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Abstract
The cerebellum has long been associated with motor control. However, its role in cognitive functions has attracted 
increasing attention recently. The uniformity of cerebellar internal structure seems at odds with its involvement in 
such diverse cognitive functions. Nonetheless, in cerebellar diseases such as ataxia, there is a comorbidity of motor 
and cognitive impairments, raising essential questions about how and to what extent the cerebellum participates in 
cognitive functions. This review begins by tracing the historical development of cerebellar research, suggesting that 
the diverse connections between the cerebellum and cerebral cortex, basal ganglia, and other subcortical nuclei 
form the basis for the cerebellum’s role in regulating cognitive functions. We then delve into its involvement in 
language, reward-based learning, working memory, and spatial cognition. Additionally, we summarize the changes 
in the cerebellum observed in Alzheimer’s disease (AD), Parkinson’s disease (PD), and ataxias and their impact on 
cognitive functions. By discussing the role and mechanism of the cerebellum in cognition in physiology and 
pathology from the aspects of structure and function, we aim to shed light on promising new therapeutic targets 
related to the cerebellum for cognitive impairment.
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INTRODUCTION
The earliest study of the cerebellum was authored by Vincenzo Malacarne in 1776 when he was 
investigating the relationship between the size of the human cerebellum and intelligence, in which he 
described many structures of the cerebellum, such as vermis, tonsil, nodulus, and lingula[1]. Approximately 
half a century later, Jean Marie Pierre Flourens demonstrated through experiments on pigeons that damage 
to the cerebellum led to a decline in their ability to fly, and such decline was not due to a loss of muscle 
strength, but instead to a loss of the coordination of their voluntary wing movements[2]. Subsequently, a 
series of research studies conducted on cerebellum lesioned monkeys[3-5], along with clinical observations of 
patients with cerebellar injuries[6-11], reported that cerebellum syndrome was characterized by ataxic motor 
symptoms (e.g., incoordination of balance, gait, extremity, and eye movements) and vestibulo-cerebellar 
syndrome (e.g., imbalance, nystagmus, and vertigo). On the other hand, the cognitive and psychiatric 
symptoms resulting from the cerebellar lesions tend to be subtle, diverse, and less immediately apparent 
compared to overt motor deficits. This is probably why the cerebellum has been regarded as a center 
devoted solely to motor control (including vestibular and oculomotor) for nearly 200 years, overlooking its 
role in cognitive functions since then. It was not until the late 1980s and early 1990s that the cognitive 
functions of the cerebellum began to be explored, initiated by Schmahmann’s groundbreaking series of 
studies on patients with cerebellar lesions[12]. They conducted a clinical study of 20 patients with diseases 
confined to the cerebellum and found that those with lesions in the posterior lobe and vermis of the 
cerebellum exhibited the most significant clinical behavioral changes. These changes were characterized by 
impairments in executive functions, difficulties with spatial cognition, personality changes, and language 
deficits[13]. This newly defined clinical entity was termed the “cerebellar cognitive affective syndrome 
(CCAS)”, now also known as Schmahmann syndrome. Furthermore, with the establishment and 
development of theoretical models such as the universal cerebellar transform (UCT)[12,14-16], which proposes 
that the cerebellum performs a consistent type of information processing across its motor and non-motor 
functional domains, alongside additional anatomical evidence[17-20], attention has gradually shifted toward 
the cerebellum’s non-motor functions and the concept boundary of cerebellum syndrome has also been 
expanded. It is now well-known that CCAS has become the third cornerstone of clinical ataxiology[21], 
alongside the cerebellar motor syndrome and the vestibulo-cerebellar syndrome, caused by lesions in the 
cerebellar motor and vestibular regions, respectively.

In recent years, the role of the cerebellum in cognition has received increasing attention, leading to more in-
depth research. Functional magnetic resonance imaging (fMRI) studies conducted on healthy humans have 
demonstrated that the cerebellum is involved in higher-order cognitive functions, including language 
function, reward and learning, working memory, and spatial cognition[22,23]. Additionally, as the role of 
cerebellum in neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) 
gains increasing attention[24-26], along with the rising number of cognitive impairments observed in these 
conditions[27-29], there is also a growing focus on cerebellum’s contribution to the cognitive deficits in these 
diseases.

This review outlines the current research on the cerebellum’s involvement in cognition. We summarize 
evidence of the anatomical and neural circuits involved in cerebellar-related cognitive functions, the role of 
the cerebellum in various cognitive functions, and the cognitive impairments resulting from cerebellar 
lesions in the context of neurodegenerative diseases such as AD, PD, and ataxias, to help readers further 
understand the connection between the cerebellum and related cognitive functions, inspiring deeper 
exploration into the role of the cerebellum in cognition. Additionally, we include the changes in the 
cerebellum in relevant neurodegenerative diseases and their impact on cognitive impairments within these 
diseases, thereby implying that the cerebellum may be a potential therapeutic target for these conditions.
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ANATOMICAL AND NEURAL CIRCUIT SUBSTRATES
Unlike the cerebral cortex, the neural circuits within the cerebellum exhibit a high degree of uniformity. 
Ramón y Cajal (1909) was the first to give a detailed description of the three-layer structure of the cerebellar 
cortex, identifying molecular layer, Purkinje cell layer, and granular cell layer. Climbing fibers transmit 
information from the olivary complex, while mossy fibers originate from various afferent sources. 
Ultimately, these inputs converge onto the Purkinje cells, which then relay the signals to the three deep 
cerebellar nuclei, the fastigial, interposed, and dentate nucleus, constituting the primary output of the 
cerebellum. Such a kind of modular circuity, including some inhibitory interneurons, remains largely fixed 
within the anatomical structure of the cerebellum[30]. Unipolar brush cells, the only excitatory interneurons 
in the cerebellum, may introduce some heterogeneity into internal neural circuity, but they are found only 
in the vestibulocerebellum[31].

