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Abstract
Aim: Small-cell lung cancer (SCLC) is usually diagnosed as an advanced stage with a poor outcome. SCLC has 
limited response to immunotherapy due to the absence or lack of immune cell infiltration, so studying its tumor 
immune microenvironment (TIME) is essential.

Methods: The study involved patients with extensive-stage small-cell lung cancer (ES-SCLC) diagnosed at the 
Guangdong Lung Cancer Institute between January 2018 and April 2022 who had received the 
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atezolizumab/carboplatin/etoposide (ECT) treatment. We used multi-immunohistochemistry (mIHC) to assess 
the prognostic value of YAP1 and TIME in SCLC, with results confirmed using public data.

Results: 15 patients with sufficient baseline biopsy samples were included in this study. The total population of 
YAP1-positive cells is inversely related to progression-free survival (PFS) and shows a potential negative 
correlation with overall survival (OS). CD56-positive cells are the primary components of TIME in SCLC tumor 
parenchyma and stroma. The total population and cell density of YAP1-positive cells are significantly positively 
correlated with CD4-positive cells. Furthermore, in the tumor parenchyma, both the proportion and the cell density 
of YAP1-positive cells are positively correlated with that of FOXP3-positive cells. The total population of CD56-
positive cells showed a negative correlation trend with YAP1-positive cells but without significant difference.

Conclusion: YAP1 has shown prognostic value in SCLC patients receiving ECT regimen treatment. The high 
expression level of YAP1 seems related to the inhibitory TIME. However, some prospective studies with larger 
populations are warranted.

Keywords: Small-cell lung cancer, YAP1, immunotherapy, tumor immune microenvironment, CD4 T cell

INTRODUCTION
Worldwide, lung cancer is a highly aggressive and widespread illness, with an annual rise of more than 2.2 
million cases and 1.8 million fatalities[1]. The combination of chemotherapy with targeted therapies for high-
frequency mutations - such as epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase 
(ALK), and ROS proto-oncogene 1 (ROS1) - along with immunotherapeutic agents targeting the 
programmed cell death 1/programmed cell death-ligand 1 (PD-1/PD-L1) axis, has culminated in an 
objective response rate exceeding 83% in patients with non-small-cell lung cancer (NSCLC)[2,3]. However, 
small-cell lung cancer (SCLC), another pathological tissue type, is mostly diagnosed as extensive-stage 
small-cell lung cancer (ES-SCLC), with a poor prognosis, and the median 5-year overall survival (OS) was 7 
months according to data from the US Surveillance, Epidemiology, and End Results (SEER) database[4,5]. 
SCLC is classified into pure SCLC and combined SCLC, the latter of which includes any proportion of 
NSCLC components or a large-cell neuroendocrine carcinoma (LCNEC) component exceeding 10%, as 
defined by the 2022 National Comprehensive Cancer Network (NCCN) SCLC guidelines[6]. Currently, the 
treatment of SCLC has also entered the era of immunotherapy, as the NCCN guidelines recommend first-
line chemo-immunotherapy for ES-SCLC patients[7]. In the IMpower133 study, the application of 
Atezolizumab in combination with carboplatin and etoposide (ECT) as a first-line treatment for patients 
with ES-SCLC has led to a significant enhancement in both OS and progression-free survival (PFS), as 
compared to the use of a placebo in conjunction with ECT, that confirm the role of Atezolizumab in first-
line immunotherapy for ES-SCLS[8,9].

