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Abstract
Copper-based electrocatalysts, which hold great promise in selectively reducing CO2 into multicarbon products, 
have attracted significant recent interest, both experimentally and theoretically. While many studies have 
suggested a strong dependence of catalytic selectivity on the concentration of the *CO reaction intermediate on the 
Cu surface, it remains challenging for a direct experimental probe of the CO coverage. This necessitates a reliable 
computational method that can accurately establish the theoretical coverage-dependent phase diagram of CO 
adsorbates on the catalyst. Here we propose a scheme composed of density functional theory calculations, 
machine-learning force fields and graph neural networks as a solution. This method enables a fast screening of 
7 million adsorption configurations based on a small set of density functional theory data, with a balance between 
accuracy and efficiency tuned by the combinatorial use of machine-learning force field and graph neural network 
models. We have investigated eight different Cu facets and discovered that the high-index facets such as (310), 
(210) and (322) exhibit a much higher CO coverage than the low-index counterparts such as (111), leading to an 
increased opportunity for C–C coupling for the former. Our results can provide a new perspective for the 
understanding of the fundamental role of CO coverage on the Cu surface for electrochemical CO2 reduction.

Keywords: Machine-learning force fields, density functional theory, graph neural networks, coverage effect, 
electrochemical CO2 reduction
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INTRODUCTION
In the realms of surface science and catalysis, the interactions between surfaces and adsorbates are 
foundational for understanding catalytic processes and crucial for catalyst design and discovery[1-6]. With the 
rapid advancement of computational and theoretical chemistry, particularly the extensive application of 
density functional theory (DFT), researchers can now calculate the adsorption energy of adsorbates on 
surfaces with unprecedented accuracy, playing an indispensable role in catalyzing the design and innovation 
process[6-12].

The study of lateral interactions among adsorbates and their impact on catalytic activity, selectivity, and 
surface stability, such as in carbon dioxide reduction reactions (CO2RR)[13-17], nitrogen oxide reduction 
reactions (NOxRR)[18-20]. and the Fischer-Tropsch synthesis[21-23], has gained increasing attention. These 
interactions, especially those modulated by varying adsorbate coverage, are vital for precisely controlling the 
catalytic reaction process, making a deep understanding of lateral adsorbate interactions and coverage 
effects crucial for optimizing catalyst design and enhancing performance. However, exhaustively calculating 
coverage-dependent adsorption energies using DFT alone often proves impractical due to the combinatorial 
growth of adsorption configuration spaces with coverage and site types, and the substantial computational 
cost of a comprehensive analysis. Various methods have been proposed to address this, including cluster 
expansion[24], multi-order lateral interaction models[14], graph theory[18,25,26], and machine-learning 
approaches[27]. The combination of graph theory and machine learning has been regarded as one of the most 
effective means to analyze coverage-dependent adsorption energies: graph theory tools for automating the 
enumeration of vast adsorption configurations, and machine learning models for predicting adsorption 
energies across the entire configuration space based on a limited DFT dataset[18,26]. However, graph-based 
enumeration algorithms encounter significant computational bottlenecks at the stage of isomorphism 
comparison of configurations, as graph isomorphism comparison is an extremely time-consuming Non-
deterministic Polynomial (NP) problem, exponentially growing with the number of atoms in adsorption 
configurations[28]. Since the differences between adsorption configurations mainly depend on the occupation 
of different adsorbate sites, symmetry-based methods often offer a more efficient evaluation of adsorption 
configurations with multiple site occupations. Machine-learning approaches, especially deep learning 
methods based on neural networks (NNs), have been primarily divided into two strategies for accelerating 
the prediction of adsorption energies in vast configuration spaces: (1) direct prediction of stable state 
adsorption energies from initial configuration guesses using NNs; and (2) acceleration of the geometry 
optimization process using machine-learning force fields (MLFF)[29,30]. While NN methods are highly 
efficient in prediction with negligible computational cost, their accuracy depends not only on the model 
quality but also on the size of the training dataset[31]. In contrast, MLFF methods require significantly less 
DFT computational data for training and can obtain both stable configurations and more accurate 
adsorption energy predictions. However, the optimization time needed for MLFF methods far exceeds the 
prediction time of NN methods, though it still represents a substantial saving in computational cost 
compared to direct DFT calculations. Each strategy has its strengths, and they contribute from different 
perspectives to the exploration of coverage-dependent adsorption energies. Yet, all these methods can only 
consider the optimization of a limited number of configurations, facing insurmountable computational 
burdens when confronted with potentially hundreds of thousands or millions of configurations.