From the perspective of its functions, the cerebellum can be broadly divided into two subregions: motor 
cerebellum and cognitive cerebellum. The motor cerebellum is primarily located in the anterior part of the 
cerebellum, including lobules V, VI, and VIII, while the cognitive cerebellum is situated in the posterior 
part, including crus I and II [Figure 1A]. Patients with cerebellar damage confined to the posterior part 
exhibited primarily cognitive dysfunctions, e.g., acute psychomotor retardation, infrequent speech, and mild 
cognitive decline, while their motor functions were largely unaffected[32,33]. In fMRI studies on healthy 
subjects, the activation patterns of the cerebellum were consistent with its anterior-posterior functional 
organization; during movement, there was significant activation in the anterior lobe and lobule VIII of the 
cerebellum, whereas cognitive tasks primarily activated the posterior and lateral regions of the 
cerebellum[34,35]. These anatomical locations correspond with the functional findings observed in patients 
with cerebellar lesions.

The functional differences in distinct cerebellar regions are closely related to their connections with external 
brain regions, such as the cerebral cortex, basal ganglia, and other subcortical regions[18,36]. In contrast to the 
repeated canonical circuit architecture within the cerebellum, the afferent and efferent connections of the 
cerebellum exhibit significant heterogeneity and are characterized by high functional specificity.

Connections between cerebellum and cerebral cortex
The cortico-ponto-cerebellar and the cerebello-thalamo-cortical circuitry are the two main pathways 
connecting the cerebellum with the cerebral cortex [Figure 1B]. Feedforward information is transmitted 
from the cerebral cortex to the cerebellum through the former circuit, and the cerebellum then processes 
this information and provides feedback to the cerebral cortex. Using trans-synaptic tracing techniques, 
projections from the arm region of the primary motor cortex (M1) to lobules IV-VI of the cerebellar cortex 
have been identified, as well as projections from area 46 of the dorsolateral prefrontal cortex (PFC) to crus II 
and lobule X, indicating feedforward projections[37]. Furthermore, within the cerebellar nuclei, the dorsal 
part of the dentate nucleus and interposed nucleus project to M1, while the ventral part of the dentate 
nucleus projects to area 46[19,38], indicating feedback projections.

The conventional view suggests that the cerebellum connects with the motor cortex through the cortico-
ponto-cerebellar and cerebello-thalamo-cortical pathways, participating in sensorimotor coordination. 
However, these parallel sub-circuits are widely present in the cerebrum and cerebellum and precisely 
connect different areas of the cerebral cortex with corresponding regions of the cerebellum, serving essential 
functions in various tasks. Anatomical studies have demonstrated that the cognitive-related cortical areas, 
such as the PFC, can also project to the cerebellum through cerebello-thalamo-cortical pathways, while the 
cerebellum reciprocally projects back to these brain regions via cortico-ponto-cerebellar pathways as 
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Figure 1. The anatomical and neural circuit basis of cerebellar involvement in cognitive functions. (A) An illustration of an unfolded 
cerebellum showing its ten lobules, depicting the topological structures of the motor, cognitive, and vestibular cerebellum. Notably, the 
anterior part of lobule VI is associated with the motor cerebellum, while the posterior part is linked to the cognitive cerebellum; (B) The 
connections related to cognition between the cerebellum and the cerebral cortex, basal ganglia, and other cognition-related subcortical 
brain regions.

well[39,40]. These connections have also been confirmed by functional connectivity observed in fMRI 
studies[41,42], suggesting that the cerebellum is involved in cognitive functions through its interactions with 
the cerebral cortex.

Connections between cerebellum and basal ganglia
The cerebellum and basal ganglia are widely regarded as two major subcortical motor structures. These two 
brain regions are extensively connected to the cerebral cortex through separate circuits[43]. It had been 
believed that the cerebellum and the basal ganglia were anatomically distinct subcortical systems that 
performed unique functional operations, and connections between these two regions occurred mainly at the 
level of the cerebral cortex[44,45]. However, anatomical connections between the cerebellum and basal ganglia 
have been explored and recognized during the past decade, with their functions extending beyond motor 
control[46-49] [Figure 1B].

In 2010, a study using retrograde transneuronal tracing techniques in Cebus monkeys revealed that the 
subthalamic nucleus sent a substantial disynaptic projection to the cerebellar cortex[46]. Two recent studies 
have confirmed that the subthalamic nucleus sends an afferent pathway that connects with the ipsilateral 
cerebellar cortex via the relay of pontine nuclei[47,48]. In addition, it has been reported that the efferent 
projection of the dentate nucleus passes through the thalamus and projects to the striatum and the external 
segment of the globus pallidus[47,48]. Furthermore, there is evidence of a direct circuit linking the dentate 
nucleus to the internal globus pallidus and substantia nigra based on a constrained spherical deconvolution 
tractography study carried out on humans[49]. Previous research has demonstrated a concurrent activation of 
the cerebellum and basal ganglia during reward-related learning[50,51], suggesting that these pathways may be 
involved in the cognitive processes underlying reward and learning. Moreover, Silveri noted that the circuit 
connections between the cerebellum and basal ganglia played a crucial role in language production[52], 
underscoring the diverse functions of cerebellar-basal ganglia pathways in various cognitive processes.