The tumor microenvironment (TME) is a coordinated cellular system that primarily includes immune cells, 
endothelial cells, fibroblasts that connect to the extracellular matrix, cytokines, chemokines, and various 
metabolites[10,11]. The TME, especially the tumor immune microenvironment (TIME), is associated with the 
survival outcomes of tumor patients. The recently developed classifier has demonstrated prognostic utility 
in The Cancer Genome Atlas (TCGA) dataset and predictive value in lung cancer. Specifically, patients with 
tumors predicted to exhibit CD8-inflamed phenotypes experienced extended OS compared to those with 
CD8-desert phenotypes. In the phase III OAK clinical trial, patients with NSCLC who received immune 
checkpoint inhibitor therapy exhibited a longer OS when their tumors were classified as CD8-inflamed, 
highlighting the potential of this classifier in stratifying patients for optimal therapeutic interventions[12]. 
Furthermore, the employment of multitargeted antiangiogenic tyrosine kinase inhibitors (TKIs) and 
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nanomaterials in the therapeutic management of lung cancer has expanded the scope of targeting beyond 
traditional oncogenic drivers. This innovative approach allows for the simultaneous engagement of 
additional components of the TIME, encompassing cancer-associated fibroblasts (CAFs), tumor-associated 
macrophages (TAMs) and tumor-associated neutrophils (TANs)[13-15].

Based on RNA gene transcriptomics, a series of characteristic genes have been identified to be associated 
with immuno-infiltration and are considered to be predictors of immunotherapy efficacy in SCLC[16]. 
Compared to lung adenocarcinoma, SCLC has less infiltration of immune cells and stronger immune 
isolation[17]. Although SCLC patients generally have high tumor mutation burden (TMB), the limited 
infiltration of immune cells in their TME, low expression of PD-L1, and lack of antigen presentation 
contribute to SCLC being defined as an immune “cold tumor”. This creates an inhibitory TIME, which 
restricts the effectiveness of immunotherapy[18-20]. Enhancing immune cell infiltration in SCLC represents a 
critical challenge that warrants further investigation and strategic intervention.

YAP1 is a principal effector of the Hippo signaling pathway that is involved in the regulation of tumor 
proliferation and migration[21-23]. Recent research has defined the dominant expression of transcription 
factor YAP1 as one of four subtypes of SCLC[24]. Furthermore, YAP1 has shown therapeutic vulnerability in 
SCLC[25]. Our previously analyzed results have indicated that YAP1 has potential predictive value for the 
efficacy of SCLC immunotherapy[26]. However, there is currently limited research on the impact of YAP-1 
protein on the TIME and its possible related mechanisms. This study aims to explore the effects of YAP-1 
on immune cell infiltration and the TME.

METHODS
Patients and clinical characteristics
The study involved patients with ES-SCLC diagnosed at the Guangdong Lung Cancer Institute from 
January 1, 2018, to April 30, 2022, who had received the ECT treatment. The baseline clinical and 
pathological data were analyzed retrospectively. The clinical staging is determined based on the Veterans 
Administration Lung Study Group staging system and the eighth edition of the American Joint Committee 
on Cancer tumor-node-metastasis staging system[27,28]. This research received approval from the Ethics 
Committee of Guangdong Provincial People’s Hospital.

Response evaluation of treatment
Every two cycles of ECT treatment, patients underwent response evaluation using computed tomography 
(CT). According to the efficacy evaluation criteria of solid tumor (RECIST) version 1.1, assessments of 
complete remission (CR) or partial remission (PR) and disease stability (SD) or disease progression (PD) 
were conducted[29]. PFS was measured from the start of ECT treatment to either the date when the tumor 
progressed or the most recent follow-up. OS was calculated from the time of confirmed diagnosis to either 
the date of death or the latest follow-up. The last follow-up date was April 1, 2024.

