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Abstract
Photocatalytic CO2 reduction for solar fuel generation is a promising approach to alleviating the environmental and 
energy crisis. Herein, a flower-like composite was obtained by assembling Zn vacancy-rich ZnIn2S4 (VZn-ZIS) with 
up-conversion nanoparticles (UCNPs, NaYF4: Yb, Er). Specifically, the optimized UCNPs@VZn-ZIS demonstrates 
superior CO generation of 32.57 μmol/g in the near-infrared (NIR)-driven photocatalytic CO2 reduction process 
within 8 h. Fortunately, the performance of photocatalytic CO2 reduction based on optimized UCNPs@VZn-ZIS is 
superior to most reported photocatalysts under NIR irradiation. The enhanced photocatalytic CO2 reduction 
activity is attributed to the extended light absorption, enhanced charge separation, and improved CO2 activation of 
the surface vacancy. The work presented here provides a facile approach to developing novel broad spectral 
responsive photocatalytic CO2 reduction photocatalysts, which hold great potential for solar fuel generation in 
future applications.
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INTRODUCTION
Nowadays, the energy crisis and environmental pollution issues are becoming increasingly serious with the 
rapid development of industrial society[1,2]. Great efforts have been devoted to the long-term development of 
human society. The photocatalytic reduction of CO2 into high-value-added chemicals is a promising 
approach to alleviating the environmental and energy crisis[3,4]. However, photocatalytic CO2 reduction 
efficiency suffers from unsatisfied light harvesting, fast combination of charge carriers, low reaction activity, 
and poor selectivity[5-7]. Therefore, the rational design of efficient photocatalytic CO2 reduction 
photocatalysts is of great significance in photocatalysis. It has been reported that visible and near-infrared 
(NIR) light account for about 45% and 50% of the total solar spectrum, respectively[8]. Compared with 
visible light, NIR light possesses a larger proportion, enhanced penetration depth, reduced absorption 
competition, and fewer side reactions, which will activate photocatalysts uniformly and increase the 
absorption and utilization of solar energy[9]. Among various photocatalytic CO2 reduction catalysts, ZnIn2S4 
(ZIS) is a typical transition metal sulfide, which has drawn increasing attention based on great visible light 
harvesting, tunable morphology, and environmental friendliness properties[10-13]. However, the potential of 
utilizing ZIS as a NIR-responsive photocatalyst is rarely reported.

Tremendous strategies have been devoted to developing NIR-responsive photocatalysts. Among these 
approaches, modifying lanthanide-doped up-conversion nanoparticles (UCNPs) on the surface of 
semiconductors is considered an efficient approach to broaden the light-harvesting region[14-16]. In detail, the 
doping of rare earth ions can reduce the band gap of semiconductors, which can extend the light absorption 
into the NIR region. Specifically, the UCNP materials (e.g., NaYF4: Yb, Er) can absorb the low-energy 
photons (NIR) and emit high-energy photons (Ultraviolet or visible light) through the process of anti-stokes 
shift luminescence[17]. As a result, the emission of the UCNP materials can facilitate the generation of photo-
induced electron-hole pairs for further photocatalytic applications. In detail, Yu et al. coupled UCNPs 
(NaYF4: Yb, Tm) with hierarchical ZIS nanorods as a NIR-responsive photocatalyst for photocatalytic CO2 
reduction, which demonstrates the CO generation rate of 1,500 nmol/g/h[18]. It has been reported that 
UCNP materials have been utilized to combine with various semiconductors [such as TiO2, ZnO, and 
metal-organic frameworks (MOFs)], which often exhibit superior NIR-driven photocatalysis or 
photodynamic therapy[19-22]. However, it is still difficult to realize highly efficient photocatalytic CO2 
reduction of the composites of UCNPs@semiconductor. Hence, it is of great meaning to develop highly 
efficient NIR-driven photocatalytic CO2 reduction photocatalysts based on up-conversion approaches.