Connections between the cerebellum and other subcortical regions
Carta et al. reported in mice that the cerebellar nuclei directly project to the ventral tegmental area (VTA), a 
brain region crucial for processing and encoding reward[53]. It has been proved that the projection from the 
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cerebellum to VTA is necessary for social preference in mice, and the cerebellar inputs to VTA inputs are 
rewarding[53]. Furthermore, optogenetic activation of this projection enhances social behaviors[53]. These 
findings indicate cerebellar inputs to VTA modulate the reward pathway and play a prominent role in social 
behavior [Figure 1B].

The hippocampus is a critical brain region for spatial memory and navigation, and it also has circuit 
connections with the cerebellum, involved in spatial cognition. Using retrograde transneuronal tracing 
techniques in mice, it has been discovered that the cerebellum is connected to the dorsal hippocampus via 
intermediary neurons[54]. A constrained spherical deconvolution analysis of humans also revealed the 
connection between the cerebellum and hippocampus[55], consistent with the findings observed in mice. A 
resting-state fMRI study in the human brain also indicated that abnormal changes in functional 
connectivity between the cerebellum and the left hippocampus, as well as between the cerebellum and the 
right cingulate gyrus, contribute to a range of cognitive impairments resulting from cerebellar infarction[56]. 
These anatomical and functional findings suggest that the connections between the cerebellum and the 
hippocampus play a significant role in cognition [Figure 1B].

Hypothalamus, an integral component in the limbic system, plays a pivotal role in stress responses and 
emotional regulation, primarily through pathways such as the hypothalamic-pituitary-adrenal (HPA) 
axis[57]. Studies have revealed intricate connections between the hypothalamus and the cerebellum. Our 
previous studies have suggested that the hypothalamus can modulate cerebellar neuronal activity through 
histamine and orexin, thereby influencing cerebellar motor control and participating in somatic and non-
somatic integration[58-62]. Such histaminergic and orexinergic inputs are likely to be involved in not only 
basic somatic motor control but also higher cognitive and emotional functions[63,64] [Figure 1B].

The amygdala is a critical center of the limbic system, responsible for emotional processing and memory. 
Using fluorescence micro-optical sectioning tomography (fMOST) technology, we recently revealed a direct 
projection from the cerebellar dentate nucleus to the amygdala[62,65]. Clinical evidence shows that the severity 
of anxiety symptoms in patients with PD is inversely correlated with the activity of this circuit[62]. Animal 
studies indicate that this circuit can be activated by exercise and plays a crucial role in alleviating anxiety[62]. 
Notably, the amygdala has been recognized for its significant role in cognition, especially social 
cognition[66]. Whether the cerebello-amygdalar circuit contributes to cognitive functions still needs further 
investigation [Figure 1B].

ROLE OF CEREBELLUM IN COGNITION
The extensive connections between the cerebellum and cognition-related brain structures provide the 
anatomic basis for the involvement of the cerebellum in cognitive functions, including language function, 
reward and learning, working memory, and spatial cognition.

Cerebellum in language function
Complex language, a higher cognitive function unique to humans, involves the coordinated processing of 
multiple cortical and subcortical brain regions. Traditionally, it has been believed that language is primarily 
associated with Broca’s area in the frontal cortex and Wernicke’s area in the superior temporal cortex[67]. 
However, the role of the cerebellum in language processing is receiving increasing attention. As early as 
1988, by using positron emission tomography (PET), a study measured regional changes in average blood 
flow during the processing of single auditory or visual words, and the cerebellum was found to be 
significantly activated in verb-for-noun generation paradigms[68]. Two fMRI studies in 2014 and 2017 are 
consistent with the findings. Increased activation in the right cerebellar lobule VII was observed during 
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sentence completion tasks, where participants predicted the most suitable word to complete a sentence 
based on its context[69,70]. A recent study in 2022 demonstrated that the connections between cerebellar 
lobule VI and the dorsal anterior cingulate cortex/pre-supplementary motor cortex might hold a key 
position in the language control network[71] [Table 1].

Moreover, cerebellar lesions can adversely affect a patient’s language abilities. A study on a patient with 
neurogenic stuttering caused by brain infarction showed that preexisting thalamic hemorrhage or frontal 
lobe infarction did not lead to stuttering, while significant stuttering occurred after a cerebellar 
infarction[77]. A more in-depth study indicated that patients with cerebellar damage exhibited more 
metalinguistic deficits, while their grammatical and semantic abilities were relatively preserved[78]. This 
pattern of language impairment supports the dysmetria of thought theory, which posits that cerebellar 
cognitive deficits follow a logic like that of motor deficits: cerebellar damage disrupts the regulation of 
movement without impairing its generation (leading to dysmetria but not weakness), and similarly, it 
disrupts the regulation of language without impairing its generation (leading to metalinguistic deficits but 
not aphasia).