In this work, we have developed a “structure enumeration + MLFF + NNs” approach for efficiently 
exploring adsorbate-adsorbate interactions, enabling the rapid exploration of nearly ten million 
configurations on various copper facets with different *CO adsorption coverage. By rapidly enumerating 
and deduplicating adsorption configurations through a “geometry + graph theory + symmetry” approach, 
we generated an approximately 7 million configuration guess space. Then, using a designated sampling 
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method, we selected a very small set of configurations for DFT structural optimization to obtain 
optimization trajectories for training a MLFF based on deep potential molecular dynamics (DPMD). 
Subsequently, the MLFF was used to perform structural optimizations on an expanded sampling space 
(~186,000) to obtain corresponding stable adsorption energies. Finally, we trained a graph embedding 
network model (GEN) using the configuration-energy data, which considered non-bonded adsorbate 
interactions in feature construction and efficiently predicted energies across the entire target configuration 
space. Applied to the Cu-CO system, our method achieved results qualitatively consistent with experiments 
at three orders of magnitude lower computational cost than pure DFT calculations: the adsorption strength 
of CO on Cu surfaces exhibited a minimal change in energy at first, followed by a significant increase with 
coverage; high-index Cu surfaces often exhibited higher catalytic activity due to more low-coordination Cu 
sites. These findings undoubtedly demonstrate the effectiveness and efficiency of our method and its power 
in exploring vast configuration spaces.

MATERIALS AND METHODS
At high coverage, the configurations of adsorption not only experience an explosive increase in number due 
to the enumerated surfaces and the geometric structures and binding modes of the adsorbates but also 
become almost unpredictable due to the complex interactions between the adsorbates. This signifies that the 
enumeration methods relying solely on expert experience fail under these circumstances[25]. By integrating 
expert knowledge with deep learning technologies, a programmable scalable agent model can provide 
interpretable and reliable analysis and predictions for the vast configuration space.

Workflow
Our study focuses on the adsorption configurations of CO on eight different Cu surfaces at varying 
coverage levels. As illustrated in Figure 1A, taking the (100) surface as an example, as the CO coverage 
increases, the distance between the adsorbed CO molecules gradually decreases, along with an increase in 
the interaction between the adsorbates. The number of configurations shows a trend of initially increasing 
and then decreasing [Supplementary Table 1]. Ultimately, nearly 7 million adsorption configurations are 
generated for the eight Cu surfaces, representing an extremely large configuration space [Supplementary 
Table 2]. We will introduce the detailed enumeration process in the following sections.

We propose a simple and efficient framework capable of rapidly and accurately predicting the CO 
adsorption energies of all stable configurations. The workflow is illustrated in Figure 1B, which depicts our 
comprehensive computational exploration of the configuration space. Initially, the entire configuration 
space is sampled randomly twice to obtain the first and second sampling spaces, respectively, with both 
sampling steps covering all surface coverage levels. Subsequently, configurations from the more concise 
second sampling space undergo DFT structural optimization to obtain the CO adsorption energies of stable 
configurations, along with the trajectory of configuration optimization and the corresponding energies. 
Using these trajectories and energies as a dataset, a MLFF based on the DPMD deep potential architecture is 
trained, which effectively fits the interaction between adsorbates at different coverages[32]. The fitted force 
field is then used to optimize the structures of the larger first sampling space to obtain the CO adsorption 
energies of stable configurations. The resulting configuration-adsorption energy data can train a well-
performing GEN, capable of accurately predicting the stable CO energies of approximately 7 million 
adsorption configurations in the target configuration space, despite using very simple feature combinations.

Compared to the total configurational space, the computational framework requires a significantly lower 
volume of initial data from DFT calculations, differing by three orders of magnitude, even though DFT 
calculations are generally considered to be highly resource-intensive. By introducing a machine-learned 
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Figure 1. Configuration Space and Workflow for CO Adsorption Energy Prediction on Cu Surfaces. (A) Schematic representation of CO 
adsorption configurations on Cu(100), Cu(110), and Cu(111) surfaces illustrating different CO coverages. The configurations exhibit 
varying distances between adsorbed CO molecules in relation to the coverage density, culminating in a broad spectrum of nearly 7 
million configurations across eight Cu surfaces, as indicated by the expansive configuration space; (B) Depiction of the workflow: 
starting with a random selection of 186,000 potential configurations (Sample space 1), it narrows down to 1,592 configurations (Sample 
space 2) for DFT optimization. These optimized configurations train a DPMD-based ML force field, which is then used to predict 
adsorption energies for the initial sample space, allowing the graph embedding network to estimate stable-state energies for the 
extensive configuration space. DFT: Density functional theory; DPMD: deep potential molecular dynamics; ML: machine learning.

force field (MLFF) model with DFT accuracy, we have substantially enriched the training dataset for the 
adsorption energy prediction model. This approach cleverly circumvents the costly active learning process 
while enabling the assessment and exploration of the complete, complex configurational space in a cost-
measurable manner - a capability not present in previous studies[33,34]. Moreover, this scalable framework for 
high-coverage configurational exploration can be flexibly defined and upgraded according to the user’s 
needs.