Recently, introducing vacancies into the surface of photocatalysts has drawn increasing attention[23-25]. The 
introduced vacancy can generate a new energy level, which can improve photocatalytic activity due to 
extended light absorption and facilitated charge carrier separation[26]. Additionally, it can work as a reaction 
site, which can ameliorate the charge density distribution and reduce the reaction energy barrier of CO2 
reduction[27]. Furthermore, the morphology control plays an important role in photocatalytic performance. 
Specifically, a hierarchical nanosheet assembled structure is favorable for the reduced diffusion distance for 
charge transportation when compared with bulk ones[28]. Therefore, it is a promising approach to develop 
nanosheet-assembled nanocatalysts with surface vacancy sites for much more efficient photocatalysis.

Herein, a NIR-responsive flower-like UCNPs@Zn vacancy-rich ZIS (VZn-ZIS) photocatalyst was developed 
by assembling UCNPs on nanosheet-assembled ZIS with rich zinc vacancies, which demonstrated superior 
CO evolution of 32.57 μmol/g under NIR light irradiation for 8 h. Moreover, the detailed photocatalytic CO2 
reduction mechanism over UCNPs@VZn-ZIS is investigated by detailed characterization techniques. The 
elevated photocatalytic CO2 reduction performance is contributed by enhanced light harvesting and 
facilitated photo-induced charge separation. The facile design presented here holds great potential for NIR-
driven solar fuel generation.
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EXPERIMENTAL
Chemicals
Glycerol (Tianjin Fuyu Chemical Co., Ltd., AR); Deionized water (DI water); Ethanol (Tianjin 
Jingdongtianzheng Precision Chemical Reagent Factory, AR); Anhydrous Zinc chloride (ZnCl2, Innochem, 
98%); Indium chloride trihydrate (InCl3·4H2O, Innochem, 99.99%); Thioacetamide (TAA, Innochem, ≥ 
98%); Sodium hydroxide (NaOH, Tianjin Guangfu Fine Chemical Co., Ltd.); Ammonium Fluoride (NH4F, 
Fuchen Chemical Reagent Co., Ltd.); Methyl Alcohol (Anhui Tedia High Purity Solvents Co., Ltd., AR); 
Erbium chloride hexahydrate (ErCl3·6H2O, Innochem, 99.99%); Ytterbium chloride hexahydrate 
(YbCl3·6H2O, Innochem, 99.99%); Yttrium chloride hexahydrate (YCl3·6H2O, Innochem, 99.9%); 
Octadecene (Innochem, 90%); Oleic Acid (Aladdin, AR); Cyclohexane (Innochem, 99.7%).

Preparation of ZIS
The detailed synthesis procedures were described in Supplementary Materials.

Preparation of VZn-ZIS
VZn-ZIS was synthesized according to the previous literature[26]. The detailed procedures were described in 
Supplementary Materials.

Preparation of UCNPs
The detailed synthesis procedures were described in Supplementary Materials.

Preparation of UCNPs@VZn-ZIS
The UCNPs@VZn-ZIS composite was synthesized using a facile physical mixing method. Specifically, masses 
of VZn-ZIS and UCNPs were weighted separately and ground in a mortar for 5 min.

Characterizations
The characterization details were provided in the Supplementary Materials.

Electrochemical and photoelectrochemical characterizations
Electrochemical impedance spectroscopy (EIS), Photocurrent response, and Mott-Schottky (MS) 
measurements were conducted on a CHI660E electrochemical workstation with a standard three-electrode 
cell. Specifically, the Pt wire and Ag/AgCl electrode were selected as the counter electrode and reference 
electrode, respectively. As for the working electrode, 5 mg of VZn-ZIS was added to the mixture of ethanol 
(200 μL) and Nafion (20 μL). After sonicating the solution for several minutes, the catalyst was dropped on 
an indium tin oxide (ITO) glass with a controlled area of 1 cm2. The working electrode was obtained and 
then dried in air for 2 h. Photocurrent response was obtained using a 300 W Xe lamp as the light source.