Another interesting phenomenon is the lateralization of cerebellar language functions, with a notable right-
sided dominance. This may be due to the language centers in the left cerebral cortex, as the cerebellum is 
connected to the contralateral cerebral cortex[22,23]. Using anodal transcranial direct-current stimulation 
(tDCS) to modulate the right cerebellar crus I and II can alter the cerebellar signaling during predictive 
language processing and enhance functional connectivity within the reading/language network[70].

Cerebellum in reward and learning
The role of the cerebellum in reward and learning also attracts increasing attention. Using two-photon 
calcium imaging in behaving mice, a recent study showed that some cerebellar granule cells responded 
preferentially to reward or reward omission, whereas others selectively encoded reward anticipation[79]. 
Additionally, climbing fibers can not only directly respond to rewards[80-82] but also encode the magnitude of 
expected rewards[83,84]. This aligns with observations of cerebellar macro-activity. A meta-analysis of human 
brain fMRI studies demonstrated that reward anticipation was associated with regional activity in the 
bilateral anterior lobe, bilateral lobule VI, left Crus I, and the posterior vermis, while reward outcome was 
related to regional activity in the declive and left lobule VI[85]. These findings demonstrate the distinct 
involvement of the cerebellum in reward anticipation and outcome processing.

An experiment comparing patients with cerebellar ataxia to healthy controls showed that individuals with 
cerebellar ataxia had severely impaired reward learning from trial-and-error feedback but retained the 
ability to predict rewards based on contextual memory[86]. Their findings suggest that the cerebellum may 
play a special and necessary role in incremental learning based on reinforcement-reward associations. 
Additionally, this work proposes that the cerebellum collaborates with the basal ganglia to support 
reinforcement learning from rewards, extending beyond motor learning. A study on monkey’s eye 
movements indicates that the cerebellum inputs reward expectation and movement signals into the basal 
ganglia, which processes this information and outputs information with a higher signal-to-noise ratio[72] 
[Table 1]. Furthermore, fMRI functional connectivity analysis shows that connectivity between the ventral 
striatum and the cerebellum increases during reward anticipation[73] [Table 1].

The underlying basis of these phenomena may be the plasticity changes within the cerebellum itself and its 
connections with other brain regions, which may facilitate learning and memory. Several studies have 
demonstrated that the intrinsic plasticity of Purkinje cells within the cerebellum is vital for the consolidation 
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Table 1. The circuit mechanism studies of the cerebellum in cognition

Authors       Year Circuits Methods Subjects Functions

Yuan et al.[71] 2013 Connections between cerebellar lobule VI and
dorsal anterior cingulate cortex/pre-supplementary
motor cortex

fMRI Human Language control

Larry et al.[72] 2024 Caudate-SNpr-cerebellar vermis (Purkinje cell) 
pathway

In vivo electrophysiology Macaca 
Fascicularis 
monkeys

Reward expectation 
and movement

Carruzzo et al.
[73]

2023 Connections between the cerebellum and ventral 
striatum

fMRI Human Reward anticipation

Carta et al.[53] 2023 Connections between cerebellar nuclei 
(glutamatergic neurons) and VTA

Anterograde tracing and 
optogenetic manipulation

Mice Reward in social 
behavior

Li et al.[74] 2022 Connections between lobule VI and right cingulate 
cortex/bilateral superior frontal gyrus

fMRI Human Verbal working 
memory

2021 Connections between cerebellar lobule I-V and 
DLPFC

fMRI PD patients Working memory

Sako et al.[76] 2021 Connections between cerebellar lobule VII and 
visuospatial-executive-domain-related/attention-
domain-related networks

fMRI PD patients Visuospatial 
execution and 
attention

fMRI: Functional magnetic resonance imaging; VTA: ventral tegmental area; DLPFC: dorsolateral prefrontal cortex; PD: Parkinson’s disease.

of motor memory, and memory consolidation deficits ensue when the intrinsic plasticity is impaired[87,88]. 
Additionally, a single-cell RNA sequencing study revealed that Purkinje cells might be classified into two 
primary subgroups: Plcb4+ and Aldoc+, the former of which exhibited significant plasticity and played a 
crucial role in associative learning[89]. A fMRI study comparing young and older subjects also showed that 
associative learning altered the intrinsic functional connectivity strength within several cerebellar networks, 
e.g., frontal-cerebellar, temporal-cerebellar, and cerebello-cerebellar in younger subjects, with significantly 
lesser effects in older individuals. It suggests that the neural plasticity within these cerebellar networks may 
play a crucial role in associative learning[90].

The VTA and substantia nigra are two primary sources of dopamine, a neurotransmitter closely associated 
with reward learning, and are widely recognized for their roles in encoding and predicting rewards[91,92]. 
Recent anatomical studies have shown that the cerebellum sends extensive projections to both the VTA and 
substantia nigra[49,53] [Table 1]. A review focused on these cerebellar projections suggested that cerebellar 
connections to the VTA may influence reward-based learning, while the projections to the substantia nigra 
pars compacta (SNc) may contribute to motor vigor[93]. Additionally, it has been confirmed that the 
cerebellum receives dopaminergic innervation, with dopamine D1, D2, and D3 receptors detected within 
the cerebellum[94,95].