Independent adsorption configuration enumeration
To acquire the global stable structures of adsorption configurations, researchers typically enumerate and 
construct sets of configuration guesses that closely approximate local stable structures based on prior 
knowledge before DFT geometric optimization[35,36]. These initial guesses often share similar or identical 
atomic bonding relationships with their corresponding local stable structures. After geometric optimization, 
the local stable structures with the lowest energy are usually considered the global stable structures of the 
adsorption configuration; in other words, the global stable structures are a subset of the collection of local 
stable structures. However, this manual enumeration method for guessing adsorption configurations is not 
suitable for the high-coverage adsorption configuration systems in our study, due to the richness and 
combinatory nature of adsorbable sites on the modeling surface[25,35]. In this case, we must introduce an 
automated enumeration process for configuration guesses based on prior experience and conditional 
constraints. Since our research focuses on the impact of interactions between adsorbates on CO adsorption 
energy, the variability of adsorption sites is a key consideration in our enumeration of adsorption 
configuration guesses. Additionally, the global stable structures we focus on do not involve complex 
changes such as interface reconstruction or adsorbate desorption, at most only changes in the CO 
adsorption sites on the surface compared to the initial configuration guesses after geometric optimization, 
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although studies have shown that high coverage of adsorbates can trigger surface reconstruction and 
significantly change the surface’s catalytic properties[29,34,37]. For potential adsorbate desorption issues after 
geometric optimization, we can avoid them by introducing an empirical distance threshold in the initial 
guess modeling before optimization, effectively reducing the computational cost of unreasonable 
configuration guesses. In our studied systems, the differences in adsorption energy between adsorption 
configurations primarily depend on the adsorption sites, so enumerating the combination space of 
adsorption sites on the surface conveniently yields our target configuration guess space, which can be 
quickly achieved for a finite-sized slab.

The enumeration of adsorption configuration guess space is conducted on eight Cu surfaces, including 
(100), (110), (111), (210), (221), (310), (311), and (322), which are considered to be worth exploring by 
researchers[38-42]. As shown in Figure 2, the enumeration process is divided into three steps: surface site 
search, adsorption configuration enumeration, and deduplication of equivalent configuration guesses. In the 
site search part, we define the collection of Cu atoms on the surface that can bond with adsorbates and their 
surrounding environment as a site. Therefore, the types of sites depend on the size of the Cu atom 
collection and its local environment. Here, we abstract sites and their local environments into graphs using 
graph theory methods and determine the uniqueness of sites by judging whether the site graphs are 
isomorphic[25]. Using graph theory methods, we conveniently identified 68 unique sites from the eight Cu 
surfaces and used a combination letter naming method to distinguish different site types, for example, the 
“Bb” site type, where “B” indicates the site has a coordination number of n = 2, and “b” indicates it is the 
second graph structure among sites with the same coordination number, and so on. This purely geometric 
definition of sites does not restrict the morphology of the sites, reducing the damage that biased 
understanding may cause in constructing a complete configuration guess space[25,36]. Its generality and 
scalability make it convenient to apply to the construction of configuration guesses in other high coverage 
systems[43-45]. The graph-theoretical site comparison method allows for a simple and rapid quantitative 
description of differences between sites.

