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Abstract
This paper presents a fixed-time integral sliding mode control scheme for a nonholonomic wheeled mobile robot
(WMR). To achieve the trajectory tracking mission, the dynamic model of a WMR is first transformed into a second-
order attitude subsystem and a third-order position subsystem. Two novel continuous fixed-time disturbance ob-
servers are proposed to estimate the external disturbances of the two subsystems, respectively. Then, trajectory
tracking controllers are designed for two subsystems by utilizing the reconstructed information obtained from the dis-
turbance observers. Additionally, an auxiliary variable that incorporates the Gaussian error function is introduced to
address the chattering problem of the control system. Finally, the proposed control scheme is validated by a wheeled
mobile robotic experimental platform.

Keywords: Wheeledmobile robot, trajectory tracking, disturbanceobserver, fixed-time stability, integral slidingmode
control

1. INTRODUCTION
During the past decades, the wheeled mobile robot (WMR) has attracted extensive attention as it is widely
used in various fields. The research on the WMR mainly includes robot positioning, motion planning, and
motion control, among which the motion control is a fundamental problem. There are three main parts of
the motion control, including point stabilization, path planning, and trajectory tracking [1]. The trajectory
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tracking control is a significant field in motion control, which has been studied extensively in recent years [2].
In practical engineering applications, a WMR is a highly coupled system with nonholonomic constraints and
external disturbances. Hence, it is significant to design an anti-interference trajectory tracking control scheme
with superior performance. At present, the design of the tracking controller of aWMR is mainly based on two
types: one is to consider only the kinematic model [3], while the other is to design on the basis of kinematic
and dynamic models [4]. The kinematic model-based control only considers the linear velocity and angular
velocity as the control inputs. Compared with the kinematic model, the introduction of dynamic models can
solve the external disturbance problem and the crucial nonholonomic constraint problem [5].

In [6], the system with nonhonolomic constraints was transformed into an extended chain system by coordi-
nate transformation. On this basis, some scholars have designed the trajectory tracking control schemes by
transforming the kinematic model of a WMR into a chain structure [7]. In practice, there is a problem called
“excellent velocity tracking” [8] when designing a trajectory tracking controller only based on a kinematic sys-
tem. Thus, it is more reasonable to take the force or torque as inputs of the control system instead of the
speed. Meanwhile, external disturbances can be further taken into account. Nevertheless, the design process
of the controller that simultaneously incorporates both the kinematic and dynamic models is complicated.
The work of Zhai and Song [9] transformed the dynamic error system into second-order and third-order sub-
systems. And an intermediate variable related to the position error is introduced to tackle the problem of
constructing a control method for a third-order system using the terminal sliding mode control. However, the
aforementioned control schemes can only achieve finite time stability. It is noteworthy that the upper limit of
the convergence time is unknown and dependent on the initial states of the control system. To overcome this
problem, fixed-time stable control methods are proposed [10]. In reference [11], a new integral sliding mode-
based control (ISMC) scheme was developed and applied on the dynamic model of the WMR to enable the
WMR to track the desired trajectory in a fixed time. However, there exists the singularity problem, making the
WMR unable to track the arbitrary trajectories and limiting its practical application when the desired angular
velocity is zero.

In the practical motion environment, there are external disturbances and uncertainties that can deteriorate the
performance of the control system. To cope with the problem, an observer-based control scheme is an efficient
method with disturbance-rejection performance [12]. The traditional observers can only achieve asymptotic
stability of the observation errors, whereas the finite time disturbance observers were designed to improve
the performance of the observer [13]. On this basis, the fault-tolerant attitude control problem of spacecraft
under external disturbances was solved by the introduction of a continuous finite-time observer [14], which
also restrains the chattering phenomenon. Zhang et al. put forward a novel continuous practical fixed-time
disturbance observer and applied it on a WMR, which can not only avoid the chattering problem but also
improve the ability to attenuate disturbance [15]. Different from the work of Zhang, the Gaussian error function,
which is sometimes called probability integral [16], can also be used to develop a control scheme that improves
the chattering problem [17].

Motivated by the above discussions, an integral sliding mode-based fixed-time trajectory tracking control
scheme is proposed by combining the kinematic model with the dynamic model of a WMR in this paper. (1)
A continuous fixed-time disturbance observer using the Gaussian error function is proposed, which avoids
the chattering problem and estimates the external disturbance of a WMR accurately. (2) An auxiliary variable
incorporating variable exponential coefficients is introduced to simplify the design process of the controller
for the third-order subsystem and avoid the singularity problem simultaneously. (3) The reliability and effec-
tiveness of the designed control scheme are verified by a comparative experiment conducted on a wheeled
mobile experimental platform.

2. PRELIMINARIES AND PROBLEM STATEMENT
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2.1. Preliminaries

Lemma 1 [18] Consider the following system as

¤𝒙 = 𝑓 (𝒙), 𝒙(0) = 𝒙0, 𝒙 ∈ R (1)

If there exists a positive definite Lyapunov function𝑉 (𝒙), which satisfies ¤𝑉 (𝒙) ≤ −𝑚1𝑉
𝑎 (𝒙) −𝑛1𝑉

𝑏 (𝒙) + 𝜚, where
𝑚1, 𝑛1, and 𝜚 are all positive constants. 0 < 𝑎 < 1, 𝑏 > 1 are real numbers. Then the origin of the system (2) is
fixed-time stable, and the settling time is bounded by 𝑡1 ≤ 1

𝑚1𝜗(1−𝑎) +
1

𝑛1𝜗(𝑏−1) with 0 < 𝜗 < 1.

Lemma 2 [16] The Gaussian error function is defined as follows:

erf (𝑥) = 2
√
𝜋

∫ 𝑥

0
𝑒−2𝑡2dt (2)

where 𝑒 is the natural constant. If 0 ≤ 𝑥 < 1, then the Gaussian error function will satisfy 1
2𝑥 ≤ erf (𝑥) ≤ 2𝑥.