Multi-immunohistochemistry
Multi-immunohistochemistry (mIHC) was tested at Genecast Biotechnology Co., Ltd. (Beijing, China). 
Detect panel included YAP1, CD4, CD8, PanCK, FOXP3, and CD56. Conduct experiments using patient 
paraffin-embedded tissue specimens, with 2-3 slices μm thickness, followed by epitope extraction, non-
specific protein antigen blocking, primary antibody incubation, secondary antibody incubation, and 
Tyramine signal amplification (TSA) staining and color development. CD8 primary antibodies (SP16, 1:100, 
Zsbio, China) were incubated overnight at 4 °C, while the remaining primary antibodies, including YAP-1 
(ET1608-30, 1:100, Hua’an Biotech, China), CD4 (EP204, 1:100, Zsbio, China), PanCK (ZM0069, 1:100, 
Zsbio, China), FOXP3 (7H9-D6-A10, 1:100, Zsbio, China), and CD56 (UMAB83, 1:100, Zsbio, China), were 
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incubated at room temperature for 1 h. Using Opal seven-color multi-color immunohistochemistry kit 
(NEL797B001KT, PerkinElmer, USA) for color development, including DAPI (4’, 6-diamidino-2-
phenylindole) fluorescent dye, Opal 480, Opal 520, Opal 570, Opal 620, Opal 690, Opal 780, TSA fragrance 
system (NEL703001KT, PerkinElmer, USA), etc. Calculate the area of the specimen and the areas of the 
tumor and stromal regions and count the total number of cells in the specimen and each type of stained cell 
separately. Use the TissueFAX SL viewer multispectral image analysis software (TissueFAX SL viewer 7.1; 
TissueGnostics, China) for fluorescence signal recognition, image analysis, and image acquisition.

Data sources
The FPKM values of transcriptome sequencing data and corresponding clinical information were obtained 
from a previously published article by George et al., and the row expression data are available via the 
European Genome-phenome Archive (EGA) EGAS00001000925 (n = 81)[30]. The expression data were 
normalized and Log2 transformed.

Immune infiltration landscape
The MeTIL scores were calculated using PCA, as previously reported[31]. Then, immune microenvironment 
infiltration was assessed using curated immune signatures, including 22 CIBERSORT signatures and two 
MCP counter signatures, with analysis performed through the GSVA R package[32].

Statistical analysis
The chi-square test or Fisher’s exact test was applied to compare inter-group differences. Kaplan-Meier 
curves were utilized to determine PFS and OS. The correlation coefficient is calculated using Spearman 
correlation. All statistical analyses were evaluated using GraphPad Prism 9.1.1 (GraphPad Software, Boston, 
USA), SPSS 22.0 software (SPSS, Inc., Chicago, IL, USA), and R (version 3.6.4). Two-sided P values < 0.05 
were considered statistically significant.

RESULTS
Clinical and pathological characteristics
Patients with ES-SCLC who had received the ECT regimen were retrospectively enrolled, and we eventually 
collected biopsy specimens from 15 patients prior to their ECT treatment. The clinical baseline information 
is shown in Supplementary Table 1. P7 was diagnosed as SCLC combined with about 3% lung squamous cell 
carcinoma. All patients received ECT as first-line therapy except P2, who received a second-line ECT 
regimen after PD on EC chemotherapy. In our cohort, most patients were male (13/15, 86.7%) and smokers 
(12/15, 80%). There were no statistical differences in clinical characteristics, such as the serum NSE level and 
the Ki67 index, between the responder (CR/PR patients) group and the non-responder (SD/PD patients) 
group [Table 1].

Immune landscape of different therapeutic effects
In our cohort, 7 patients achieved PR, 7 patients achieved SD, and one patient experienced PD after three 
cycles of ECT treatment. Among all, P5 discontinued the ECT treatment because of grade 3-4 increased 
level of γ-glutamyl transpeptidase (γ-GT) after 24 days of medication, and thus the best recorded treatment 
outcome was SD. The mPFS was 4.8 months (95%CI: 3.6-7.5) and the mOS was 12.0 months (95%CI: 9.0-
20.5) [Supplementary Figure 1]. Two patients remained alive until the last follow-up.

We measured the area of the specimen and the total number of cells inside, and distinguished tumor cells 
and parenchymal cells based on PanCK staining. We calculated the area of the tumor parenchymal region 
and tumor interstitial region, as well as the number of tumor cells and parenchymal cells, respectively. 
Among all patients, the baseline biopsy specimen for ECT treatment in P3 was a pleural fluid sediment 
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Table 1. Clinical baseline characteristics

Clinical features Level Responder (PR) 
n = 7

Non-responder (SD/PD) 
n = 8

Total 
n = 15 P-value

Age Median (range) 66 (54-71) 63 (54-72) 64 (54-72) 0.224

≤ 65 2 (28.6%) 5 (62.5%) 7 (46.7%)Age group

> 65 5 (71.4%) 3 (37.5%) 8 (53.3%)