After detecting all adsorption sites on the Cu surfaces, we used a method of filling CO molecules on the 
clean Cu surface with distance limitations to achieve the enumeration of configuration guesses, with the 
main requirements being: CO adsorbs monodentately on the Cu surface with only C contacting Cu atoms; 
the orientation of CO molecules is set to the vector sum of the direction vector from its coordinating Cu 
atom to the C atom; the filling distance limitation requires that the interatomic distance between different 
CO molecules must not be less than 2.3 Å. Consequently, we obtained approximately 44 million initial 
adsorption configuration guesses, with the number of configurations enumerated on different index faces 
increasing with CO coverage before decreasing [Supplementary Table 1]. Based on the site type naming 
method, we named the adsorption configuration according to the combination types of sites they belong to, 
for example, “Aa2Ab1Da1Dc2” site combination type, indicating 2, 1, 1, 2 CO molecules adsorb on “Aa”, 
“Ab”, “Da”, “Dc” types of sites, respectively. Moreover, we defined a simplified site combination type, such 
as the simplified type for “Aa2Ab1Da1Dc2” being “AD”. Subsequent configuration data sampling 
calculations will be based on these two types of site combinations. Notably, the previous enumeration 
process did not consider the intrinsic symmetry of different Cu surfaces; for example, the Cu(111) surface 
corresponds to the p3m1 plane group [Supplementary Tables 3 and 4][46-48]. The existence of such planar 
symmetry results in a large number of duplicate structures in the enumerated configuration guesses. As 
shown in Supplementary Figure 1, two adsorption configurations A and B on Cu(111) with two CO 
molecules that do not correspond to the same atomic coordinates may actually be equivalent structures. 
Through symmetry operations, we obtained approximately 7 million independent initial adsorption 
configuration guesses from the 44 million, significantly narrowing the target configuration space range 
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Figure 2. Enumeration of unique CO Adsorption Configurations. A three-step method for defining unique CO adsorption configurations 
on Cu surfaces. Initially, Step 1 identifies 68 distinct adsorption sites using graph theory to capture surface atom arrangements. Step 2 
demonstrates the systematic filling of CO on these sites while adhering to spatial constraints, yielding approximately 44 million 
preliminary configurations. Step 3 applies symmetry operations to distill these down to around 7 million unique configurations, 
streamlining the dataset for further computational exploration.

[Supplementary Table 2]. Compared to the graph-theoretical deduplication algorithm, this method not only 
has a crushing advantage in comparison speed but also can theoretically overcome the limitations of the 
graph isomorphism algorithm in comparing periodic crystal structures[25]. Overall, this enumeration process 
of the configuration space allows for a more comprehensive consideration of the adsorbate sequence space, 
thereby reducing errors associated with energetics-based configuration sampling[25,29].

Machine-learning force field
Given the vast adsorption configuration space spanning eight different Cu surfaces, it is imperative to 
leverage artificial intelligence to navigate this extensive configuration space. Two research approaches are 
considered viable: The first involves constructing MLFFs through the rich trajectory data obtained during 
the first-principles geometric optimization of a small set of adsorption configurations, followed by using the 
trained force field model to optimize the remaining adsorption configurations[30]. The second approach 
entails developing a deep learning model capable of directly predicting the steady-state adsorption energy 
from initial configuration guesses[18,49]. Given that the construction of force fields can significantly utilize 
data from the structural optimization process, the initial DFT calculations required for the first strategy are 
considerably less. However, using the force field model to optimize the remaining configurations is also a 
time-consuming task, especially considering the configuration space volume is close to seven million. 
Additionally, selecting a small number of representative configurations for DFT calculations from a vast and 
unevenly distributed sample space, particularly among high-index surface configurations, poses a 
challenging problem.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4077-SupplementaryMaterials.pdf
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Therefore, after considering both the predictive accuracy of MLFFs and the prediction speed of deep 
learning models, we designed an integrated solution that uses MLFF as a data augmenter for the adsorption 
energy prediction model. Initially, for low-index surfaces such as Cu(100), Cu(110), and Cu(111) depicted 
in Figure 1B, where the enumerated configuration count is low, we randomly select 20% of the unoptimized 
adsorption configurations for DFT calculations. For higher-index surfaces, we perform a primary sampling 
based on adsorption site combination types, followed by a secondary sampling based on simplified 
adsorption site combinations. The configurations obtained from secondary sampling undergo DFT 
structural optimization. This sampling process yielded a total of 1,592 structures. The resulting structure-
energy pairs through structural optimization were obtained for training the MLFF [Supplementary Table 5]. 
Subsequently, we train the MLFF for the Cu-CO system with accuracy close to DFT calculations using the 
open-source and user-friendly deep learning architecture DPMD, which has been proven to have high 
simulation accuracy and efficiency in vast Si atomic systems[32,50]. This force field model is then applied to 
optimize the remaining low-index surface configurations and those from the primary sampling. By 
expanding the training dataset with adsorption configurations using MLFFs, we can significantly address 
the issue of data scarcity faced when constructing deep learning models, thereby substantially improving 
model quality[31].