Cerebellum in working memory
Working memory, a cognitive system responsible for temporarily holding and manipulating information, 
relies heavily on the coordinated activity of several brain regions. The PFC, parietal lobe, and hippocampus 
are well-established contributors. With its extensive projections to these regions[48,93,94], the cerebellum is 
suggested to play a potential role in neural circuits related to working memory. A comprehensive study 
examining various pediatric cerebellar disorders - including tumors, cerebellar infarctions, congenital 
cerebellar malformations, and cerebellar abnormalities due to genetic or developmental causes - found that 
regardless of the etiology of cerebellar damage, patients consistently exhibited working memory 
impairments[96]. The detrimental impact of cerebellar damage on working memory persists into adulthood, 
maintaining the same impairments observed in earlier stages of life[97-99].

Bezdicek 
et al.[75]
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Recent studies combining working memory tasks and advanced technologies in healthy subjects have 
confirmed the cerebellum’s involvement in working memory. A structural MRI study demonstrated that 
larger volumes of cerebellar crus I and the entire cerebellum correlate with better performance on a 2-back 
visual working memory task[100]. A functional MRI study revealed that cerebellar lobule VIIb/VIIIa 
selectively responds to memorized stimuli, indicating its role in storing and retrieving visual 
information[101]. Resting-state functional connectivity analyses showed that the strength of cortico-cerebellar 
circuit connections is associated with performances in working memory tasks[74] [Table 1].

Studies manipulating the cerebellum through transcranial magnetic stimulation (TMS) have further 
elucidated its role in working memory. One study demonstrated that applying 5 and 20 Hz repetitive TMS 
to the cerebellar crus II region in healthy subjects enhanced prefrontal excitability and significantly 
improved brain network efficiency, resulting in superior performance on working memory tasks compared 
to a sham stimulation group[102]. However, another TMS experiment targeting the left superior and left 
inferior cerebellum demonstrated that stimulation of these regions led to decreased accuracy on visual 
working memory tasks. Although different TMS parameters affect the cerebellum’s influence on working 
memory tasks differently, these findings collectively highlight the critical role of the cerebellum in working 
memory processes[103].

Cerebellum in spatial cognition
Spatial cognition is an essential aspect of cognitive functions. Many studies have reported decreased spatial 
cognition in patients with bilateral cerebellar damage. These patients exhibit visuospatial organization 
disorders, have difficulties in planning daily activities[104], and even show deficits in spatial procedural 
learning[105,106]. Additionally, spatial learning impairments have been observed in mice with cerebellar 
mutation or rats with hemicerebellectomy[107].

Direct damage to the cerebellar nuclei also has various effects on spatial cognition. For instance, bilateral 
electrical lesions of the dentate nucleus in rats led to impaired learning in the hidden platform task of the 
Morris water maze. However, these lesions did not affect long-term retention, the probe trial, or the 
visuomotor guidance necessary for navigating toward a visible goal[108,109]. This selective impairment 
indicates the specific role of the dentate nucleus in spatial localization. In contrast, another study applied 
muscimol to completely inactivate all deep cerebellar nuclei, resulting in memory loss during the water 
maze task. Interestingly, this effect was not observed when the dentate nucleus was selectively inactivated, 
indicating that the fastigial nucleus and interposed nuclei are also critical regions for spatial cognition and 
may play a vital role in spatial memory[110].

The above evidence provides fundamental support for the involvement of the cerebellum in spatial 
cognition. However, the specific role it plays, and the types of neural signals it receives, integrates, and 
transmits, remain unclear. In addition, although the neural circuit connections between the cerebellum and 
hippocampus, the central structure for spatial memory and navigation, have been dissected, the role of these 
connections in spatial cognition remains unclear and requires further investigation.

CEREBELLUM AND COGNITIVE IMPAIRMENTS IN DISEASES
In this section, we will focus on the pathological changes of cerebellum in AD, PD, and ataxias, and explore 
the relationship between these changes and the associated cognitive impairments. Moreover, the impact of 
neuromodulation targeting the cerebellum on treating cognitive impairments in these diseases will be 
discussed.
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Cerebellum and cognitive impairments in AD
AD is the most prevalent neurodegenerative disease worldwide. In 2015, approximately 29.8 million people 
globally were affected by AD[111], and the number of AD patients is expected to exceed 100 million by 
2050[112]. The primary symptom of AD is dementia, which is often characterized by cognitive impairments 
such as memory loss, decline in spatial navigation abilities, and deterioration of language skills. AD has 
traditionally been associated with neurodegeneration in various cortical and subcortical brain regions, such 
as the hippocampus. However, accumulating evidence suggests that the cerebellum also undergoes age-
related degenerative changes. A stereological study demonstrated that with aging, the total cortical volume 
of the cerebellum decreases by 10.8% over the lifespan, while its total volume declines by 25.9%, with various 
subregions experiencing different degrees of loss[113]. Accumulating studies show that cerebellar 
degeneration is also involved in the progression of AD.