0.315

Male 6 (85.7%) 7 (87.5%) 13 (86.7%)Gender

Female 1 (14.3%) 1 (12.5%) 2 (13.3%)

1.000

Smoker 5 (71.4%) 7 (87.5%) 12 (80.0%)Smoke

Non-smoker 2 (28.6%) 1 (12.5%) 3 (20.0%)

0.569

Pure SCLC 7 (100.0%) 7 (87.5%) 14 (93.3%)Type

Combined SCLC 0 (0.0%) 1 (12.5%) 1 (6.7%)

1.000

1st (ECT) 7 (100.0%) 7 (87.5%) 14 (93.3%)Line of ECT

2st (ECT) 0 (0.0%) 1 (12.5%) 1 (6.7%)

1.000

< 90 4 (85.7%) 4 (50.0%) 8 (53.3%)Ki67 index

≥ 90 3 (14.3%) 4 (50.0%) 7 (46.7%)

1.000

NSE (ng/mL) Median (range) 63.7 (16.13-155) 45.7 (21.4-370) 49.66 (16.13-370) 0.378

PR: Partial remission; SD: disease stability; PD: disease progression; SCLC: small-cell lung cancer; ECT: Atezolizumab in combination with 
carboplatin and etoposide; NSE: neuron-specific enolase.

embedded specimen, which cannot be divided into tumor parenchymal and stromal regions. Therefore, this 
patient was included only for analysis of the overall proportion and density of each cell type. CD56-positive 
cells were the main components of the TIME in both tumor parenchyma and stroma. And except for the 
total cell density of CD56-positive cells (0.004/μm2 vs. 0.006/μm2, P = 0.308), the proportion and density of 
all types of immune cells in the non-responder group were higher than those in the responder group 
[Figure 1 and Supplementary Table 2]. Among them, in the tumor stroma, compared to those in the 
responder group, both the mean population and the cell density of CD4-positive cells were numerically 
higher in the non-responder group (0.166 vs. 0.108, P = 0.366 and 0.002/μm2 vs. 0.001/μm2, P = 0.351).

Potential prognostic value of YAP1 in ES-SCLC
Overall, YAP1-positive cells were predominantly located in the tumor stroma rather than infiltrating the 
tumor parenchyma [Figure 2A-D]. The total population of YAP1-positive cells differed significantly 
between the responder and non-responder groups (mean cell populations: 0.035 vs. 0.118, P = 0.014). 
Additionally, the total cell density of YAP1-positive cells was significantly higher in the non-responder 
group compared to the responder group (mean cell densities: 0.0004/μm2 vs. 0.013/μm2, P = 0.028). 
However, no significant differences were observed in the YAP1-positive cell populations within the tumor 
stroma or parenchyma between the two groups (0.019 vs. 0.074, P = 0.075, and 0.018 vs. 0.130, P = 0.168, 
respectively). Similarly, no significant differences were found in YAP1-positive cell density in the tumor 
stroma or parenchyma (0/μm2 vs. 0.001/μm2, P = 0.112, and 0.001/μm2 vs. 0.008/μm2, P = 0.338, respectively). 
Nevertheless, both the population and density of YAP1-positive cells in the tumor stroma and parenchyma 
showed an increasing trend in the non-responder group. [Figure 2E and F, Supplementary Table 2].

As for the correlation of YAP1 expression and PFS, the total population of YAP1-positive cells was 
negatively correlated with PFS (r = -0.585, P = 0.023), while the cell density of YAP1 had no significant 
correlation with PFS (r = -0.387, P = 0.154). Moreover, both the total population and cell density of YAP1-
positive cells showed trends of negative correlation with OS, though the associations were not statistically 
significant (r = -0.340, P = 0.216; r = -0.400, P = 0.140). Notably, the cell density of YAP1-positive cells in the 
tumor stroma was significantly correlated with OS (r = -0.552, P = 0.040). In contrast, the cell population of 
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Figure 1. The cell proportion and cell density of various immune cells in ES-SCLC. Patients are grouped according to the efficacy of 
immunotherapy, and the tumor parenchyma and stromal regions are divided based on PanCK staining. (A) The proportion of various 
immune cells in tissue specimens; (B) The cell density of various immune cells in tissue specimens. ES-SCLC: Extensive-stage small-cell 
lung cancer.