Photocatalytic experiments
Photocatalytic CO2 reduction experiments were conducted in a 35 mL photocatalytic bottle under a Xe lamp 
with a cut-off filter (λ > 800 nm). Generally, 5 mg of photocatalyst was added into 10 mL of 0.1 M TEOA 
anhydrous acetonitrile. Before photocatalysis, high-purity CO2 gas was purged into the bottle for 20 min to 
remove the air. The photocatalytic CO2 reduction reaction was conducted under NIR light (PCX50C; China 
Education Au-light) with continuous stirring. At each time interval, 200 μL of gas was extracted and injected 
into a gas chromatograph (GC-2014) to analyze the composition and content of the gaseous product.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/cs40127-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/cs40127-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/cs40127-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/cs40127-SupplementaryMaterials.pdf
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Figure 1. The synthesis procedure of composite of UCNPs@VZn-ZIS. UCNPs: Up-conversion nanoparticles; VZn-ZIS: Zn vacancy-rich 
ZnIn2S4.

RESULTS AND DISCUSSION
Photocatalyst preparation
The synthesis procedure of UCNPs@VZn-ZIS is shown in Figure 1. Specifically, VZn-ZIS was prepared by a 
hydrothermal approach. The UCNPs (NaYF4: 20% Yb, 2% Er) were synthesized using a hydrothermal 
method under an Ar atmosphere. Subsequently, the composite of UCNPs@VZn-ZIS was obtained via a 
physical mixing approach.

Morphologies and characterizations
The morphology of samples was investigated using scanning electron microscopy (SEM), transmission 
electron microscopy (TEM), and high-resolution TEM (HRTEM) measurements. As shown in Figure 2A, 
VZn-ZIS demonstrates a nanosheet-assembled nanoflower-like morphology. As shown in the HRTEM image 
of VZn-ZIS in Figure 2B, the lattice fringe of 0.32 nm can be assigned to the (102) plane of ZIS. In addition, 
the discontinuous and distorted lattice fringes (in yellow circles) demonstrate the existence of vacancies in 
VZn-ZIS[29]. The prepared UCNPs were well-arranged nanoparticles, which can also regularly stack into 
pieces [Figure 2C]. In addition, the TEM image of UCNPs demonstrates a hexagonal shape with a size of 
about 20 nm [Supplementary Figure 3C]. As a result, the composite of UCNPs@VZn-ZIS exhibits the same 
flower-like morphology as VZn-ZIS with UCNPs decorated in petals [Figure 2D]. Furthermore, the yellow 
circle in the TEM image of UCNPs@VZn-ZIS [Figure 2E] also proves the existence of UCNPs on VZn-ZIS. In 
Figure 2F, the lattice fringe spacing of 0.29, 0.32, and 0.41 nm can be assigned to (104), (102), and (006) 
planes of hexagonal ZIS, accordingly[30,31]. The lattice fringe spacing of 0.51 nm belonged to the (100) plane 
of UCNPs[32]. Therefore, the coexistence of ZIS and UCNPs proves the successful preparation of 
UCNPs@VZn-ZIS. Additionally, The SEM element mapping images [Figure 2G] prove the uniform 
dispersion of Na, Y, F, Yb, Er, Zn, In, and S elements in UCNPs@VZn-ZIS.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/cs40127-SupplementaryMaterials.pdf


Page 5 of Li et al. Chem. Synth. 2025, 5, 29 https://dx.doi.org/10.20517/cs.2024.127 15

Figure 2. (A) SEM image and (B) HRTEM image of VZn-ZIS; (C) SEM image of UCNPs; (D) SEM, (E) TEM image, (F) HRTEM image and 
(G) SEM element mapping images of UCNPs@VZn-ZIS. SEM: Scanning electron microscopy; HRTEM: high-resolution transmission 
electron microscopy; VZn-ZIS: Zn vacancy-rich ZnIn2S4; UCNPs: up-conversion nanoparticles; TEM: transmission electron microscopy.