At the molecular level, the cerebellar nuclei in AD patients also exhibit characteristic symptoms of AD-
related cellular atrophy, such as ectopic cell cycle events and increased DNA damage. However, these 
alterations are primarily observed in the late stages of AD[114]. A voxel-based morphometry study revealed 
localized atrophy in the bilateral crus I and crus II regions of the cerebellum in AD patients, with the 
cerebellar regions showing atrophy also displaying stronger intrinsic functional connectivity with severely 
atrophic regions of the cerebrum. This suggests that cerebellar-cerebral circuit dysfunction may play a role 
in the pathogenesis of AD. Additionally, another study utilizing fluorodeoxyglucose-positron emission 
tomography (FDG-PET) scanned 830 AD patients and observed that a significant portion exhibited crossed 
cerebellar diaschisis (CCD), characterized by markedly reduced metabolic activity in the left temporal and 
occipital regions, as well as in the right cerebellum[115]. This further supports the notion of circuit 
dysfunction between the cerebral cortex and the cerebellum in AD patients. Moreover, a recent review 
indicated that degeneration of the inferior olivary nucleus in AD led to reduced input to the cerebellum, 
impairing its neuromodulatory functions, which may contribute to spatial navigation issues observed in the 
early stages of dementia[116]. A study involving 27 patients with AD also demonstrated that repetitive TMS 
(rTMS) targeting the bilateral cerebellum crus II significantly improved multi-domain cognitive functions, 
including overall cognitive levels, episodic memory, executive function, verbal ability, and visuospatial 
function[117]. These findings underscore the involvement of the cerebellum in AD and its significant role in 
the related symptoms.

Interestingly, the cerebellum appears to be relatively spared in the early stages of AD, leading some to 
speculate that the cerebellum may also play a compensatory role in the early cognitive deficits associated 
with AD[118], which is a hypothesis that warrants further investigation.

Cerebellum and cognitive impairments in PD
PD is the second most prevalent neurodegenerative disease in the world, following AD. People often focus 
more on the motor symptoms of PD, such as tremors, rigidity, postural instability, and akinesia, which are 
typically associated with dopaminergic neuron degeneration in the basal ganglia[24,25,119]. However, increasing 
evidence suggests that the cerebellum plays an important role in the motor symptoms seen in PD. As 
research progresses, there is growing attention to the cognitive impairments in PD and their association 
with the cerebellum[25].

At the molecular level, PD patients’ cerebellum exhibits α-synuclein aggregation and Lewy body formation 
and deposition[120,121], which are key molecular markers of neuronal degeneration in PD. A study on 
emotional vocal encoding indicated that PD patients with deficits in recognizing emotional vocals showed 
more severe lesions in the right hemisphere of the cerebellum[122]. Functional MRI connectivity studies 
demonstrated that PD patients with mild cognitive impairment exhibited disrupted resting-state functional 
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connectivity between the bilateral dorsolateral prefrontal cortex (DLPFC) and the cerebellum, compared to 
PD patients with normal cognition. Furthermore, the weaker the functional connectivity between the 
DLPFC and the cerebellum, the poorer the performance on various working memory tasks[75] [Table 1]. In 
addition, a brain network study in PD patients identified the cerebellar lobule VII as a crucial node in 
visuospatial-executive-domain-related and attention-domain-related networks [Table 1].

Studies mentioned above indicate changes in the connectivity between the cerebellum and other brain 
regions in cognitive impairments associated with PD, while the cerebellum itself shows abnormally 
increased activity in PD. A PET study revealed that hypermetabolism in the anterior lobe and the vermis of 
the cerebellum correlated with the severity of motor dysfunction, while increased metabolic activity in the 
right crus I and crus II correlated with cognitive dysfunction[123]. Moreover, a neuroimaging meta-analysis 
indicated that PD patients with social perception impairments exhibited increased activation in the 
posterior cerebellum[124]. This increased neural activity in the cerebellum may play a compensatory role.

Neuromodulation targeting the cerebellum can also improve cognitive impairment in PD [Table 2]. In an 
open study[143], thirty patients with PD were stimulated with 1 Hz rTMS every half year for 1.5 years. After 
that, the tDCS was added to the stimulation over both sides of the cerebellum for the next 2 years. It was 
revealed that rTMS and tDCS improved the executive function of patients over 65 years. Given that 
cerebellar neuromodulation can also improve motor symptoms in PD [Table 2], the cerebellum emerges as 
a highly promising therapeutic target for ameliorating PD symptoms as well.

Cerebellum and cognitive impairments in ataxias
As previously mentioned, the cerebellum is traditionally associated with motor control. Consequently, 
cerebellar lesions often lead to noticeable motor impairments, with ataxias being the most characteristic 
condition, marked primarily by uncoordinated voluntary movements. Interestingly, ataxias, including pure 
spinocerebellar ataxia (SCA) and Friedreich ataxia (FRDA), are comorbid with cognitive impairments, 
highlighting the comorbidity of motor and cognitive impairments in cerebellar disorders.

A clinical study involving 35 SCA type 2 (SCA2) patients noted that 71.4% had cognitive impairments, 
including deficits in visuomotor construction, focused attention, learning and memory, language and 
fluency, and executive function[155]. Another psychometric evaluation revealed that SCA2 patients had lower 
general intelligence, executive function, and short-term and long-term verbal and visuospatial memory 
compared to age- and gender-matched healthy controls[156]. A review of SCA type 3 (SCA3) highlighted 
cognitive dysfunction, with multiple studies showing impairments, particularly in executive function[157]. 
Additionally, Orsi et al. identified memory, language, visuospatial, attention, executive, and emotional 
impairments across all gene-defined SCA categories[158].

