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Abstract
The investigation of the relationship between hyperuricemia and hypertension is a captivating field in hypertension 
research. The final product of purine metabolism is uric acid (UA), and the elevation of serum UA (SUA) levels 
directly contributes to the development of hypertension. Numerous studies have substantiated that hyperuricemia 
is a significant risk factor for hypertension. Furthermore, initial clinical trials have demonstrated that therapeutic 
interventions aimed at reducing SUA levels lower blood pressure (BP) in individuals with hypertension attributed to 
hyperuricemia. Recent research has demonstrated that hyperuricemia can facilitate the onset of hypertension via 
multiple mechanisms, including oxidative stress, inflammation, diminished nitric oxide (NO) synthesis, activation 
of reactive oxygen species (ROS), insulin resistance, vascular smooth muscle proliferation, and renal impairment. 
Given the interconnectedness between hyperuricemia and hypertension, it is advantageous to identify potential 
therapeutic approaches for timely intervention in order to impede the advancement of hypertension in individuals 
with hyperuricemia. This article reviews the research progress on the pathogenesis of hyperuricemia-induced 
hypertension.
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INTRODUCTION
Both hyperuricemia and hypertension are common metabolic diseases, and the harm to people’s quality of 
life can not be ignored. The definition of hyperuricemia typically involves a SUA level exceeding 7.0 mg/dL 
in men or 6.0 mg/dL in women[1]. The final product of purine metabolism is SUA, which is primarily 
excreted by the kidneys[2]. The elevation of UA levels is attributed to either an increase in its production or a 
decrease in its excretion[3]. Hypertension is a chronic disease characterized by elevated arterial BP. The 
definition of hypertension is an arterial blood pressure BP ≥ 140/90 mmHg[4]. The hypothesis of the 
association between UA and hypertension was initially proposed by Mahomed et al. in the 1870s[5]. The past 
few years have witnessed an increasing number of studies confirming hyperuricemia as a prominent risk 
factor in the development of hypertension[6,7]. A meta-analysis of prospective cohort studies that assessed the 
relationship between hyperuricemia and hypertension, including 18 studies and 55,607 participants with 
normal BP at the time of presentation, demonstrated that hyperuricemia was independently associated with 
an elevated risk of developing hypertension, irrespective of conventional risk factors for hypertension, 
particularly among the younger population and females, for a 1 mg/dL increase in UA level, the RR of 
combined hypertension events after adjusting for potential confounders was 1.13 (95%CI: 1.06-1.20)[8]. 
Another large-scale Japanese cross-sectional study showed that hyperuricemia was significantly associated 
with hypertension. After adjusting for age, BMI, blood lipids, diabetes, alcohol consumption, smoking, and 
eGFR (mL/min/1.73m2), SUA ≥ 5.3 mg/dL in men and ≥ 4.3 mg/dL in women are still positively correlated 
with the prevalence of hypertension[9]. It is worth noting that this relationship is particularly evident in 
children and adolescents. A recent study showed that the average SUA level of hypertensive children was 
higher than that of non-hypertensive children, and the effect of hyperuricemia on the systolic BP of 
hypertensive children was more significant[10]. The addition of UA-lowering therapy has been demonstrated 
to effectively reduce BP in hypertensive patients with hyperuricemia[11]. For example, allopurinol 
significantly reduces systolic and diastolic BP in children and adolescents with newly diagnosed essential 
hypertension[12].

Hypertension caused by hyperuricemia can be divided into two stages[13]: In the first stage, hyperuricemia 
inhibits NO production and activates the RAS, leading to excessive vasoconstriction, leading to 
hypertension. This process is reversible and is a UA-dependent response by which BP can be lowered. In 
the second stage, when hyperuricemia persists, the vascular wall is thickened, and BP increases due to the 
proliferation of vascular smooth muscle cells due to structural changes in the blood vessels. This phase was 
not associated with UA, and BP was no longer restored to its original level by lowering UA as in the first 
phase. Overall, UA increases BP through oxidative stress, inflammation, reduced NO production, RAS 
activation, insulin resistance, vascular smooth muscle proliferation, and kidney injury [Figure 1]. In this 
review, we will discuss the primary mechanisms of hyperuricemia leading to the development of 
hypertension.