As shown in Figure 3A, X-ray diffraction (XRD) patterns of VZn-ZIS and ZIS are consistent with the 
reported hexagonal ZIS[33]. In addition, the diffraction peaks of UCNPs follow the relevant standard PDF 
card (No. 16-0334), proving the successful preparation of UCNPs. Moreover, the XRD patterns of 
UCNPs@VZn-ZIS exhibit characteristic peaks of both VZn-ZIS and UCNPs, which are consistent with the 
element mapping results of SEM images. The ultraviolet-visible (UV-vis) diffuse reflectance spectra (DRS) 
were adopted to evaluate the light absorption capability of different samples. As shown in Figure 3B, VZn-
ZIS possesses a broad ultraviolet to visible light absorption (from 200 to 700 nm). Although pristine UCNPs 
have weak absorbance in the visible light region, they exhibit two obvious absorption peaks around 753 and 
967 nm. The composite of UCNPs@VZn-ZIS well maintains the advantages of both UCNPs and VZn-ZIS 
after combining VZn-ZIS with UCNPs. Specifically, UCNPs@VZn-ZIS not only can absorb light from 200 to 
570 nm but also exhibits absorption peaks at the NIR region around 727 and 976 nm, respectively. X-ray 
photoelectron spectroscopy (XPS) spectra are shown in Figure 3C-E. Compared with pure VZn-ZIS, the Zn 
2p and In 3d of UCNPs@VZn-ZIS moved to higher binding energy while S 2p moved to lower. In addition, 
as shown in Supplementary Figure 5A-E, Na 1s, Y 3d, F 1s, Yb 4d and Er 4d of UCNPs moved to higher 
binding energy region after mixing with VZn-ZIS, proving the strong interaction between VZn-ZIS and 
UCNPs[34]. Additionally, the concentration of Zn vacancies of VZn-ZIS was calculated according to the XPS 
spectra of Zn 2p and In 3d [Supplementary Table 1] . As shown in Figure 3F, the g value of 2.004 proves the 
existence of Zn vacancies in VZn-ZIS[35]. In addition, the higher intensity demonstrates that VZn-ZIS possesses 
a higher Zn vacancy concentration than ZIS. Compared with ZIS, Zn 2p and S 2p of VZn-ZIS shift to a lower 
binding energy region [Supplementary Figure 6A and B], which also demonstrates the existence of Zn 
vacancies[26].

Photocatalytic performance
The photocatalytic CO2 reduction process was conducted under NIR irradiation (800-1,100 nm) using 
triethanolamine as the sacrificial agent. As a result, the CO evolution of UCNPs@VZn-ZIS was up to 
32.57 μmol/g under NIR light irradiation for 8 h, which was six times of pristine VZn-ZIS and about 16 times 
of UCNPs@ZIS [Figure 4A]. The enhanced photocatalytic CO2 reduction performance of UCNPs@VZn-ZIS 
was attributed to the enhanced light absorption region, increased Zn vacancy, and the up-conversion light 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/cs40127-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/cs40127-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/cs40127-SupplementaryMaterials.pdf
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Figure 3. (A) XRD patterns of ZIS, VZn-ZIS, UCNPs, and UCNPs@VZn-ZIS; (B) DRS of VZn-ZIS, UCNPs, and UCNPs@VZn-ZIS; XPS spectra 
of Zn 2p, In 3d and S 2p of VZn-ZIS and UCNPs@VZn-ZIS (C-E); (F) EPR signals of ZIS and VZn-ZIS. XRD: X-ray diffraction; ZIS: ZnIn2S4; 
VZn-ZIS: Zn vacancy-rich ZnIn2S4; UCNPs: up-conversion nanoparticles; DRS: diffuse reflectance spectra; XPS: X-ray photoelectron 
spectroscopy; EPR: electron paramagnetic resonance.