Our trained force field exhibits high accuracy, with root mean square error (RMSE) values for energy and 
force being < 1 meV/atom [Figure 3A] and < 0.03 eV/Å [Figure 3B], respectively. The optimization of initial 
configuration guesses in the secondary sampling space using the well-fitted force field further assesses the 
force field quality: the steady-state adsorption configurations obtained from force field optimization almost 
perfectly match those obtained from DFT optimization [Figure 3C]. Moreover, analyzing the distribution of 
Cu–C bond lengths in the steady-state adsorption configuration set reveals that the distribution from MLFF 
optimization closely aligns with that from DFT optimization [Figure 3D], with an average Cu–C bond 
length discrepancy of < 0.01 Å. This demonstrates that the MLFF can achieve near-DFT calculation 
accuracy for adsorption configurations across eight Cu surfaces. The high-quality force field is attributed 
not only to the superior MLFF architecture but also to the effective sampling method - ensuring the 
sampled configuration guesses, i.e., the starting points for DFT geometric optimization, are as diverse as 
possible, facilitating a rich optimization trajectory that benefits model learning of more complex multi-body 
interactions. We used the MFLL to optimize ~186,000 structures for the following graph neural network 
(GNN) model and the distribution of structures was presented in Supplementary Table 6. The specific 
training parameters of MLFF are shown in Supplementary Table 7.

Graph-based model for adsorption energy prediction
In recent years, GNN models have shone brightly in material design and performance prediction, leveraging 
graph embeddings of materials for various predictive tasks[51-54]. One of their key advantages over other deep 
learning models lies in the natural suitability of graph structures for describing chemical and material 
structures, with nodes and edges representing atoms and their interactions, respectively. Hence, extracting 
high-quality graph data from materials is crucial. In our study, the interactions among CO molecules affect 
their adsorption energy on Cu surfaces, especially at high coverages. Previous research often overlooked 
non-bonding interactions beyond hydrogen bonds when constructing graph data, failing to accurately 
characterize adsorption structures[18]. We propose an adsorption configuration graph data extraction 
method that effectively captures the impact of CO interactions on their adsorption energy, as shown in 
Figure 4A and Supplementary Figure 2. The first step involves searching for atoms in contact with a CO 
molecule on the Cu surface, considering it as the central CO, within the van der Waals radius to form a 
neighbor atom set, including first-order neighbor COs in contact. The second step continues the search for 
atoms in contact with these first-order neighbor COs and builds local subgraphs for multiple neighbor sets 
centered on CO. The third step merges the central CO and its neighboring COs’ local subgraphs into a 
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Figure 3. Evaluation of MLFF accuracy. (A) Scatter plot of the energy predictions, demonstrating the MLFF’s high accuracy, with an 
RMSE for energy within 1 meV/atom, as validated against DFT calculations; (B) Corresponding force predictions plot, where the MLFF 
achieves an RMSE of less than 0.03 eV/Å, indicating the model’s precision in capturing the forces in the Cu-CO system across a vast 
configuration space; (C) Comparing the initial CO adsorption configuration with those optimized by DFT and MLFF, showing the MLFF’s 
ability to replicate DFT-level structural accuracy on Cu surfaces; (D) Histogram of Cu–C bond lengths from stable-state configurations, 
highlighting the close match between MLFF and DFT results, with bond length discrepancies averaging less than 0.01 Å. MLFF: Machine-
learning force field; DFT: density functional theory; RMSE: root mean square error.

feature graph representing the adsorption environment of the central CO. Different interaction types in the 
feature graph are assigned distinct indicator vectors during encoding, including non-bonding interactions 
between CO molecules, akin to the encoding of hydrogen bonds in previous research[26].

Despite using only a few very simple attribute features [Supplementary Table 8] and conventional training 
steps [Supplementary Table 9], the GNN model demonstrated excellent predictive accuracy and 
generalization ability across eight index surfaces at varying coverages [Supplementary Figure 3]. The 
model’s superior performance stems partly from more accurate graph descriptors. Unlike models that 
ignored CO non-bonding interactions when constructing graph data, our model significantly improved 
performance [Supplementary Figure 4]. Additionally, it benefited from the richness of training graph data, 
thanks to the expansion of training data via MLFF, presenting an advantage over models trained solely on 
data from DFT calculations. The accuracy obtained by training solely on DFT data [Figure 4B] is 
significantly lower than that achieved through training on an expanded dataset (about 186,000) under the 
same model architecture [Figure 4C]. The latter exhibits improvements in accuracy by 16% and 28% in 
terms of the coefficient of determination (R2) and root mean squared error (RMSE), respectively 
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Figure 4. GNN model for CO Adsorption Prediction. (A) The graph data extraction method for CO adsorption configurations, detailing 
the steps from detecting neighboring atoms under van der Waals conditions to merging local subgraphs into a feature graph that 
accurately represents the adsorption environment of CO molecules on Cu surfaces. (D) The comparison of the GNN model’s predictive 
performance between using only the DFT calculation dataset corresponding to (B) and using the DFT + MLFF calculation dataset 
corresponding to (C). (E) The computational efficiency gains of the DFT + MLFF + GNN workflow compared to traditional DFT and DFT 
+ MLFF methods, showcasing a significant reduction in computational cost and time, thus enabling the study of vast adsorption 
configuration spaces with enhanced efficiency. DFT: Density functional theory; MLFF: machine-learning force field; GNN: graph neural 
network; RMSE: root mean square error; GEN: graph embedding network model; MAE: mean absolute error; MAPE: mean absolute 
percentage error.