Lemma 3 [19] For 𝑥 ∈ R and 𝜇 > 0, one gets the following chain of inequalities: 𝑥 tanh( 𝑥𝜇 ) < 𝑥 erf ( 𝑥𝜇 ) < |𝑥 |.

Lemma 4 [20] The following inequality will hold |𝑥 | − 𝜀
𝜅 ≤ 𝑥 tanh(𝜅𝑥) for any 𝜅 > 0 and for any 𝜀 ∈ R, where

𝜀 = 𝑒−(𝜀+1) . Then, 𝜀 = 0.2785 can be obtained.

2.2. Dynamic model of WMR
A nonholonomicWMR system is shown in Figure 1. It consists of two balance wheels and two driving wheels,
and the line between the balance wheels is perpendicular to the line between the driving wheels. The distance
between the driving wheel and the barycentric coordinate is 𝑅, and 𝑟 is the radius of the driving wheel. The
position and attitude control is achieved by independent direct current motors, which provide the appropriate
torques to the driving wheels. One assumes that the center of mass of the WMR coincides with the geometric
center. Then, the dynamic model of the WMR is expressed in the form of [21]

¤𝑥 = 𝑣 cos 𝜃
¤𝑦 = 𝑣 sin 𝜃
¤𝜃 = 𝜔
𝐽 ¤𝜔 = 𝑢1 + 𝑑1

𝑚 ¤𝑣 = 𝑢2 + 𝑑2

(3)

with 𝑢1 = 𝑅
𝑟 (𝜏1 − 𝜏2), and 𝑢2 = 1

𝑟 (𝜏1 + 𝜏2). 𝜏1 and 𝜏2 present the control torques. 𝑣 and 𝜔 are the linear and
angular velocities of the WMR, respectively. 𝑚 denotes the mass, and 𝐽 the moment of inertia. (𝑥, 𝑦) is the
actual coordinates. 𝜃 is the orientation of the vehicle counterclockwise from the positive direction of the 𝑋
axis. ( ¤𝑥, ¤𝑦, ¤𝜃) denotes the motion of the WMR. 𝑑1 and 𝑑2 represent the external disturbances.

The reference trajectory is defined as 
¤𝑥𝑟 = 𝑣𝑟 cos 𝜃𝑟
¤𝑦𝑟 = 𝑣𝑟 sin 𝜃𝑟
¤𝜃𝑟 = 𝜔𝑟

(4)

where 𝑥𝑟 , 𝑦𝑟 , and 𝜃𝑟 denote the position and attitude states of the virtual WMR, respectively.

Assumption 1: Suppose 𝜔𝑟 , ¤𝜔𝑟 , 𝑣𝑟 , and ¤𝑣𝑟 are satisfied with |𝜔𝑟 | ≤ 𝜔𝑟max , | ¤𝜔𝑟 | ≤ 𝜔1max , |𝑣𝑟 | ≤ 𝑣𝑟max , And
| ¤𝑣𝑟 | ≤ 𝑣1max , where 𝜔𝑟max , 𝜔1max , 𝑣𝑟max , and 𝑣1max are positive constants.
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Figure 1. Physical model of a WMR. WMR: wheeled mobile robot.

Assumption 2: Suppose the 𝑑1, 𝑑2, and their derivatives exist with bounds, which is given by |𝑑1 | ≤ 𝑘1𝑚 , |𝑑2 | ≤
𝑘2𝑚 , where 𝑘1𝑚 and 𝑘2𝑚 are all positive constants.

Then, the tracking errors of the WMR are expressed as
𝑥𝑒
𝑦𝑒
𝜃𝑒

 =


cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0

0 0 1



𝑥 − 𝑥𝑟
𝑦 − 𝑦𝑟
𝜃 − 𝜃𝑟

 . (5)

Furthermore, the error dynamics system could be transformed in the form of

¤𝑥𝑒 = 𝜔𝑦𝑒 − 𝑣 + 𝑣𝑟 cos 𝜃𝑒
¤𝑦𝑒 = 𝑣𝑟 sin 𝜃𝑒 − 𝜔𝑥𝑒
¤𝜃𝑒 = 𝜔 − 𝜔𝑟
𝐽 ¤𝜔 = 𝑢1 + 𝑑1

𝑚 ¤𝑣 = 𝑢2 + 𝑑2

(6)

To simplify the whole design process, the system (6) can be divided into two subsystems, which contain a
second-order subsystem: { ¤𝜃𝑒 = 𝜔 − 𝜔𝑟

𝐽 ¤𝜔 = 𝑢1 + 𝑑1
(7)

and a third-order subsystem: 
¤𝑥𝑒 = 𝜔𝑦𝑒 − 𝑣 + 𝑣𝑟 cos 𝜃𝑒
¤𝑦𝑒 = 𝑣𝑟 sin 𝜃𝑒 − 𝜔𝑥𝑒
𝑚 ¤𝑣 = 𝑢2 + 𝑑2

(8)

3. FIXED-TIME TRAJECTORY CONTROL
In this section, a fixed-time sliding mode control scheme is developed to realize the fast and high-accuracy
trajectory tracking control of a WMR under external disturbances. Firstly, a fixed-time disturbance observer

http://dx.doi.org/10.20517/ces.2023.14
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and a new fixed-time sliding mode surface are proposed for the second-order subsystem (7). On this basis, a
fixed-time controller is constructed to make the error variables, 𝜃𝑒 and ¤𝜃𝑒 , converge into a small region around
the origin. Then, a fixed-time controller is developed for the third-order subsystem (8), which guarantees that
the system state variables, 𝑥𝑒, 𝑦𝑒, and 𝑣, are all uniformly ultimately bounded, and the tracking errors, 𝑥𝑒 and
𝑦𝑒 , can converge into a small region around the origin in a fixed time.

