JSC (mA cm-2) FF (%) PCE (%) Ref.

BTCIC-4Cl PBDB-T-2Cl 0.75 21.00 66.00 10.50 [50]

BT-IC4F PBDB-T 0.69 21.40 66.40 9.83 [58]

BT2F-IC4F PBDB-T 0.67 19.43 64.70 8.45 [58]

BTOR-IC4F PBDB-T 0.80 20.57 69.60 11.48 [58]

NTTI PBDB-T 0.80 17.08 63.00 8.61 [77]

BTzO-4F PBDB-T 0.84 23.58 69.73 13.80 [68]

NoCA-5 J52 0.81 26.02 69.96 14.82 [69]

BDDEH-4F PM6 0.88 22.57 63.38 12.59 [82]

BDDBO-4F PM6 0.87 19.09 58.96 9.80 [82]

BDIC2F PBDB-T 0.80 9.90 37.90 3.01 [71]

X-PCIC PBDB-T 0.84 21.80 62.51 11.50 [73]

QCIC3 PBDB-T 0.82 19.39 66.90 10.55 [74]

TPDCIC PBDB-T 0.83 18.16 67.14 10.12 [75]

TClC2F PBDB-T 0.71 19.10 64.60 8.80 [71]

IID-IC J61 0.83 6.36 53.00 2.82 [76]

VOC: Open-circuit voltage; JSC: short-circuit current density; FF: fill factor; PCE: power conversion efficiency.

Later, Ma et al.[59] found that the dihedral angle could be reduced to 0° when alkoxyphenyl was replaced by 
2,4,6-tri-isopropylphenyl (A4T-16) and 2,4,6-tri-methylphenyl (A4T-23), respectively. The two bulky 2,4,6-
tri-isopropylphenyl groups have effectively restricted the rotation of the C-C single bond between the two 
adjacent thiophene rings, thus giving rise to a coplanar central bithiophene core. Moreover, the peripheral 
2,4,6-tri-isopropylphenyl is perpendicular to the bithiophene core, which was evidenced by the results from 
DFT calculations and single-crystal structural analysis [Figure 7E]. With the large steric hindrance caused 
by the 2,4,6-tri-isopropylphenyl group, excessive intermolecular aggregation can be avoided. The single-
crystal analysis also revealed that A4T-16 can form a three-dimensional-interpenetrated network through 
the close π-π interaction of its end groups, which facilitates electron transport. As a result, a prominent PCE 
of 15.20% and FF of 79.80% were achieved by A4T-16, which are the highest values for the OSCs based on 
NFRAs. Notably, NFRAs usually afford inferior FF with respect to FRAs in OSCs[86,87]. This drawback might 
be related to the existence of multiple conformational isomers due to the inevitable rotation of the C-C 
single bonds in NFRAs, which is harmful to the ordered molecular packing of NFRAs in the solid state[51]. 
The unprecedented FF achieved by Ma et al.[59] provides a promising direction for breaking beyond the FF 
limitations in NFRA-based OSCs.

In contrast, the solubility and packing structure of tetrathiophene-based fully non-fused ring acceptors were 
finely tuned by the side-chain engineering on 4T-n[88]. Among them, 4T-3 with four 2-ethylhexyl side chains 
showed the most suitable crystallinity. The notable PCEs of 10.15% and 12.04% were achieved for PBDB-
T:4T-3 and D18:4T-3-based devices, respectively. Furthermore, compared with other high-efficiency FRAs, 
such as ITIC-4F, Y6, COi8DFIC, 4TIC-4F and W1, the representative fully non-fused ring acceptor 4T-3 
exhibited the highest figure-of-merit, which represents the preliminary cost-performance balance point. The 
relevant performance data of the above NFRAs are listed in Table 3.

CONCLUSION AND OUTLOOK
Overall, the recent development of NFRAs has been rationally summarized with regards to the relationships 
between chemical structure and device performance. First, by the incorporation of noncovalent interactions 
and steric hindrance, the rigid and coplanar structures can be realized in NFRAs, in the results of ordered 
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Figure 6. Chemical structures of representative non-fused ring acceptors with fully non-fused structures.

molecular packing and efficient electron transport in the solid state. Second, the chemical structure of 
NFRAs can be facilely modified based on numerous building blocks. Third, the intrinsic photostability and 
device stability are not limitations for NFRAs. Moreover, the champion devices based on NFRAs have 
afforded a remarkable PCE over 15%, which strongly evidenced the excellent potential of NFRAs for high-
performance and cost-effective OSCs. In comparison with FRAs, the development of NFRAs is still in its 
infancy. To compete with FRAs, the JSC and FF of the relevant OSCs need to be greatly enhanced. Therefore, 
additional investigations focusing on the molecular design are essential to further enhance the performance 
of NFRA-based OSCs. Combined with the unique merits of low costs, simple synthesis and flexibility in 
structural modification, we believe the breakthrough of high-performance NFRAs will lead to the large-scale 
commercial applications of OSCs becoming more accessible in the near future.
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Table 3. Device performance of organic solar cells based on representative fully non-fused ring acceptors

Acceptor Donor VOC (V) JSC (mA cm-2) FF (%) PCE (%) Ref.

PTICH PBDB-TF 0.92 8.22 54.00 4.08 [83]

PTIC PBDB-TF 0.93 16.73 66.00 10.27 [83]

PTICO PBDB-TF 1.01 12.60 52.00 6.62 [83]

PTB4Cl PBDB-TF 0.93 19.01 72.17 12.76 [85]

o-4TBC-2F PBDB-T 0.76 20.48 65.70 10.26 [49]

m-4TBC-2F PBDB-T 0.84 7.90 40.00 2.63 [49]

4AT-16 PBDB-TF 0.88 21.80 79.80 15.20 [59]

4AT-23 PBDB-TF 0.87 21.00 56.80 10.40 [59]

4T-3 PBDB-T 0.81 17.27 72.45 10.15 [88]

4T-3 D18 0.93 18.28 70.97 12.04 [88]

VOC: Open-circuit voltage; JSC: short-circuit current density; FF: fill factor; PCE: power conversion efficiency.

Figure 7. (A) Comparison of chemical structure between fused ring acceptor and fully non-fused acceptors. Change of remaining 
absorption intensity at 64 h of irradiation (B) and stabilities of organic solar cells under continuous one-sun-equivalent irradiation (C) 
of IT-4F, HF-PCIC and PTIC, respectively. (D) Simulated molecular geometries obtained via density functional theory calculations for 
simplified structures of o-4TBC-2F and m-4TBC-2F. (E) Single-crystal structure and molecular packing model of A4T-16. These figures 
are reproduced with permission from the Nature Publishing Group[59,83,84] and John Wiley and Sons[85], respectively.
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