RESEARCH PROGRESS ON THE MECHANISM OF HYPERURICEMIA-INDUCED 
HYPERTENSION
Oxidative stress
Oxidative stress is a state of imbalance between oxidation and antioxidation in the body. Reactive oxygen 
species (ROS), derived from oxygen molecules (O2), is an unstable and strong oxidant that can oxidize 
intracellular proteins, lipids, and DNA, leading to cell damage. UA has two contradictory properties: 
antioxidant and pro-oxidant. UA outside the cell is an antioxidant, while UA inside the cell is a pro-
oxidant[14]. It has been shown that physiological concentrations of UA can inhibit ROS production in 
endothelial cells. In contrast, high concentrations of UA increase ROS production, mainly through the 
action of the mitochondrial respiratory chain[15,16]. There are three main mechanisms of increased oxidative 
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Figure 1. Mechanisms of hyperuricemia-induced hypertension.

stress caused by hyperuricemia[17]: (1) Increased xanthine oxidase activity during UA metabolism and 
production of ROS; (2) Increased expression and activity of NADPH oxidase also produced ROS; (3) 
Mitochondrial ROS (mtROS) is produced by mitochondrial damage.

UA produced by intracellular xanthine oxidase induces oxidative stress bursts mediated by mitogen-
activated protein kinases (MAPK, such as p38MAPK) and NADPH oxidase, thus becoming the cellular 
mechanism driving the hypertensive response[18]. Animal model studies have demonstrated a positive 
correlation between elevated SUA levels and increased BP, while the administration of febuxostat, a 
xanthine oxidase inhibitor, effectively ameliorates both systemic and glomerular hypertension[19]. In 
hyperuricemia, NADPH oxidase catalyzes the generation of superoxide anions (such as ROS) through the 
transmembrane transfer of one electron to molecular oxygen, which induces endothelial dysfunction and 
subsequently increases BP[20]. UA causes the increase of mtROS and mitochondrial damage, which leads to 
mitochondrial dysfunction, further induces senescence and apoptosis of vascular endothelial cells, leading 
to the occurrence of atherosclerosis, and then leads to the occurrence and development of hypertension[17]. 
Kimura et al. found that UA-induced mitochondrial damage through the AMP-activated protein kinase 
pathway[21].

In summary, on the one hand, ROS generated during UA generation binds to vasodilator substance NO. It 
inhibits the function of NO, which in turn causes vasoconstriction and promotes the increase of BP[22]. On 
the other hand, oxidative stress leads to atherosclerosis by inducing inflammatory responses of 
inflammatory cells (such as macrophages), platelet aggregation, and LDL oxidation, which in turn causes BP 
elevation[17].

Inflammatory response
Inflammation is also involved in the association between hyperuricemia and hypertension. Ruggiero et al. 
found that UA was significantly positively correlated with a variety of inflammatory markers, such as C-
reactive protein (CRP) and interleukin-6 (IL-6), indicating that UA may contribute to promoting the 
inflammatory state[23]. UA promotes inflammation mainly through three inflammatory signaling pathways 
in cells: (1) Activation of the mitogen-activated protein kinase (MAPK) pathway: Studies have shown that 
UA exerts proinflammatory effects through the activation of p38 MAPK and p44/42 MAPK, which is time - 
and concentration-dependent[24]. UA also activates extracellular signal-regulated kinase (ERK), which is 
involved in the secretion of inflammatory factors, adhesion factors, chemokines, and cell proliferation and 
migration[25]; (2) Inhibition of adenosine monophosphate-activated protein kinase (AMPK) pathway: 
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AMPK and NLRP3 inflammasome are associated with the disturbance of metabolic and inflammatory 
pathways. Studies have shown that UA can inhibit the AMPK pathway and regulate the activation of NLRP3 
inflammasome, thereby causing inflammation[26]; (3) Activation of phosphatidylinositol-3-kinase (PI3K)-
Akt pathway: UA phosphorylates Akt and activates mTOR, which inhibits autophagy and promotes 
inflammation and angiogenesis through hypoxia-inducible factor (HIF)-1α[27,28].