3.1. Tracking control laws design for the second-order subsystem
3.1.1. Fixed-time disturbance observer
Firstly, for the attitude error subsystem (7), define an auxiliary variable as

𝜍1 = 𝜔 −𝜛1 (9)

where 𝜛1 satisfies
¤𝜛1 =

1
𝐽
𝑢1 + 𝑙11 erf (𝜍1) + 𝑙12 |𝜍1 |𝛾1 erf (𝜍1) (10)

The parameters 𝑙11 and 𝑙12 are positive constants with 𝑙11 > 𝑘1𝑚/𝐽. Let variable exponential coefficient 𝛾1 =
𝜆0𝜍

2
1

1+𝜇0𝜍
2
1
with 𝜆0 and 𝜇0 satisfying 0 < 𝜇0 < 1 and 1 + 𝜇0 < 𝜆0.

Theorem 1 For the second-order subsystem (7), if the disturbance observer is constructed as

𝑑1 = 𝐽
(
𝑙11 erf (𝜍1) + 𝑙12 |𝜍1 |𝛾1 erf (𝜍1)

)
(11)

then it can estimate 𝑑1 accurately in a fixed time. That is to say, the observation error 𝑑1 = 𝑑1 − 𝑑1 can converge
into a small region within a fixed time.

Proof of Theorem 1 Select a Lyapunov function as 𝑉2 = 𝜍2
1 , differentiating it, one has

¤𝑉2 = 2𝜍1( ¤𝜔 − ¤𝜛1)

= 2𝜍1

( 1
𝐽
(𝑢1 + 𝑑1) −

( 1
𝐽
𝑢1 + 𝑙11 erf (𝜍1) + 𝑙12 |𝜍1 |𝛾1 erf (𝜍1)

) )
= 2𝜍1

(
− 𝑙11 erf (𝜍1) − 𝑙12 |𝜍1 |𝛾1 erf (𝜍1) +

1
𝐽
𝑑1

)
= −2

(
𝑙11𝜍1 erf (𝜍1) −

1
𝐽
𝜍1𝑑1 + 𝑙12𝜍1 |𝜍1 |𝛾1 erf (𝜍1)

)
≤ −2

(
𝑙11𝜍1tanh(𝜍1) −

1
𝐽
𝜍1𝑑1 + 𝑙12𝜍1 |𝜍1 |𝛾1 erf (𝜍1)

)
≤ −2

(
𝑙11 |𝜍1 | − 𝑙11𝜖1 −

𝑘1𝑚

𝐽
|𝜍1 | + 𝑙12𝜍1 |𝜍1 |𝛾1 erf (𝜍1)

)
≤ −2𝑙12 |𝜍1 | |𝜍1 |𝛾1 erf (|𝜍1 |) + 2𝑙11𝜖1

= −2𝑙12 |𝜍1 |𝛾1+1 erf (|𝜍1 |) + 2𝑙11𝜖1

(12)

where 𝜖1 is a positive constant.
Case 1 When 𝑉2 > 1 and |𝜍1 | > 1, one has erf (|𝜍1 |) > erf (1) and 𝜆0𝜍

2
1

1+𝜇0𝜍
2
1
≥ 𝜆0

1+𝜇0
> 1. Then (12) can be

rewritten as

¤𝑉2 ≤ −2(𝑙12 erf (1) − 𝑙11𝜖1) |𝜍1 |
𝜆0

1+𝜇0
+1

≤ −2(𝑙12 erf (1) − 𝑙11𝜖1)𝑉
𝜆0+𝜇0+1
2(1+𝜇0 )

2

(13)

As 𝑙12 erf (1) − 𝑙11𝜖1 > 0 and 𝛾̄1 = 𝜆0+𝜇0+1
2(1+𝜇0) > 1, then all the solutions of {𝑉2 > 1} will reach the set {𝑉2 ≤ 1}

within a fixed time 𝑡 𝑓 1 ≤ 1
2(𝑙12 erf (1)−𝑙11𝜖1) (𝛾̄1−1) .

http://dx.doi.org/10.20517/ces.2023.14
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Case 2 In the converse case 𝑉2 ≤ 1, one has

¤𝑉2 ≤ −2𝑙12 |𝜍1 | |𝜍1 |𝛾1 erf (|𝜍1 |) + 2𝑙11𝜖1 (14)

As 1 + 𝜇0𝜍
2
1 ≥ 1 and |𝜍1 | ≤ 1, it can be obtained that min

(
|𝜍1 |𝛾1

)
≥ min

(
|𝜍1 |𝜆0𝜍

2
1
)
= 𝑒

−𝜆0
2𝑒 . Considering the

Lemma 3, then (14) is converted into the following form

¤𝑉2 ≤ −2𝑙12 |𝜍1 | |𝜍1 |𝛾1 tanh(|𝜍1 |) + 2𝑙11𝜖1

≤ 2𝑙12 |𝜍1 | |𝜍1 |𝛾1 + 2𝑙12 |𝜍1 |𝛾1𝜖2 + 2𝑙11𝜖1

≤ −2𝑙12 |𝜍1 | |𝜍1 |𝛾1 + 2𝑙12𝜖2 + 2𝑙11𝜖1

≤ −2𝑙12 |𝜍1 |𝛾1+1 + 2𝑙11𝜖1 + 2𝑙12𝜖2

≤ −2𝑙12𝑒
−𝜆0
2𝑒 |𝜍1 | + 2𝑙11𝜖1 + 𝑙12𝜖2

≤ −𝑏1𝑉
1
2

2 + 𝜖

≤ −𝑙13𝑏1𝑉
1
2

2 − (1 − 𝑙13)𝑏1𝑉
1
2

2 + 𝜖

(15)

with 𝑏1 = 2𝑙12𝑒
−𝜆0
2𝑒 , and 𝜖 = 2𝑙11𝜖1+2𝑙12𝜖2. When 0 < 𝑙13 < 1, and 𝜖−(1− 𝑙13)𝑏1𝑉

1
2

2 ≥ 0, (15) can be simplified

as ¤𝑉2 ≤ −𝑙13𝑏1𝑉
1
2

2 . Then, the solution of 𝑉2 will reach a small set Δ1, which is defined as Δ1 =
{
𝜍1 |𝑉1(𝜍1) ≤

( 𝜖
𝑏1 (1−𝑙13) )

2} within a settling time 𝑡 𝑓 2 ≤ 2
𝑏1𝑙13

.