YAP1-positive cells in parenchyma was positively correlated with OS (r = 0.648, P = 0.017) [Supplementary 
Figure 2].

The correlation between YAP1-positive cells and immune cell subsets
The infiltration of immune cells in tissue slices from patients with high YAP1 expression was generally 
higher than that in patients with low YAP1 expression [Figure 3]. The CD56-positive cells infiltrated most 
in our samples, and the total population of CD56-positive cells showed a negative correlation trend with 
YAP1-positive cells, though this correlation was not statistically significant (r = -0.518, P = 0.05). The total 
population of YAP1-positive cells was significantly positively correlated with CD4-positive cells (r = 0.7286, 
P = 0.003). Additionally, the overall cell density of YAP1-positive cells was positively correlated with that of 
CD4-positive cells (r = 0.6931, P = 0.005). In the tumor parenchyma, the proportion of YAP1-positive cells 
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Figure 2. The distribution and prognostic value of YAP1-positive cells in ES-SCLC. (A) High-level YAP1-positive cells infiltrated; (B) Low-
level YAP1-positive cells infiltrated. The fluorescence signal channels corresponding to each image are indicated in the bottom left 
corner of each figure. The tumor parenchyma and stromal regions are divided based on PanCK staining through mIHC; (C and D) The 
cell population and the cell density of YAP1-positive cells in responder and non-responder groups, as well as in tumor parenchyma and 
stroma, are shown. NS: P > 0.05, *P < 0.05; (E and F) The linear regression fitting curve calculated by Spearman correlation between PFS 
and cell population and cell density of YAP1-positive cells, respectively. ES-SCLC: Extensive-stage small-cell lung cancer; mIHC: multi-
immunohistochemistry; PFS: progression-free survival.
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Figure 3. Correlation between infiltration of various immune cells and YAP1-positive cells in ES-SCLC. The correlation between the 
infiltration of CD4-, FOXP3-, CD8-, and CD56-positive immune cells and YAP1-positive cells was calculated using Spearman correlation 
for the following parameters: (A) Total cell population; (B) Total cell density; (C) Cell population in parenchyma; (D) Cell density in 
parenchyma; (E) Cell population in the tumor stroma; (F) Cell density in the tumor stroma. ES-SCLC: Extensive-stage small-cell lung 
cancer.
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was positively correlated with the proportion of CD4-positive cells and FOXP3-positive cells (r = 0.732, P = 
0.004; r = 0.5780, P = 0.03). Meanwhile, the density of YAP1-positive cells in the tumor parenchyma was 
positively correlated with the density of CD4-positive cells and FOXP3-positive cells (r = 0.635, P = 0.02; r = 
0.573, P = 0.04). However, in the tumor stroma, only CD4-positive cell density showed a significant 
correlation with YAP1-positive cell density (r = 0.690, P = 0.008). There was no significant correlation 
between the proportion or density of other immune cells and YAP1-positive cells [Figure 4].

The prognostic value of YAP1 and TIME characteristics of SCLC was verified
To validate our findings on the prognostic value of tumor cell YAP1 expression level and TIME for 
immunotherapy in ES-SCLC patients, we retrieved public data for re-analysis. As for the analysis results via 
public data, the expression level of YAP1 was negatively correlated with OS (r = -0.28, P = 0.015) 
[Figure 5A]. However, no public data on PFS of ECT were obtained; thus, no correlation analysis of PFS 
was conducted. We then divided all samples into two groups based on the median expression level of YAP1 
in tumor cells: the YAP1-low group and the YAP1-high group. Most immune cells infiltrated at a high level 
in the YAP1-high group, and similar to our mIHC results, YAP1 expression levels were significantly 
positively correlated with central memory CD4 T cells (P = 0.014) and Tregs infiltration (P = 0.007). 
Additionally, the infiltration levels of T follicular helper cells were also positively correlated with the 
expression levels of YAP1 (P = 0.037) [Figure 5B and C].