Figure 4. (A) CO evolution over time of VZn-ZIS, UCNPs, UCNPs@VZn-ZIS and UCNPs@ZIS; (B) Controlled photocatalytic CO2 reduction 
experiments in the absence of CO 2, light or photocatalyst; (C) Carbon labeling experiment of the generated product using 13CO2 as the 
feed gas; (D) Photocatalytic CO2 reduction activity of UCNPs@VZn-ZIS with different mass ratio; (E) Photocatalytic stability test of 
UCNPs@VZn-ZIS; (F) Comparison of CO generation rate under NIR irradiation of UCNPs@VZn-ZIS with recent reported photocatalysts. 
VZn-ZIS: Zn vacancy-rich ZnIn2S4; UCNPs: up-conversion nanoparticles; NIR: near-infrared.
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emission induced by UCNPs. In detail, UCNPs can absorb NIR light and emit visible light to activate VZn-
ZIS for CO2 reduction. Moreover, a series of controlled experiments were conducted in Figure 4B to 
investigate the source of products of photocatalytic CO2 reduction. As a result, no CO was generated in the 
absence of a photocatalyst, light, or CO2 in the photocatalytic system. To further clarify the source of CO, a 
carbon labeling experiment was conducted by using 13CO2 as feed gas. As shown in Figure 4C, a signal of 
m/z = 29 can be observed, implying that 13CO was generated from 13CO2 (m/z = 45). In addition, the mass 
ratio of UCNPs and VZn-ZIS in the composite of UCNPs@VZn-ZIS was adjusted to optimize the efficiency of 
photocatalytic CO2 reduction [Figure 4D]. As a result, when the mass ratio of UCNPs is equal to VZn-ZIS, 
the UCNPs@VZn-ZIS exhibited much higher CO evolution than other controls. The trade-off effect of 
UCNPs loading on VZn-ZIS may cause insufficient exposure to photocatalytic active sites. Moreover, a 
recycling test was conducted to evaluate the photocatalytic stability of UCNPs@VZn-ZIS. As shown in 
Figure 4E, the CO generation shows no obvious change after four photocatalytic cycles, demonstrating the 
superior stability of UCNPs@VZn-ZIS. Besides, the SEM image [Supplementary Figure 9] and XRD spectra 
[Supplementary Figure 10] of UCNPs@VZn-ZIS after the recycling test remain unchanged when compared 
with fresh photocatalysts, further proving the photostability of UCNPs@VZn-ZIS. Furthermore, CO 
generation rates of different photocatalysts in the literature under NIR irradiation were also compared in 
Figure 4F. Specifically, the UCNPs@VZn-ZIS in this work exhibits a much higher generation rate than other 
reports[18,36-40].

Photocatalytic charge separation
A series of characterizations were utilized to evaluate the charge separation and migration behaviors of 
photocatalysts, including photoluminescence (PL), PL decay curves, laser scanning confocal microscopy 
(LSCM) images, surface photovoltage (SPV), transient photocurrent and EIS. As shown in Figure 5A, pure 
UCNPs exhibit several up-conversion PL emission peaks of 410, 525, 546, and 660 nm when excited by a 
laser of 980 nm. The detailed luminescence emission process of UCNPs was described in the part of the 
mechanism of photocatalytic CO2 reduction. As shown in Figure 5B, UCNPs@VZn-ZIS displays lower PL 
intensity than pristine VZn-ZIS and UCNPs, indicating the decreased charge recombination efficiency[41]. 
The average PL decay lifetime of VZn-ZIS, UCNPs, and UCNPs@VZn-ZIS is 3.85, 5.84, and 5.87 ns, 
respectively [Figure 5C]. The increased PL decay time of UCNPs@VZn-ZIS reveals a longer lifetime of 
charge carriers and better separation of photo-induced electrons and holes[42]. The LSCM result of VZn-ZIS [
Figure 5D and E] shows a much brighter image than UCNPs@VZn-ZIS, indicating a lower recombination 
rate of photo-induced charges in UCNPs@VZn-ZIS. In addition, more photo-generated electrons of 
UCNPs@VZn-ZIS can be transferred for further photocatalytic CO2 reductions. The SPV spectra [Figure 5F] 
of UCNPs@VZn-ZIS exhibit higher SPV response than VZn-ZIS and UCNPs, implying that more photo-
generated electrons can be generated and migrated to the surface of UCNPs@VZn-ZIS[43]. The transient 
photocurrent response of UCNPs@VZn-ZIS [Figure 5G] is higher than VZn-ZIS and UCNPs, which is 
consistent with the SPV results. Moreover, UCNPs@VZn-ZIS demonstrates a smaller EIS semicircle than VZn