[Figure 4D]. Moreover, compared to direct DFT calculations or combined DFT + MLFF approaches for 
exploring target configuration spaces, our DFT + MLFF + GNN methodology significantly reduces 
computational costs by three and one orders of magnitude, respectively, greatly enhancing research 
efficiency in vast adsorption configuration spaces [Figure 4E]. This acceleration allows for exploring 
extensive configuration spaces within a foreseeable short period, a capability previously unattainable[25,29]. 
This dual-speed framework, integrating high-precision MLFFs with advanced graph representation 
learning, is also applicable to other catalytic systems with large search spaces, such as catalytic reaction path 
searches, stable adsorbate motif determination and protein-ligand structure prediction[55-57]. The primary 
objective is to identify the global minimum adsorption configurations and their corresponding energies 
across varying surface coverages. Such critical information is unlikely to be fully captured within the 
smaller, randomly sampled set of ~186,000 configurations. In contrast, the comprehensive dataset of 
~7 million configurations exhaustively enumerates nearly all possible adsorption states, thereby ensuring 
that the most stable adsorption configurations are accurately identified.

The generality of the proposed framework primarily manifests in two stages. Firstly, in the process of 
independent adsorption configuration enumeration, the method is applicable to all high-coverage 
adsorption configurations involving monodentate intermediates, such as H*, N*, O*, and OH*. For specific 
adsorbates, only minor adjustments are required. However, for configurations involving multidentate 
intermediates, our method still needs further improvement. Secondly, in the process of adsorption energy 
prediction, our approach is expected to be easily extended to metal surfaces with a fcc lattice. However, for 
metal surfaces with other lattice structures, some adjustments may be necessary based on the corresponding 
system.
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RESULTS AND DISCUSSION
Coverage-dependent adsorption energy on different indexed surfaces
Leveraging our trained model for predicting adsorption energies, we calculated the steady-state CO 
adsorption energies for approximately 7 million configurations within the target configuration space, 
plotting CO adsorption energy versus coverage spectra for eight Cu crystallographic surfaces [Figure 5]. It 
was observed that each of the eight Cu surfaces corresponds to a unique CO coverage threshold, within 
which the adsorption energy of the most stable adsorption configurations changes minimally. Beyond this 
coverage threshold, the adsorption energy of the most stable configurations decreases significantly with 
increasing coverage. This trend aligns with physical intuition: at low coverages, the CO molecules in steady-
state adsorption configurations are widely spaced, making non-bonding interactions between CO molecules 
negligible; however, at medium to high coverages, the surface arrangement of CO molecules in steady-state 
configurations becomes more compact, increasing molecular repulsion and thus increasing the system’s 
potential energy, leading to decreased adsorption energies for CO molecules. Furthermore, aside from the 
(100) and (111) surfaces (where all surface atoms have the same coordination number), CO molecules 
preferentially occupy lower-coordination Cu sites that are energetically less favorable, and, with increasing 
coverage, gradually cover higher-coordination Cu sites [Supplementary Figure 5]. At the same time, the 
average coordination number of Cu atoms occupied by CO at each coverage level remains lower than the 
average coordination number of surface Cu atoms, indicating a clear lowest-energy orientation for CO 
adsorption. These computational results are consistent with previous research findings[58-60]. Understanding 
the ease of C–C coupling on different Cu surfaces is crucial for developing Cu-based nanometal catalysts 
with high selectivity for C2+ products in CO2RR reactions, as easier C–C coupling between CO molecules 
leads to higher selectivity for C2+ products[61-65].