In view of the above two cases, the auxiliary variable 𝜍1 will converge into a small set Δ1 =
{
𝜍1 |𝑉1(𝜍1) ≤

( 𝜖
𝑏1 (1−𝑙13) )

2} within settling time 𝑡 𝑓 = 𝑡 𝑓 1 + 𝑡 𝑓 2.

Then, the disturbance observation error

𝑑1 = 𝑑1 − 𝑑1

= 𝑑1 − 𝐽
(
𝑙11 erf (𝜍1) + 𝑙12 |𝜍1 |𝛾1 erf (𝜍1)

) (16)

The disturbance 𝑑1 is bounded according to Assumption 1. Thus, the disturbance observer (11) can estimate
𝑑1 accurately, and the observation error 𝑑1 can remain in a small set Δ2 =

{
𝜍1
��|𝜍1 | ≤ 𝑘1𝑚 + 𝐽

(
𝑙11 erf (Δ1) +

𝑙12 |Δ1 |𝛾̄1 erf (Δ1)
)}

after a fixed time, where 𝛾̄1 =
𝜆0Δ2

1
1+𝜇0Δ2

1
.

3.1.2. Fixed-time sliding mode controller
For the subsystem (7), define 𝜔𝑒 = 𝜔 − 𝜔𝑟 . A fixed-time integral sliding mode surface is introduced as
follows [22]

𝑠1 = 𝜔𝑒 +
∫ 𝑡

0

(
𝑘11(d𝜃𝑒c 𝑝1 + d𝜃𝑒c𝑞1) + 𝑘12(d𝜔𝑒c 𝑝2 + d𝜔𝑒c𝑞2)

)
d𝜏 (17)

with 0 < 𝑝𝑖 < 1, 𝑞𝑖 > 1, and (𝑖 = 1, 2). For any 𝑥 ∈ R, 𝛼 ∈ R+, the notation is defined as d𝑥c𝛼 = |𝑥 |𝛼sign(𝑥).
Based on the sliding mode surface as (17), the fixed-time controller is designed as follows:

𝑢1 = −𝐽
(
𝑘11(d𝜃𝑒c 𝑝1 + d𝜃𝑒c𝑞1) + 𝑘12(d𝜔𝑒c 𝑝2 + d𝜔𝑒c𝑞2) + 𝛼1d𝑠1c 𝑝3 + 𝛼2d𝑠1c𝑞3 + 𝛼3 erf (𝑠1) − ¤𝜔𝑟

)
− 𝑑1 (18)

where 𝛼𝑖 , 𝑘1𝑖 , (𝑖 = 1, 2) are positive constants, 𝛼3 satisfies 𝛼3 ≥ 𝑘1𝑚
𝐽 . In addition, 𝑝𝑖 , 𝑞𝑖 , (𝑖 = 1, 2, 3) are all

positive odd integers with 0 < 𝑝𝑖 < 1, 𝑞𝑖 > 1.

Theorem 2 For the second-order system (7), if the fixed-time controller is constructed in the form of (18), then
the real sliding mode variable will converge into a small set within a fixed time.

http://dx.doi.org/10.20517/ces.2023.14
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Proof of Theorem 2 Choose a Lyapunov function as 𝑉3 = 1
2 𝑠

2
1 and refer to Lemma 2 to Lemma 4, the time

derivative of 𝑉3 is

¤𝑉3 = 𝑠1
(
¤𝜔𝑒 + 𝑘11(d𝜃𝑒c 𝑝1 + d𝜃𝑒c𝑞1) + 𝑘12(d𝜔𝑒c 𝑝2 + d𝜔𝑒c𝑞2

)
= 𝑠1

( 1
𝐽
(𝑢1 + 𝑑1) − ¤𝜔𝑟 + 𝑘11(d𝜃𝑒c 𝑝1 + d𝜃𝑒c𝑞1) + 𝑘12(d𝜔𝑒c 𝑝2 + d𝜔𝑒c𝑞2)

)
= 𝑠1

(
− 𝛼1d𝑠1c 𝑝3 − 𝛼2d𝑠1c𝑞3 − 𝛼3 erf (𝑠1) +

1
𝐽
𝑑1

)
≤ −𝛼1 |𝑠1 |𝑝3+1 − 𝛼2 |𝑠1 |𝑞3+1 − 𝛼3𝑠1 tanh(𝑠1) +

1
𝐽
|𝑠1 | |𝑑1 |

≤ −2𝑝3𝛼1𝑉
𝑝3
2 − 2𝑞3𝛼2𝑉

𝑞3
2 + 𝜗̄1

(19)

where 𝑝3 = 𝑝3+1
2 , 𝑞3 = 𝑞3+1

2 , 𝜗̄1 = 𝛼3𝜗1 with 𝜗1 being a positive constant. By using Lemma 4, the second-
order system (7) is fixed-time stable. The sliding mode surface 𝑠1 will converge into a small region Δ3 ={
𝑠1 |𝑉 (𝑠1) ≤ min

{( 𝑐2
𝛼12 𝑝̄3

) 1
𝑝̄3 ,

( 𝑐2
𝛼22𝑞̄3

) 1
𝑝̄3
}}

around the origin in a fixed time 𝑡𝑠1 , which is determined by 𝑡𝑠1 ≤
1

𝛼12 𝑝̄3𝜙1 (1−𝑝3)
+ 1

𝛼22𝑞̄3𝜙1 (𝑞3−1) . Then, one can obtain that variables 𝜃𝑒 and 𝜔𝑒 converge to zero along the real
sliding mode in a fixed time [23].