In endothelial cells, UA stimulates the synthesis of proinflammatory factors such as CRP, IL-6, interleukin-8 
(IL-8), angiotensin-II (AngII), tumor necrosis factor-α, intercellular adhesion molecule-1 (ICAM-1), 
vascular cell adhesion molecule-1 (VCAM-1), and monocyte chemoattractant protein-1 (MCP-1)[29]. In 
vascular smooth muscle cells, UA stimulates cell proliferation and migration by producing CRP, 
cyclooxygenase-2, MCP-1, local thromboxane, and AngII and upregulates platelet-derived growth factor-
A[30]. Increased expression and release of MCP-1, IL-8, VCAM-1, and ICAM-1 can trigger monocyte 
migration and attachment to the vascular wall, cause an inflammatory reaction, damage vascular endothelial 
cells, and lead to vascular endothelial dysfunction[29].

In addition, when the SUA level exceeds 7.0 mg/dL, UA that cannot be dissolved in blood vessels will 
precipitate to form sodium urate crystals, which can activate multinucleated leukocytes, monocytes, and 
lymphocytes and produce a variety of inflammatory substances[22]. Notably, the interaction of macrophage 
through phagocytoses sodium urate crystals with pathogen recognition receptors, Toll-like receptors (TLR) 
2/4 and cd14 may trigger the MyD88/TRIF pathway, leading to nuclear factor-κb (NF-κB) activation and 
NLRP3 inflammasome protein complex formation, which results in the activation of caspase-1 and the 
processing and secretion of IL-1β[31]. In addition, some studies have found that soluble UA can also promote 
the expression of NALP3 inflammasome and IL-1β in proximal renal tubular endothelial cells, thereby 
promoting immune inflammatory response[32].

Inflammatory mediators promote the development of hypertension by increasing vascular permeability and 
releasing cytokines and ROS. In addition, the release of cytokines leads to the reduction of the luminal 
diameter of resistance vessels, the increase of vascular resistance and stiffness, the production of 
angiotensinogen and AngII, and the retention of water and sodium, thereby increasing BP[33].

Inhibition of NO production
NO is a highly reactive and gas-diffusing free radical with potent vasodilator, anti-inflammatory, and 
antioxidant properties and plays a crucial role in regulating vascular tone, angiogenesis, inflammatory cell 
adhesion, and platelet aggregation[34]. In addition, NO is an unstable molecule that is easily oxidized by ROS 
and thus loses its physiological activity[17].

Hyperuricemia mainly causes a decrease in NO production through three mechanisms: increased oxidative 
stress, decreased L-arginine supply, and endothelial nitric oxide synthase (eNOS) inhibition, leading to 
endothelial dysfunction and, thus, increased BP[35].

L-arginine is one of the raw materials for NO production. L-arginine can also be cleaved by arginase in the 
urea cycle (also known as the ornithine cycle) to form urea and L-ornithine[36]. However, hyperuricemia 
increases arginase activity in human umbilical vein endothelial cells and pulmonary artery endothelial cells, 
leading to a decrease in the supply of L-arginine. Consequently, NO production is reduced[37,38]. In addition, 
NO synthesis in endothelial cells is catalyzed by eNOS in endothelial cells[39]. Park et al. found that high UA 
levels impair eNOS activity by inhibiting the interaction between eNOS and CaM, which in turn leads to 
reduced NO production[40].
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Hyperuricemia can directly act on the renal macula densus to reduce the expression of NO synthase or 
trigger endoplasmic reticulum stress response, mediated by the protein kinase C/endothelial NO synthase 
pathway, to inhibit eNOS activity, thereby inhibiting NO production and leading to vascular smooth muscle 
contraction[41]. The reduction of NO production can promote the expression of angiotensin, angiotensin-
converting enzyme, AngII and AngII receptor[42]. In summary, hyperuricemia leads to excessive 
vasoconstriction and BP elevation through both the reduction of NO production and the activation of the 
RAS system.