Here, we employed two straightforward metrics to evaluate the ease of C–C coupling on Cu surfaces. The 
first metric is the mean minimum C–C distance (MMCD) within the set of most stable adsorption 
configurations at various coverages, which serves as an indicator of the probability of C–C coupling. A 
smaller MMCD suggests a higher likelihood of coupling. The second metric is the characteristic coverage of 
the surface: taking the densely packed (111) surface as a reference and using its maximum adsorption 
energy as a threshold, the maximum coverage achievable by other surfaces without falling below this 
adsorption energy threshold is deemed their characteristic coverage. To facilitate successful C–C coupling, 
CO must exhibit sufficient adsorption strength on Cu surfaces to prevent the reactants from desorbing, 
which would interrupt the coupling reaction. Moreover, compared to the MMCD, the surface’s 
characteristic coverage offers a more macroscopic dimension for representing the probability of C–C 
coupling, providing a holistic view. As illustrated in Figure 6, we analyzed these two metrics across eight Cu 
surfaces and found that the (310) surface exhibits the best C–C coupling performance, while the (111) 
surface performs the worst. The performance ranking of (310) > (210) > (311) > (100) > (111) is largely in 
agreement with experimental observations[40,60]. High-index surfaces tend to have smaller MMCDs and 
greater characteristic coverages, indicating a higher probability of C–C coupling and better selectivity for C2+ 
products. This finding aligns with our current theoretical and experimental research, which shows that 
high-index surfaces offer a greater variety of surface sites and an abundance of low-coordination surface Cu 
atoms. These features provide more stable adsorption sites and a superior surface electronic environment 
conducive to C–C coupling[66,67]. Additionally, the (322) surface emerged as a potential candidate due to its 
MMCD and characteristic coverage closely approaching those of the (310) surface, which has been 
experimentally proven to exhibit excellent selectivity for C2+ products[40].

CONCLUSIONS
In this work, our investigation into the adsorption configurations of CO on Cu surfaces unveils critical 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4077-SupplementaryMaterials.pdf
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Figure 5. Coverage-Dependent CO Adsorption Energies on Cu Surfaces. The vertical axis corresponds to the average adsorption energy 
of CO, while the horizontal axis represents the number of CO molecules per unit area. The darker the bar color, the greater the average 
adsorption energy of CO.

insights into the mechanisms underlying electrocatalytic reactions. By leveraging advanced computational 
techniques, we have mapped out the energy landscapes of nearly 7 million configurations, identifying key 
trends in CO adsorption energies across different surface indices and coverages. Our findings underscore 
the importance of surface coverage in dictating the stability and activity of adsorption configurations, with 
implications for the efficiency of CO2RR processes. The development and application of a MLFF, 
complemented by a graph-based adsorption energy prediction model, have significantly enhanced our 
ability to predict and understand the complex interactions at play. The discernment of high-index Cu 
surfaces as favorable for C–C coupling not only aligns with experimental observations but also opens new 
avenues for the design of catalysts with heightened selectivity for C2+ product formation. This work not only 
advances our theoretical understanding of catalytic mechanisms at high coverage but also sets the stage for 
future research aimed at optimizing catalyst designs for sustainable energy conversion technologies.
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Figure 6. Correlation between C–C Distance and Coverage for Cu-Catalyzed Coupling. Surfaces such as Cu(310) with smaller C–C 
distances and higher characteristic coverages are identified as optimal for C–C coupling, enhancing selectivity for C2+ products in CO2 
reduction reactions. The inset illustrates the surface model of Cu(310).

DECLARATIONS
Authors’ contributions
Conceptualization, data curation, investigation, methodology, validation, writing - original draft and 
revisions: Wu, S.; Li, S.; Zheng, S.
Methodology, discussion, data analysis: Zhang, W.; Zhang, M.
Supervision, methodology, writing - review: Li, S.; Pan, F.; Zheng, S.

Availability of data and materials
The rata data supporting the findings of this study are available within this Article and its Supplementary 
Materials. Further data are available from the corresponding authors upon request. All the codes are 
provided at https://github.com/PKU-WuSL/facet-dependent-coverage.

Financial support and sponsorship
This work was supported by the National Natural Science Foundation of China (22402163), the Natural 
Science Foundation of Xiamen, China (3502Z202472001), the Soft Science Research Project of Guangdong 
Province (No. 2017B030301013), the Basic and Applied Basic Research Foundation of Guangdong Province 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4077-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4077-SupplementaryMaterials.pdf
https://github.com/PKU-WuSL/facet-dependent-coverage


Page 13 of Wu et al. J. Mater. Inf. 2025, 5, 14 https://dx.doi.org/10.20517/jmi.2024.77 15

(2021B1515130002 and 2023A1515011391), and the Major Science and Technology Infrastructure Project of
Material Genome Big-science Facilities Platform supported by Municipal Development and Reform
Commission of Shenzhen.