3.2. Tracking control laws design for the third-order subsystem
After the angular error 𝜃𝑒 converges to zero according to Theorem 2, one can obtain that sin 𝜃𝑒 equals zero,
and cos 𝜃𝑒 equals 1. The system (8) can be simplified as

¤𝑥𝑒 = 𝜔𝑟 𝑦𝑒 − 𝑣 + 𝑣𝑟
¤𝑦𝑒 = −𝜔𝑟𝑥𝑒
𝑚 ¤𝑣 = 𝑢2 + 𝑑2

(20)

3.2.1. Fixed-time disturbance observer
Introduce the following auxiliary variable for the simplified third-order subsystem (20)

𝜍2 = 𝑣 −𝜛2 (21)

where 𝜛2 satisfies
¤𝜛2 =

1
𝑚
𝑢2 + 𝑙21erf (𝜍2) + 𝑙22 |𝜍2 |𝛾2 erf (𝜍2) (22)

where 𝛾2 =
𝜆3𝜍

2
1

1+𝜇3𝜍
2
1
, and 𝜆3 and 𝜇3 are integers satisfying the constraints: 0 < 𝜇3 < 1, 1 + 𝜇3 < 𝜆3. The

parameters 𝑙21 and 𝑙22 are positive constants with 𝑙21 > 𝑘2𝑚 and 𝑙22 > 0.

Theorem 3 For the simplified third-order subsystem (20), a fixed-time disturbance observer is developed in the
form of

𝑑2 = 𝑚
(
𝑙21 erf (𝜍2) + 𝑙22 |𝜍2 |𝛾2 erf (𝜍2)

)
(23)

then it can estimate 𝑑2 in a fixed time, and the observation error 𝑑2 = 𝑑2 − 𝑑2 can converge into a small region
around the origin within a fixed time 𝑡𝑑2 .

Proof of Theorem 3 Similar to the proof of Theorem 1.

3.2.2. Fixed-time sliding mode controller
For the third-order subsystem (20), introduce the following auxiliary variable:

𝜉 = 𝑥𝑒 +
∫ 𝑡

0

(
𝜆1 erf (𝑥𝑒) − 𝜆2 erf (𝑦𝑒) + 𝜆3𝑥𝑒𝑦𝑒 erf (𝑦𝑒) + 𝑘1 |𝑥𝑒 |𝛾3 erf

( 𝑥𝑒
𝜖3

) )
d𝜏 (24)
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where 𝜆1 𝜆2, 𝑘1, and 𝜖3 are positive constants, 𝜆2 ≤ 𝜆1 erf (1). Let 𝛾3 = 𝜆4𝑥𝑒
2

1+𝜇4𝑥𝑒2 , with 𝜆4 and 𝜇4 being integers
and 0 < 𝜇4 < 1, 1 + 𝜇4 < 𝜆4.

Select a fixed-time sliding mode surface as:

𝑠2 = ¤𝜉 +
∫ 𝑡

0

(
𝑘21 (d𝜉c 𝑝4 + d𝜉c𝑞4) + 𝑘22

(
d ¤𝜉c 𝑝5 + d ¤𝜉c𝑞5

) )
d𝜏 (25)

where 𝑘21 and 𝑘22 are positive constants, 0 < 𝑝𝑖 < 1 and 𝑞𝑖 > 1, 𝑖 = 4, 5 are positive odd integers.

Theorem 4 For the third-order subsystem (20), if the fixed-time sliding mode surface is chosen as (25) and the
fixed-time controller is designed as (26),

𝑢2 =𝑚
(
¤𝑣𝑟 + ¤𝜔𝑟 𝑦𝑒 + 𝜔𝑟 ¤𝑦𝑒 + ¤ℎ(𝑥𝑒, 𝑦𝑒) + 𝑘21 (d𝜉c 𝑝4 + d𝜉c𝑞4)

+𝑘22
(
d ¤𝜉c 𝑝5 + d ¤𝜉c𝑞5

)
+ 𝛽1d𝑠2c 𝑝6 + 𝛽2d𝑠2c𝑞6 + 𝛽3 erf (𝑠2)

)
+ 𝑑2

(26)

then the slidingmode surface 𝑠2 is fixed-time stable, which will converge into a small region of origin within settling
time 𝑡𝑠2 ≤ 1

𝛼42 𝑝̄6𝜙2 (1−𝑝6)
+ 1
𝛼52𝑞̄6𝜙2 (𝑞6−1) . ℎ(𝑥𝑒, 𝑦𝑒) = 𝜆1 erf (𝑥𝑒) − 𝜆2 erf (𝑦𝑒) + 𝜆3𝑥𝑒𝑦𝑒 erf (𝑦𝑒) + 𝑘1 |𝑥𝑒 |𝛾3 erf

( 𝑥𝑒
𝜖2

)
,

in which 𝛽1, 𝛽2 are positive constants, and 𝑝6, 𝑞6 are positive odd integers satisfying 0 < 𝑝6 < 1, 𝑞6 > 1.

Proof of Theorem 4 The proof process will be conducted in 3 steps: (1) After the angular error 𝜃𝑒 converges
to zero according to Theorem 2, 𝑠2 and the auxiliary variable 𝜉 can converge into a small region around the
origin within a fixed time; (2) The error variables 𝑥𝑒, 𝑦𝑒 can converge into a small region around the origin
within a fixed time; (3) It should be proved that 𝑥𝑒 and 𝑦𝑒 do not escape to infinity before the angular error 𝜃𝑒
converges to zero.