Activation of the RAS
AngII is a pivotal effector of the RAS, primarily exerting its actions on specific receptors. These actions 
encompass vasoconstriction, regulation of acid-base homeostasis, modulation of immune and inflammatory 
pathways, and stimulation of chemokine release from macrophages[43]. Studies have shown that UA activates 
RAS, especially the angiotensin-converting enzyme (ACE)-AngII-AngII type 1 receptor pathway, in which 
AngII constrains blood vessels and increases BP[44]. Related animal experiments have shown that the use of 
RAS inhibitors (enalapril and losartan) can prevent hypertension and arteriolar lesions caused by 
hyperuricemia in rats[45]. In addition, studies have shown that UA stimulates vascular smooth muscle cell 
proliferation by activating RAS organization in vascular smooth muscle cells, and this stimulation is 
mediated by UA increasing PDGF A and C chain expression, local thromboxane production, and 
cyclooxygenase-2 stimulation to induce specific MAPK pathways[46]. Notably, UA not only activate the RAS 
pathway involved in oxidative stress and inflammation but also elicits more complex inflammatory and 
oxidative responses when combined with AngII[47].

Insulin resistance
Yu et al. showed that elevated UA was closely related to insulin resistance (IR)[48]. In addition, Choi et al. 
found that SUA levels were linearly and positively correlated with serum C-peptide, insulin levels, and 
IR[49]. Similarly, Niu et al. recently confirmed that serum UA plays a mediating role in the occurrence of IR 
in children and adolescents and that UA is an independent risk factor for IR[50]. Notably, UA inhibits 
insulin-induced eNOS activation and NO production by impairing PI3K/Akt and insulin signaling 
pathways, leading to the development of IR, which induces endothelial dysfunction and ultimately leads to 
the development and progression of hypertension[51,52]. Interestingly, peripheral IR may play a more 
important role than hepatic IR in the development of hyperuricemia-induced hypertension; hyperuricemia 
and IR can lead to the development of hypertension through three common mechanisms[53]: (1) RAS 
activation; (2) UA and insulin directly stimulate renal sodium reabsorption and cause water and sodium 
retention; (3) Endothelial dysfunction and regulation of vascular tone by NO. In addition, an animal 
experiment showed that UA induced hepatocyte fat accumulation, IR, and insulin signaling disorders 
through the NLRP3 inflammasome activation pathway, thereby mediating the occurrence and development 
of non-alcoholic fatty liver disease (NAFLD) and hypertension[54]. Other reports have demonstrated that 
reducing UA levels with allopurinol can improve IR and systemic inflammation, and also illustrate the 
relationship between UA and IR[55].

Kidney injury
The underlying mechanism linking UA and hypertension has been explored in animal experiments, and 
hyperuricemic rats have been shown to develop hypertension due to preglomerular arterial lesions[45,56]. It is 
worth noting that hypertension caused by short-term hyperuricemia has no apparent renal oxidative stress 
or mitochondrial dysfunction. However, long-term hyperuricemia can cause renal oxidative stress to 
promote mitochondrial dysfunction and decrease ATP content, leading to systemic hypertension[57].
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In addition, Sánchez-Lozada et al. found that hyperuricemia can damage the autoregulatory response 
of glomerular afferent arterioles, resulting in luminal occlusion of preglomerular vessels and vessel 
wall thickening, leading to severe renal hypoperfusion[58]. Then, the signal of ischemia is a strong 
stimulator that induces renal tubulointerstitial inflammation and fibrosis as well as elevated BP[58]. 
Other studies have shown that hyperuricemia leads to renal tubular injury and renal fibrosis by 
activating endothelin-1 and fibroblast proliferation[59], which in turn reduces renal blood flow, leads to 
endothelial cell dysfunction, further stimulates the proliferation of systemic vascular smooth muscle 
cells, and finally, nephropathy and vascular changes lead to the occurrence of hypertension[60].