DISCUSSION
SCLC is a type of highly invasive malignant tumor, with more than half of patients being diagnosed at the 
extensive stage, which is associated with a poor prognosis. However, with the release of clinical research 
findings from IMpower133, the treatment of advanced SCLC has entered the era of immunotherapy, 
significantly extending patient survival. Despite this progress, the survival benefits of immunotherapy 
remain limited, especially when compared to solid tumors such as lung adenocarcinoma, where further 
improvements are still needed. In our study, we investigated the potential of YAP1 as a biomarker for 
predicting the efficacy of chemo-immunotherapy in ES-SCLC patients. Additionally, we explored the ES-
SCLC TIME and its correlation with YAP1 expression.

In our study, the mPFS for ES-SCLC patients receiving the ECT regimen was 5.0 months, compared to 5.2 
months reported for the ECT group in a clinical trial[33]. Meanwhile, in the IMpower133 subgroup of 
Japanese patients, the mPFS for the ECT group was only 4.5 months, differing somewhat from the overall 
study results[34]. A real-world study conducted in Canada reported a longer mPFS of 6.0 months for the ECT 
group[35], whereas real-world data from South Korea showed an mPFS of only 4.6 months for ES-SCLC 
patients receiving ECT treatment[36]. These findings suggest racial disparities in the effectiveness of ECT 
treatment, with Asian populations appearing to derive less benefit in both clinical trials and real-world 
studies.

YAP1 has been reported as an indicator of poor prognosis in several cancers, including pancreatic cancer, 
colorectal cancer, and liver cancer[37-40]. In our study, a higher infiltration level of YAP1-positive cells was 
also related to poorer prognosis in ES-SCLC. A previous study analyzing both local and public data 
suggested that, compared to other subtypes, the SCLC-YAP1 (SCLC-Y) subtype exhibits the worst response 
to immunotherapy[41]. Similarly, our results indicate a negative correlation between YAP1 expression and 
PFS in SCLC patients undergoing immunotherapy. Moreover, we observed low YAP1 expression levels, 
which complicated the classification of SCLC-Y subgroups. Additionally, our results showed that YAP1-
positive cells were mainly distributed in the tumor stroma of SCLC, consistent with previous research 
findings[42,43].



Page 10 of Chen et al. Cancer Drug Resist. 2025;8:8 https://dx.doi.org/10.20517/cdr.2024.17715

Figure 4. mIHC images of two representative patients showed differences in the TIME between the responder and non-responder 
groups. The fluorescence signal channels corresponding to each image are indicated in the bottom right corner of each figure. (A) TIME 
landscape of P7, who was evaluated as SD; (B) TIME landscape of P6, who achieved PR following the ECT regimen; (C) The proportion 
of YAP-1 positive cells and various immune cells in P7 and P6. The tumor parenchyma and stromal regions are divided based on PanCK 
staining. mIHC: Multi-immunohistochemistry; TIME: tumor immune microenvironment; SD: stable disease; PR: progression disease; 
ECT: atezolizumab plus etoposide/carboplatin.