Furthermore, a meta-analysis focusing on FRDA showed that individuals with FRDA performed 
significantly worse on most tasks related to language, attention, executive function, memory, visuospatial 
function, emotional regulation, and social cognition than those without FRDA. The degree of change in 
these cognitive functions was also correlated with cerebellar-related structural parameters, further 
indicating the cerebellum’s role in the pathophysiology of cognitive impairment in FRDA[159]. Several 
reviews on cerebellar ataxias have pointed out that patients with cerebellar ataxias endure numerous 
cognitive impairments, emotional issues, and some neuropsychiatric symptoms[160-162].

Studies utilizing tDCS have demonstrated that neuromodulation of the cerebellum improves cognitive 
dysfunction associated with ataxias [Table 2], and after anodal cerebellar tDCS and cathodal spinal tDCS, 
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Table 2. Neuromodulation studies targeting the cerebellum in the last fifteen years

Authors Year Method Target Disease Efficacy Improvement of 
cognition

Grimaldi et al.[125] 2013 tDCS Cerebellum (anode) and contralateral supra-orbital area (cathode) Ataxia Decreasing the amplitudes of long-
latency stretch reflexes

Grimaldi et al.[126] 2014 tDCS Cerebellum and contralateral motor cortex (both anode) Ataxia (SCA2) Improving voluntary movements of 
the upper limbs

Benussi et al.[127] 2015 tDCS Cerebellum (anode) and right deltoid (cathode) Ataxia Improving posture, gait, and limb 
coordination

Benussi et al.[128] 2017 tDCS Cerebellum (anode) and right deltoid (cathode) Ataxia Improving all ataxic symptoms

Bodranghien et al.[129] 2017 tDCS Right cerebellar hemisphere (anode) and left motor cortex (cathode) Ataxia (ARCA3) Improving postural tremor

Grecco et al.[130] 2017 tDCS Cerebellum (anode) and central supraorbital region (cathode) Ataxia caused by cerebral 
palsy

Improving balance combined with 
treadmill training

Benussi et al.[131] 2018 tDCS Cerebellum (anode) and spine (cathode) Ataxia Improving all ataxic symptoms

Benussi et al.[132] 2021 tDCS Cerebellum (anode) and spine (cathode) Ataxia Improving motor and cognitive 
symptoms

√

Naeije et al.[133] 2023 tDCS Cerebellum (anode) and right deltoid (cathode) Ataxia (Friedreich’s ataxia) Reducing motor and cognitive 
symptoms

√

Farzan et al.[134] 2013 TMS 
(rTMS)

Cerebellum Ataxia Improving limb coordination, speech, 
and gait

Bonnì et al.[135] 2014 TMS (iTBS) Lateral cerebellum Ataxia caused by cerebellar 
stroke

Improving ataxic gait and posture 
symptoms

Kim et al.[136] 2014 TMS 
(rTMS)

Cerebellar hemisphere ipsilateral to the ataxic side Ataxia caused by acute 
posterior circulation stroke

Improving walking and balance

Cury et al.[137] 2015 TMS 
(rTMS)

Healthy dentate nucleus Ataxia caused by unilateral 
cerebellar infarction

Improving tremor and cerebellar 
ataxia

Dang et al.[138] 2019 TMS 
(rTMS)

Cerebellum Ataxia (SCA6) Improving motor and speech function

França et al.[139] 2020 TMS Cerebellum contralateral to the most clinically affected side Ataxia Improving ataxic symptoms

Teixeira et al.[140] 2015 DBS Healthy dentate nucleus Ataxia caused by cerebellar 
stroke

Improving tremor and cerebellar 
ataxia

Miterko et al.[141] 2021 DBS Bilateral interposed cerebellar nuclei Ataxia in Car8wdl mice Improving motor behaviors of Car8wdl 
mice

Ferrucci et al.[142] 2016 tDCS Cerebellum and M1 (anode) and right deltoid (cathode) PD Improving levodopa-induced 
dyskinesias

Málly et al.[143] 2018 rTMS and 
tDCS

Hemispheres of the cerebellum (anode) and middle part of the frontal area 
(cathode) for tDCS, and DLPFC and brainstem for rTMS

PD Slowing the progression of PD in an 
age-dependent way

√

Cerebellar hemisphere contralateral to the more PD-affected side(anode) and 
contralateral upper arm or cerebellar hemisphere ipsilateral to the more PD-

Workman et al.[144] 2020 tDCS PD Improving balance performance

affected side (cathode)
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OFF refers to a change in the clinical state of a PD patient where motor and/or non-motor symptoms appear or worsen and result in functional disability. tDCS: Transcranial direct-current stimulation; SCA2: 
spinocerebellar ataxia type 2; ARCA3: autosomal recessive cerebellar ataxia type 3; TMS: transcranial magnetic stimulation; rTMS: repetitive transcranial magnetic stimulation; iTBS: intermittent theta burst 
stimulation; SCA6: spinocerebellar ataxia type 6; DBS: deep brain stimulation; PD: Parkinson’s disease; DLPFC: dorsolateral prefrontal cortex; cTBS: continuous theta burst stimulation; STDT: somatosensory 
temporal discrimination threshold; AD: Alzheimer’s disease; SLAI: short-latency afferent inhibition; PFC: prefrontal cortex.

patients with cerebellar ataxias showed significant improvements in motor scores, cognitive function, and quality of life[132]. Additionally, a week of anodal 
cerebellar transcranial direct current stimulation (ctDCS) treatment alleviated both motor and cognitive symptoms in FRDA patients[133]. Interestingly, 
numerous studies have shown that cerebellar-targeted neuromodulation improves motor symptoms in ataxias [Table 2]. This suggests that the cerebellum may 
serve as a common target for treating both motor and cognitive impairments, highlighting its significant therapeutic potential in ataxias.