Other mechanisms
The action of urate anion transporter1 and glucose transporter 9 enables UA to permeate vascular smooth
muscle cells, activating p38 MAPK, p44/42 MAPK, and PDGFRβ pathways, which subsequentially promote
the growth and migration of vascular smooth muscle cells. This leads to vascular remodeling and
hypertension[24]. Gut microbiota is implicated in hyperuricemia and hypertension. It has been documented
that intestinal flora can enhance UA excretion through three potential mechanisms: inhibition of xanthine
oxidase activity, uricase production, and increased purine metabolism[61]. Robles-Vera et al. demonstrated
that gut microbiota can mitigate endotoxemia, augment regulatory T cells, and inhibit the onset and
progression of endothelial dysfunction and hypertension[62]. Consequently, gut microbiota contributes to the
reduction of UA and BP. Gut microbiota-associated therapeutic pathways might emerge as a novel direction
for the treatment of hyperuricemia and hypertension.

ASSOCIATION OF HYPERURICEMIA, HYPERTENSION, AND NAFLD
Hyperuricemia is an independent risk factor for hypertension[6,7] and is also associated with NAFLD[63]. A 
recent meta-analysis showed that elevated SUA levels were positively associated with NAFLD[64]. In 
addition, NAFLD is also an independent risk factor for hypertension[65]. Epidemiological evidence shows 
that about 49.5% of patients with hypertension have NAFLD, and the incidence of hypertension in patients 
with NAFLD is significantly higher than that in the general population[66]. Recently, it has been found that 
NAFLD is significantly associated with the increase of systolic BP over time[67]. Similar to the mechanism by 
which UA causes hypertension, UA also participates in the occurrence and development of NAFLD 
through oxidative stress, inflammation, and insulin resistance[68], while NAFLD can also induce oxidative 
stress, inflammation, RAS activation, and IR to promote the development of hypertension[66]. At present, the 
specific mechanism among the three is not fully understood, and further research is needed to confirm.

EFFECT OF UA-LOWERING DRUGS ON BP
Treatment to reduce UA can reduce BP in patients, which also suggests a direct pathophysiological role of
UA in the pathogenesis of hypertension. In a randomized controlled clinical trial, 44 patients aged 12 to 19
years with newly diagnosed essential hypertension and SUA levels greater than 55 mg/L (327 μmol/L) 
were enrolled. After 8 weeks of treatment, the combination of allopurinol and enalapril was found to be 
more effective in lowering BP than enalapril alone[69]. Beattie et al. studied hypertensive patients over 65 
years of age and 6,678 controls treated with allopurinol[70]. Compared with the control group, systolic BP 
decreased by 2.1 mmHg and diastolic BP by 1.7 mmHg. Allopurinol use was independently associated with 
reductions in systolic and diastolic BP after adjustment for multiple factors (P < 0.001), suggesting that 
allopurinol use in older adults may result in a small reduction in BP[70]. A recent systematic review and 
meta-analysis of randomized controlled trials supported the positive effect of UA-lowering therapy on BP 
control, especially systolic BP[71]. However, the effect of UA-lowering drugs on BP is not clear, and 
there is not enough evidence to recommend the effectiveness of UA-lowering therapy in the treatment 
of hypertension. In the future, a large number of prospective randomized controlled trials are needed for 
further verification.
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STUDY LIMITATIONS, SUMMARY AND PROSPECT
Hyperuricemia plays an inseparable role in the development of hypertension, especially essential 
hypertension. Hyperuricemia can promote the development of hypertension through various mechanisms 
such as oxidative stress, inflammatory response, reduction of NO production, RAS activation, IR, vascular 
smooth muscle proliferation, and kidney injury, and promote target organ damage. However, the complete 
mechanism of hyperuricemia-induced hypertension needs to be clarified and needs further research[72]. 
Studying its mechanism is helpful in selecting potential treatment and intervention strategies, intervening in 
hypertension early and delaying its progression, and reducing the pathological role of serum UA. However, 
due to the limitations of clinical studies, the existing evidence on the effect of UA-lowering therapy on BP 
control is still controversial. Future research should focus on identifying the cardiovascular threshold of 
normal serum UA, the process of UA fluctuation, and reliable UA detection markers so as to more 
accurately identify the sequence relationship between hypertension and hyperuricemia and then clarify the 
actual clinical occurrence of hypertension caused by hyperuricemia, so that clinicians can better intervene.
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