-ZIS and UCNPs [Figure 5H], indicating a lower migration resistance.

Mechanism of photocatalytic CO2 reduction
The specific band positions of the photocatalysts were investigated by the MS and the Tauc plot. According 
to MS curves in Figure 6A, the slope of VZn-ZIS is positive, belonging to the n-type semiconductor[44]. 
Specifically, the flat potential of VZn-ZIS is -0.90 V (vs. Ag/AgCl). Therefore, the potential of the conduction 
band (CB) of VZn-ZIS is -0.90 eV [vs. normal hydrogen electrode (NHE)][26]. As shown in the Tauc plot in 
Figure 6B, the energy of the band gap (Eg) of VZn-ZIS is 2.69 eV. According to Eg = |ECB-EVB|, the potential of 
the valence band of VZn-ZIS is calculated as 1.79 eV (vs. NHE).

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/cs40127-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/cs40127-SupplementaryMaterials.pdf
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Figure 5. (A) PL curve of pure UCNPs when excited by a laser of 980 nm; (B) PL emission spectra of VZn-ZIS, UCNPs, and 
UCNPs@VZn-ZIS under the excitation of 350 nm; (C) PL decay curves of VZn-ZIS, UCNPs and UCNPs@VZn-ZIS; LSCM images of VZn-ZIS 
(D) and UCNPs@VZn-ZIS (E); (F) SPV spectra of VZn-ZIS, UCNPs and UCNPs@VZn-ZIS; Transient photocurrent (G) and EIS Nyquist 
plots (H) of VZn-ZIS, UCNPs and UCNPs@VZn-ZIS. PL: Photoluminescence; UCNPs: up-conversion nanoparticles; VZn-ZIS: Zn vacancy-
rich ZnIn2S4; LSCM: laser scanning confocal microscopy; SPV: surface photovoltage; EIS: electrochemical impedance spectroscopy.

To clarify the mechanism of photocatalytic CO2 reduction of UCNPs@VZn-ZIS, in-situ Fourier transform 
infrared (in-situ FTIR) spectroscopy was adopted to test the reaction intermediates. As shown in Figure 6C, 
no peak exists in the absence of light and CO2. After introducing CO2 under irradiation, new peaks occurred 
and strengthened with the prolonged reaction time. In detail, the peak at 1,727 cm-1 belonged to the C=O 
bond, indicating that CO2 was successfully introduced to the system[45]. Besides, monodentate carbonate 
species (m-CO3

2-, 1,547, 1,488, 1,475, and 1,375 cm-1) and bidentate carbonate species (b-CO3
2-, 1,658, and 

1,315 cm-1) were detected and increased with the increased irradiation time, proving that CO2 was dissolved 
in water (H2O, 1,641 cm-1)[46-49]. Moreover, the peaks of other carbon-based species such as bicarbonate 
species (HCO3

-, 1,453, 1,416, and 1,398 cm-1), carboxylate species (COO-, 1,565, 1,363, and 1,338 cm-1), 
carboxyl (*COOH, 1,679, 1,527, and 1,288 cm-1) and formaldehyde species (HCHO-, 1,781 and 1,511 cm-1) 
also appeared during the process of photocatalytic CO2 reduction, proving these intermediates were 
produced on the surface of UCNPs@VZn-ZIS[46,50-52]. Notably, *COOH is a significant intermediate of 
reducing CO2 to CO according to the previous study[51]. These intermediates prove that the photocatalytic 
process of CO2 reduction occurred on the surface of UCNPs@VZn-ZIS.