In summary, AD and PD patients with cognitive impairments show neurodegeneration in the cerebellum, and cerebellar ataxias are often accompanied by 
cognitive deficits. Therefore, cerebellar neurodegeneration may be actively involved in the cognitive dysfunction of AD, PD, and ataxias. These findings 
indicate that neuromodulation targeting the cerebellum may be a potentially effective strategy for alleviating cognitive symptoms in these disorders.

Koch et al.[145] 2009 TMS 
(cTBS)

Lateral cerebellum PD Decreasing levodopa-induced 
dyskinesias

Minks et al.[146] 2011 TMS 
(rTMS)

Right lateral cerebellum PD Improving gross motor skills and 
worsening fine motor skills

Brusa et al.[147] 2012 TMS 
(cTBS)

Lateral cerebellum PD Reducing levodopa-induced 
dyskinesia

Bologna et al.[148] 2015 TMS 
(cTBS)

Ipsilateral cerebellar hemisphere PD No influence on the generation of 
resting tremor in PD

Di Biasio et al.[149] 2015 TMS 
(cTBS)

Cerebellar hemisphere ipsilateral to the more affected side PD Improving STDT exclusively when 
patients were OFF therapy

Lefaivre et al.[150] 2016 TMS 
(rTMS)

Cerebellar vermis or lateral cerebellum PD Improving resting tremor (lateral 
cerebellum was better)

Di Lorenzo et al.[151] 2013 TMS 
(cTBS)

Posterior and superior lobules of the lateral cerebellum AD Affecting SLAI

Yao et al.[117] 2022 TMS 
(rTMS)

Bilateral cerebellum crus II AD Improving multi-domain cognitive 
functions

√

Demirtas-
Tatlidede ei al.[152]

2010 TMS (iTBS) Cerebellar vermis Schizophrenia Improving negative symptoms, mood, 
and cognition

√

Minichino et al.[153] 2015 tDCS PFC (anode) and cerebellum (cathode) Bipolar disorder Improving visuospatial memory, 
executive function, and motor 
coordination

√

Sebastian et al.[154] 2016 tDCS Cerebellum (anode) and right deltoid (cathode) Aphasia Augment spelling therapy √
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CONCLUSION
The cerebellum has historically been recognized for its role in motor control and coordination, but it is now 
increasingly regarded as crucial for various cognitive functions. We elucidated the extensive neural 
connections between the cerebellum and external brain regions, including the cerebral cortex, basal ganglia, 
and other subcortical areas. Building on this anatomical and neural circuit foundation, we further 
demonstrated the crucial role of the cerebellum in various higher-order cognitive processes, such as 
language, reward-based learning, working memory, and spatial cognition. Finally, we explored the changes 
in the cerebellum in different diseases, including ataxia, PD, and AD, and their impact on cognitive 
functions, and proposed that the cerebellum could serve as a therapeutic target for treating cognitive 
impairments associated with these diseases.

However, many questions in this field remain unresolved. Although the establishment of the UCT theory 
provides a reasonable framework for understanding the role of the cerebellum in both motor and cognitive 
functions, the specific mechanisms of how the cerebellum’s homogenous internal structure processes and 
outputs signals from different brain regions remain unclear. For example, at the molecular level, besides 
classical glutamatergic and GABAergic signals, diverse neurotransmitters and neuromodulators are present 
in the cerebellum, including amines like dopamine[79], norepinephrine[163], and histamine[60], and 
neuropeptides[164] like oxytocin[165], CRF[166], and orexin[167]. Their roles in processing motor and cognitive 
functions are still largely unknown. At the cellular level, single-cell sequencing has revealed the high 
heterogeneity of neurons in the cerebellum[89], but the roles of different cell clusters in cerebellar motor and 
cognitive control remain to be elucidated. Furthermore, it is essential to investigate the nature of the signals 
transmitted from the cerebellum to various brain regions, such as the cortex, basal ganglia, and amygdala, 
and how the cerebellum dynamically interacts with other brain areas to collectively perform a range of 
higher cognitive functions. In addition, from the perspective of pathophysiology, significant cerebellar 
deficits often occur in the late stage of AD and PD, suggesting that cerebellar dysfunction may arise as a 
secondary effect of widespread brain degeneration and network disruptions. However, considering the 
reciprocal connections between the cerebellum and cerebral cortex/basal ganglia, whether the cerebellum-
mediated cognitive control holds a position in the early stage of AD and PD remains to be determined.

Lastly, as shown in Table 2, neuromodulation targeting the cerebellum in ataxias and PD predominantly 
focuses on improving motor functions, while neuromodulation for AD mainly targets DLPFC[168-179]. 
However, in certain psychiatric disorders, such as schizophrenia[152], bipolar disorder[153], and aphasia[154], 
cerebellar-targeted neuromodulation has been shown to improve related cognitive functions significantly. 
Although the precise targeting of specific cerebellar subregions or circuits for cognitive regulation still faces 
challenges, the potential of the cerebellum as a neuromodulation target for enhancing cognitive function in 
neurodegenerative diseases is likely underestimated and deserves more attention.
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