Step 1 Select a positive Lyapunov function 𝑉4 = 1
2 𝑠

2
2, differentiating it and substituting (24)-(26) yields to

¤𝑉4 = 𝑠2 ¤𝑠2

= 𝑠2
(
− 𝛽1d𝑠2c 𝑝6 − 𝛽2d𝑠2c𝑞6 − 𝛽3 erf (𝑠2) +

1
𝑚
(𝑑2 − 𝑑2)

)
≤ −𝛽1 |𝑠2 |𝑝6+1 − 𝛽2 |𝑠2 |𝑞6+1 − 𝛽3𝑠2 erf (𝑠2) +

1
𝑚
𝑠2𝑑2

≤ −𝛽1 |𝑠2 |𝑝6+1 − 𝛽2 |𝑠2 |𝑞6+1 − 𝛽3𝑠2 tanh(𝑠2) +
1
𝑚
𝑠2𝑑2

≤ −𝛽1 |𝑠2 |𝑝6+1 − 𝛽2 |𝑠2 |𝑞6+1 − 𝛽3 |𝑠2 | +
1
𝑚
|𝑠2 | |𝑑2 |

≤ −2𝑝6 𝛽1𝑉
𝑝6
3 − 2𝑞6 𝛽2𝑉

𝑞6
3 + 𝜗̄2

(27)

where 𝑝6 = 𝑝6+1
2 , 𝑞6 = 𝑞6+1

2 , 𝜗̄2 = 𝛽3𝜗2 with 𝜗2 being a positive constant. Using the Lemma 4, the third-order
subsystem (14) is fixed-time stable, and 𝑠2 will converge into a small setΔ4 =

{
𝑠2 |𝑉 (𝑠2) ≤ min

{( 𝑐3
𝛼12 𝑝̄6

) 1
𝑝̄6 ,

( 𝑐3
𝛼22𝑞̄6

) 1
𝑝̄6
}}

around zero in the fixed time 𝑡𝑠2 , which is determined by

𝑡𝑠2 ≤ 1
𝛼42𝑝6𝜙2(1 − 𝑝6)

+ 1
𝛼52𝑞6𝜙2(𝑞6 − 1) (28)

Then, 𝑠2 will hold in a small region of origin, which guarantees a real sliding mode surface [23]. Therefore, the
auxiliary variable 𝜉 and its derivative ¤𝜉 will also converge into the origin along the sliding mode surface [24].

Step 2 According to (25), when the auxiliary ¤𝜉 = 0, one has

¤𝑥𝑒 = −𝜆1 erf (𝑥𝑒) + 𝜆2 erf (𝑦𝑒) − 𝜆3𝑥𝑒𝑦𝑒 erf (𝑦𝑒) − 𝑘1 |𝑥𝑒 |𝛾3 erf
( 𝑥𝑒
𝜖3

)
(29)
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Choose a Lyapunov function as 𝑉5 = 𝑥2
𝑒 , the time derivative of 𝑉5 is

¤𝑉5 = 2𝑥𝑒 ¤𝑥𝑒
= −2

(
𝜆1𝑥𝑒 erf (𝑥𝑒) − 𝜆2𝑥𝑒 erf (𝑦𝑒) + 𝜆3𝑥

2
𝑒 𝑦𝑒 erf (𝑦𝑒) + 𝑘1 |𝑥𝑒 |𝛾3 erf ( 𝑥𝑒

𝜖3
)
)

≤ −2
(
𝜆1 |𝑥𝑒 | − 𝜆2 |𝑥𝑒 | − 𝜆1𝜖4 + 𝑘1𝑥𝑒 |𝑥𝑒 |𝛾3 erf ( 𝑥𝑒

𝜖3
)
)

≤ −2
(
𝑘1𝜖3 |𝑥𝑒 | |𝑥𝑒 |𝛾3 erf ( | 𝑥𝑒

𝜖3
|) − 𝜆1𝜖4

) (30)

where 𝜖4 is a positive constant. The rest of the proof is similar to the proof ofTheorem 2. There exists a constant
0 < 𝜗3 < 1 such that the variable 𝑥𝑒 will reach and keep in a small region Δ5 around the origin within a fixed
time 𝑇2:

𝑇2 ≤ 1

𝑘1𝜗3𝑒
− 𝜆4

2𝑒

+ 1
2𝑘1𝜖3( 𝜆4

1+𝜇4
− 1)

(31)

Then, it can be obtained that the ¤𝑥𝑒 is a uniformly continuous form (29). Employ Barbalat Lemma [25] to prove
¤𝑥𝑒 → 0 as 𝑡 → ∞, then ¤𝑥𝑒 is bounded after the variable 𝑥𝑒 converges. Hence, there exists a small region Δ5
around the origin that 𝑦𝑒 can converge into Δ5.