The mechanism of up-conversion-induced photocatalytic CO2 reduction of UCNPs@VZn-ZIS is shown in 
Figure 6D. The UCNPS can emit green luminescence (546 and 525 nm) and red luminescence (660 nm) 
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Figure 6. (A) MS curves and (B) Tauc plot of VZn-ZIS; (C) In-situ FTIR spectra of UCNPs@VZn-ZIS; (D) Photocatalytic CO2 reduction 
mechanism on UCNPs@VZn-ZIS under the NIR light irradiation. MS: Mott-Schottky; VZn-ZIS: Zn vacancy-rich ZnIn2S4; in-situ FTIR: in-
situ Fourier transform infrared; UCNPs: up-conversion nanoparticles; NIR: near-infrared.

under the excitation of an infrared laser of 980 nm [Figure 5A]. In detail, the up-conversion generated red 
luminescence at 660 nm comprised three steps of energy transfer (ET) from Yb3+ to Er3+[53]. Firstly, Yb3+ ions 
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are excited from the ground state (2F7/2) to the excited state (2F5/2) after absorbing photons from a laser of 
980 nm[54]. Subsequently, Er3+ ions were excited from the ground state (4I15/2) to the excited state (4F11/2) 
through the ET from adjacent Yb3+. Secondly, 4F13/2 of Er3+ was filled through a nonradiative relaxation from 
4F11/2 to 4I13/2. Thirdly, another ET of adjacent Yb3+ took place, which caused Er3+ in the 4I13/2 state to be excited 
to the 4F9/2 state[52]. To return to the ground state, Er3+ ions in the 4F9/2 state release the energy and emit red 
luminescence at 660 nm simultaneously[55]. As for the green luminescence, the 4F7/2 state of Er3+ was filled 
first with two ET of adjacent Yb3+ ions. Subsequently, Er3+ can emit green luminescence at 525 and 546 nm 
through a nonradiative relaxation from 4F7/2 to 2H11/2 and 4S3/2, accordingly[55]. However, the 2H9/2 of Er3+ can 
hardly be filled through ET of Yb3+ because of the energy mismatch, so the intensity of luminescence of 
410 nm was weak. The green luminescence (525 and 546 nm) emitted from UCNPS can be absorbed by VZn-
ZIS according to DRS in Figure 3B. Then, VZn-ZIS was excited to generate e--h+ pairs. Due to the energy of 
CB (ECB) of VZn-ZIS (-0.90 V) being more negative than the potential of reducing CO2 to CO (-0.53 V), the 
photocatalytic CO2 reduction reaction on VZn-ZIS is thermodynamically feasible.

CONCLUSIONS
In summary, a nanoflower-shaped UCNPs@VZn-ZIS photocatalyst was successfully synthesized through a 
facile physical mixing approach. With the green light emitted from up-conversion, VZn-ZIS was activated 
and e--h+ pairs for photocatalytic CO2 reduction were generated. The obtained UCNPs@VZn-ZIS 
demonstrates a superior CO evolution under pure NIR light irradiation. The enhanced CO evolution of 
UCNPs@VZn-ZIS was attributed to strengthened light harvesting, improved CO2 activation of the surface 
vacancy, and enhanced e--h+ pairs separation efficiency. The work presented here provides a facile approach 
to developing novel broad spectral responsive photocatalytic CO2 reduction photocatalysts, which hold 
great potential for solar fuel generation in future applications.
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