In our mIHC panel, CD4 is used to locate CD4-positive helper T cells, CD8 for CD8-positive cytotoxic T 
cells, CD56 for natural killer (NK) cells, and FOXP3 for regulatory T cells (Tregs). Our analysis revealed that 
NK cell infiltration is a predominant feature of the TIME of SCLC. Although patients with high YAP1 
expression exhibit greater immune cell infiltration than those with low YAP1 expression, the overall 
proportion of NK cells is negatively correlated with YAP1 expression. NK cells, which serve as an alternative 
source of cytotoxic activities, play an important role in anti-tumor immunity by counteracting immune 
evasion by T cells and targeting tumor cells with aberrant expression of the major histocompatibility 
complex (MHC) class I[44,45]. Additionally, NK cell infiltration has been associated with a favorable prognosis 
in various solid tumors[46,47]. As in a study involving 50 patients with lung squamous cell carcinoma, when 
the number of tumor-infiltrating NK cells subset marked by CD57 was higher than that of five NK cells per 
field, the prognosis of patients was significantly better than that of the low-level infiltration group[48]. 
Moreover, the activation of NK cells can improve the prognosis of lung cancer patients, as previously 
reported[49]. Increased infiltration of NK cells in tissues of patients with low YAP1 expression may be related 
to their improved prognosis. In terms of the impact of YAP1 on the TIME of SCLC reported previously, a 
study using 51 SCLC cell lines showed that the expression level of YAP1 is positively correlated with the 
degree of T cell infiltration[50]. These are consistent with our mIHC and RNA-seq analysis results, but there 
is still a lack of analysis of T cell subsets. Our results revealed positive correlations between YAP1 expression 
and both CD4-positive T cells and Tregs infiltration. Additionally, there was a trend of positive correlation 
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Figure 5. Public data analysis verified the prognostic value of YAP1 and TIME characteristics of SCLC. (A) The public data analysis 
showed a negative correlation between OS and YAP1 expression levels in SCLC patients; (B) The correlation between infiltration levels 
of different immune cells and expression level YAP1; (C) Different infiltration levels of immune infiltrating cells between YAP1-low and 
YAP1-high groups. (*P < 0.05, **P < 0.01, ***P < 0.001). TIME: Tumor immune microenvironment; SCLC: small-cell lung cancer; OS: overall 
survival.

between YAP1 expression and CD8-positive T cells. At present, some pre-clinical and clinical studies have 
confirmed that CD4-positive T cells have cytotoxicity that can directly kill cancer cells, but tumor killing is 
still attributed to CD8+T cell function[51]. While CD4-positive T cells subsets including TH1, TH2, TH17, 
TH9, follicular helper T cells and Tregs[52]. As reported, the high levels of infiltrating Tregs and MDSCs 
within tumors can inhibit the activation, expansion, and function of effector T cells, which is negatively 
correlated with the clinical outcomes of SCLC patients[53]. Moreover, in HLA class II positive tumors, the 
direct involvement of immunosuppressive Tregs may lead to immune evasion[54]. As for CD8 positive T 
cells, a study involving 24 ES-SCLC patients receiving first-line chemo-immunotherapy showed that the 
density of CD8 positive cells in the tumor stroma was significantly decreased in long-term survivors[55]. 
However, according to Qu et al., there were no significant differences between the SCLC-Y subtype and 
other subtypes in CD8+ T cell infiltration[56]. Although their study did not further investigate the infiltration 
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of T cell subpopulations or other immune cells, based on the negative prognostic role of YAP1 in ES-SCLC 
patients receiving ECT treatment, we infer that Tregs are the main component of CD4-positive cells in the 
tissues of patients with high YAP1 expression, and the poor efficacy of chemo-immunotherapy may be 
related to increased infiltration of Tregs.

There are some limitations to this study. As a single-center retrospective study, we are limited by sample 
size, and it is difficult to obtain patients’ tissue specimens due to the difficulty of surgery and biopsy. Further 
validation of YAP1’s chemotactic effect on CD4-positive T cells, especially Tregs, and exploration of its 
mechanism are ongoing. Studies with larger sample sizes to explore the TIME of SCLC, especially among 
the various subsets of immune cells, are warranted.

In conclusion, YAP1 has shown prognostic value of poor survival in ES-SCLC patients treated with ECT 
regimens. The expression of YAP1 was notably elevated and exhibited a positive correlation with Treg 
subsets in CD4-positive T cells, while the opposite was true in NK cells. Infiltration of YAP1-positive Tregs 
was associated with lower OS and PFS outcomes in ES-SCLC patients receiving immunochemotherapy. 
Targeting YAP1 may be a potential way to change the TIME and improve the efficacy of SCLC 
immunotherapy.
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