Step 3 Before the angular error 𝜃𝑒 converges to zero, 𝜃𝑒 ≠ 0, such that subsystem (13) cannot be simplified
as (19). It should be proved that system state variables 𝑥𝑒, 𝑦𝑒, and 𝑣 are bounded before the angular error 𝜃𝑒
converges to zero.
Consider the following bounded function:

𝑉6 =
1
2
𝑥2
𝑒 +

1
2
𝑦2
𝑒 + |𝑣 | (32)

The time derivative of 𝑉6 is

¤𝑉6 ≤ |𝑥𝑒 | | ¤𝑥𝑒 | + |𝑦𝑒 | | ¤𝑦𝑒 | + | ¤𝑣 |

≤ |𝑥𝑒 | | ¤𝑥𝑒 | + |𝑦𝑒 | | ¤𝑦𝑒 | + 𝑚
(
𝜔𝑟 ¤𝑦𝑒 + | ¤ℎ(𝑥𝑒, 𝑦𝑒) | + 𝑘21

(
|𝜉 |𝑝4 + |𝜉 |𝑞4

)
+ 𝑘22(| ¤𝜉 |𝑝5 + | ¤𝜉 |𝑞5

)
+𝛽1 |𝑠 |𝑝6

2 + 𝛽2 |𝑠 |𝑞6
2

)
+ |𝑑2 |
𝑚

≤ |𝑥𝑒 | | ¤𝑥𝑒 | + |𝑦𝑒 | | ¤𝑦𝑒 | + 𝑚
(
| ¤𝑦𝑒 | + 𝑘21

(
|𝜉 |𝑝4 + |𝜉 |𝑞4

)
+ 𝑘22

(
| ¤𝜉 |𝑝5 + | ¤𝜉 |𝑞5

)
+ 𝛽1 |𝑠 |𝑝6

2 + 𝛽2 |𝑠 |𝑞6
2

+𝜆3
(
| ¤𝑥𝑒 | |𝑦𝑒 | + |𝑥𝑒 | | ¤𝑦𝑒 | + |𝑥𝑒 | |𝑦𝑒 | | ¤𝑦𝑒 |

)
+ 𝑘1𝜆4 |𝑥𝑒 | | ¤𝑥𝑒 |

1 + 𝜇0𝑥
2
𝑒

|𝑥𝑒 |𝛾3
(
1 + 2|𝑥𝑒 |

1 + 𝜇4𝑥
2
𝑒

)
+ 2𝑘1

𝜖2
√
𝜋
|𝑥𝑒 |𝛾3 | ¤𝑥𝑒 |

)
+ |𝑑2 |
𝑚

≤ |𝑥𝑒 | | ¤𝑥𝑒 | + |𝑦𝑒 | | ¤𝑦𝑒 | + 𝑚
(
| ¤𝑦𝑒 | + 𝑘21

(
|𝜉 |𝑝4 + |𝜉 |𝑞4

)
+ 𝑘22

(
| ¤𝜉 |𝑝5 + | ¤𝜉 |𝑞5

)
+ 𝛽1 |𝑠 |𝑝6

2 + 𝛽2 |𝑠 |𝑞6
2

+𝜆3
(
| ¤𝑥𝑒 | |𝑦𝑒 | + |𝑥𝑒 | | ¤𝑦𝑒 | + |𝑥𝑒 | |𝑦𝑒 | | ¤𝑦𝑒 |

)
+ 𝑘1𝜆4

𝜇4
(1 + 2|𝑥𝑒 |) |𝑥𝑒 |

𝜆4
𝜇4

−1 |𝑥𝑒 |

+ 2𝑘1

𝜖2
√
𝜋
|𝑥𝑒 |

𝜆4
𝜇4 |𝑥𝑒 |

)
+ |𝑑2 |
𝑚

(33)

Let 𝜂1 =
√
𝑥2
𝑒 + 𝑦2

𝑒 + |𝑣 | ≥ 𝜂 > 1 , then one has the following inequalities: |𝑥𝑒 | ≤ 𝜂1, |𝑦𝑒 | ≤ 𝜂1, |𝑣 | ≤ 𝜂1.

Furthermore, there exist positive constants 𝑎𝑖 (𝑖 = 3, 4), 𝑏𝑙 , 𝑐𝑙 , (𝑙 = 4, 5, ..., 9), which satisfy |𝑥𝑒 |
𝜆4
𝜇4 ≤ 𝑎3𝜂1,

|𝑥𝑒 |
𝜆4
𝜇4

−1 ≤ 𝑎4𝜂1, |𝑠2 |𝑝6 < 𝑏4 + 𝑐4𝜂1, |𝑠2 |𝑞6 < 𝑏5 + 𝑐5𝜂1, |𝜉 |𝑝4 < 𝑏6 + 𝑐6𝜂1, |𝜉 |𝑞4 < 𝑏7 + 𝑐7𝜂1, | ¤𝜉 |𝑝5 < 𝑏8 + 𝑐8𝜂1,
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| ¤𝜉 |𝑞5 < 𝑏9 + 𝑐9𝜂1. According toTheorem 3, the state variable 𝜃𝑒, 𝜔 will converge into the origin within a fixed
time 𝑡𝑠1 , then one has 𝜃𝑒 ≤ 𝜃𝑚 , |𝜔| ≤ 𝜔𝑚 , |𝑑2 | < 𝑘𝑑 . Further | ¤𝑦𝑒 | < | ¤𝑥𝑒 | ≤ 𝑣1max +𝜔𝑚𝜂1 can be obtained. Then,
(33) can be simplified as

¤𝑉6 ≤ (2𝜂1 + 2𝑚𝜆3 + 𝜂2
1 + 𝑚)(𝑣1max + 𝜔𝑚𝜂1) +

𝑚𝑘1𝜆4

𝜇4
(𝑣1max + 𝜔𝑚𝜂1)𝑎4𝜂1

+2𝑚𝑘1

𝜖2
√
𝜋
𝑎3𝜂1(𝑣1max + 𝜔𝑚𝜂1) +

𝑘𝑑
𝑚

≤
𝜂2

1
2

2
(
2𝑣1max + 3𝜔𝑚 + 2𝑚𝜆3 + 𝑚 + 2𝑚𝑘1𝑎4𝜆4

𝜇4
(𝑣1max + 𝜔𝑚) +

2𝑚𝑎3𝑘1

𝜖2
√
𝜋

(𝑣1max + 𝜔𝑚)
)

+2𝑚𝜆3𝑣1max +
𝑘𝑑
𝑚

≤ 𝐾𝑉6 + 𝜚1

(34)

where 𝐾 and 𝜚1 satisfy the following constraints:

𝐾 = 2
(
2𝑣1max + 3𝜔𝑚 + 2𝑚𝜆3 + 𝑚 + 2𝑚𝑘1𝑎4𝜆4

𝜇4
(𝑣1max + 𝜔𝑚) +

2𝑚𝑎3𝑘1

𝜖2
√
𝜋

(𝑣1max + 𝜔𝑚)
)

(35)

𝜚1 = 2𝑚𝜆3𝑣1max +
𝑘𝑑
𝑚

(36)

On the contrary, if 𝜂1 > 1, there exists a positive constant 𝜚2, which satisfies ¤𝑉6 ≤ 𝜚2. One has ¤𝑉6 ≤ 𝐾𝑉6 + 𝜚3
for the state variable 𝑥𝑒, 𝑦𝑒, 𝑣. Further, before the angular error 𝜃𝑒 converges to zero, one can obtain

𝑉6 ≤
(
𝑉6(0) +

𝜚3

𝐾

)
𝑒𝐾𝑡 − 𝜚3

𝐾
(37)

Remark 1The auxiliary variable 𝜉 in (24) can reduce the order of the third-order subsystem, which simplifies
the process of the controller design. In addition, the controller developed in this paper can guarantee that the
system state variables converge in a fixed time and the chattering problem is solved by using the error function
erf(·). Furthermore, utilizing the variable exponent coefficient in (24) avoids the common singularity problem.

4. EXPERIMENT RESULTS
To verify the effectiveness of the proposed control scheme, the trajectory tracking experiment is implemented
on a Quanser QBot 2e mobile robot platform composed of a QBot 2e mobile robot, an OptiTrack system with
12 infrared cameras, and a computer. The experimental platform is presented in Figure 2. The whole closed-
loop experiment structure is as follows: The simulation diagram is compiled on the host computer equipped
withMATLAB/Simulink to transform the simulation into an executable file. And the control scheme is written
to the Gumstix computer embedded in the QBot 2e through wireless communication protocol. The real-time
position information of the QBot 2e is obtained by the OptiTrack positioning system. Then the host computer
calculates the information and transmits them to the embedded computer of aWMR for the input of real-time
calculation of executable files. So as to complete the trajectory experiment of the mobile robot.

In the experiment, the physical parameters of the QBot 2e are chosen as follows: 𝑚 = 4 kg, 𝐽 = 2.5 kg · m2.
The desired reference trajectory is set as 𝑥𝑟 = cos(0.2𝑡) m, 𝑦𝑟 = sin(0.2𝑡) m. The initial values of the reference
and practical trajectories are [𝑥𝑟 (0), 𝑦𝑟 (0), 𝜃𝑟 (0)]T = [1, 0, 𝜋/2]T, [𝑥(0), 𝑦(0), 𝜃 (0)]T = [0.7,−0.02, 𝜋/6]T,
respectively. The main relevant parameters of the proposed control scheme are as follows: 𝑘1 = 0.001,
𝑘11 = 𝑘12 = 0.9, 𝑘21 = 0.05, 𝑘22 = 0.06, 𝜖2 = 0.00001. Choose the parameters 𝛼1 = 2, 𝛼2 = 0.5, 𝛽1 = 𝛽2 = 1
for the sliding mode surface 𝑠1 in (17) and 𝑠2 in (25), respectively.
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Figure 2. The Quanser QBot 2e Mobile Robot Platform.
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Figure 3. The comparative trajectory tracking experiment results of the WMR. WMR: wheeled mobile robot.

It is obvious that the WMR trajectory tracking mission can be achieved by the designed control method as
plotted in the red track in Figure 3. The time response curves of the sliding mode surfaces, 𝑠1 and 𝑠2, are
shown in Figure 4, which converge very quickly. To illustrate the excellence of the proposed control method, a
comparative experiment on the trajectory tracking ofWMRs is conducted between this work and reference [26].
The control inputs of the designed control scheme and reference are shown in Figure 5, which are nonsingular
and continuous. Figure 6 illustrates the tracking errors in this experiment, which have a big fluctuation due to
the influence of external disturbances. In the experiment, the external disturbance is from the experimental
environment, such as uneven ground. The observed disturbance values are shown in Figure 7, which indicates
the effectiveness of the proposed disturbance observer in this work. From the experimental results, it can
be concluded that the designed control scheme has the robustness against the external disturbance and high
tracking accuracy.

5. DISCUSSION
In this paper, a universal control scheme for fixed-time trajectory tracking based on ISMC is put forward.
The dynamic model of the WMR has been transformed into two error subsystems. Then utilizing the fixed-
time technology and ISMC, a new fixed-time disturbance observer has been proposed and applied on the two
error subsystems. Furthermore, an observer-based tracking control method has been proposed to achieve

http://dx.doi.org/10.20517/ces.2023.14
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Figure 4. Comparative results of sliding mode surfaces in the experi-
ment.
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Figure 5. Comparative results of control torques in the experiment.
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Figure 6. Comparative results of tracking errors 𝑥𝑒 ,𝑦𝑒 ,𝜃𝑒 in the experi-
ment.

0 20 40 60 80 100
-1.2

-0.8

-0.4

0

0.4

0 20 40 60 80 100
-0.1

-0.05

0

0.05

0.1

30 31 32
-0.06

0
0.06

30 31 32
-0.02

0
0.02

Figure 7. Disturbance estimation 𝑑1 and 𝑑2 in the experiment.

a trajectory tracking mission for the WMR, and guarantee the tracking error converges within a fixed time.
Finally, the proposed control approach has been verified by a mobile robotic platform, and the experimental
results show fine control performances. Our future work will focus on how to realize the formation tracking
control of multi-wheeled mobile robots in both theory and experiment.
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