Conflicts of interest
Pan, F. is an Associate Editor of the journal Journal of Materials Informatics but was not involved in any 
steps of the editorial process, including the selection of reviewers, manuscript handling, or decision-
making. The other authors declare that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
© The Author(s) 2025.

REFERENCES
Beck, A.; Paunović, V.; van, B. J. A. Identifying and avoiding dead ends in the characterization of heterogeneous catalysts at the gas-
solid interface. Nat. Catal. 2023, 6, 873-84.  DOI

1.     

Li, X.; Mitchell, S.; Fang, Y.; Li, J.; Perez-Ramirez, J.; Lu, J. Advances in heterogeneous single-cluster catalysis. Nat. Rev. Chem. 
2023, 7, 754-67.  DOI  PubMed

2.     

Bruix, A.; Margraf, J. T.; Andersen, M.; Reuter, K. First-principles-based multiscale modelling of heterogeneous catalysis. Nat. Catal. 
2019, 2, 659-70.  DOI

3.     

Handoko, A. D.; Wei, F.; Jenndy; Yeo, B. S.; Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction 
through operando techniques. Nat. Catal. 2018, 1, 922-34.  DOI

4.     

Tran, K.; Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. 
Nat. Catal. 2018, 1, 696-703.  DOI

5.     

Greeley, J.; Stephens, I. E.; Bondarenko, A. S.; et al. Alloys of platinum and early transition metals as oxygen reduction 
electrocatalysts. Nat. Chem. 2009, 1, 552-6.  DOI  PubMed

6.     

Wu, Z.; Li, Z.; Li, Y.; Zhang, Y.; Li, J. Improving the DFT computational accuracy for CO activation on Fe surfaces by Bayesian error 
estimation functional with van der Waals correlation. Comput. Theor. Chem. 2023, 1219, 113968.  DOI

7.     

Araujo, R. B.; Rodrigues, G. L. S.; Dos, S. E. C.; Pettersson, L. G. M. Adsorption energies on transition metal surfaces: towards an 
accurate and balanced description. Nat. Commun. 2022, 13, 6853.  DOI  PubMed  PMC

8.     

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 
152, J23.  DOI

9.     

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. 
Chem. B. 2004, 108, 17886-92.  DOI  PubMed

10.     

Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I. B.; Nørskov, J. K. Computational high-throughput screening of 
electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909-13.  DOI  PubMed

11.     

Liu, X.; Xiao, J.; Peng, H.; Hong, X.; Chan, K.; Nørskov, J. K. Understanding trends in electrochemical carbon dioxide reduction rates. 
Nat. Commun. 2017, 8, 15438.  DOI  PubMed  PMC

12.     

Zhan, C.; Dattila, F.; Rettenmaier, C.; et al. Revealing the CO coverage-driven C–C coupling mechanism for electrochemical CO2 
reduction on Cu2O nanocubes via operando raman spectroscopy. ACS. Catal. 2021, 11, 7694-701.  DOI  PubMed  PMC

13.     

Cave, E. R.; Shi, C.; Kuhl, K. P.; et al. Trends in the catalytic activity of hydrogen evolution during CO2 electroreduction on transition 
metals. ACS. Catal. 2018, 8, 3035-40.  DOI

14.     

Ding, H.; Zheng, S.; Yang, X.; et al. Role of surface hydrogen coverage in C–C coupling process for CO2 electroreduction on Ni-based 
catalysts. ACS. Catal. 2024, 14, 14330-8.  DOI

15.     

Zheng, S.; Liang, X.; Pan, J.; Hu, K.; Li, S.; Pan, F. Multi-center cooperativity enables facile C–C coupling in electrochemical CO2 
reduction on a Ni2P catalyst. ACS. Catal. 2023, 13, 2847-56.  DOI

16.     

Zheng, S.; Ding, H.; Yang, X.; Li, S.; Pan, F. Automating discovery of electrochemical urea synthesis reaction paths via active 
learning and graph theory. https://www.chinesechemsoc.org/doi/full/10.31635/ccschem.024.202404955 (accessed 2024-02-07).

17.     

Ghanekar, P. G.; Deshpande, S.; Greeley, J. Adsorbate chemical environment-based machine learning framework for heterogeneous 
catalysis. Nat. Commun. 2022, 13, 5788.  DOI  PubMed  PMC

18.     

https://dx.doi.org/10.1038/s41929-023-01027-x
https://dx.doi.org/10.1038/s41570-023-00540-8
http://www.ncbi.nlm.nih.gov/pubmed/37814032
https://dx.doi.org/10.1038/s41929-019-0298-3
https://dx.doi.org/10.1038/s41929-018-0182-6
https://dx.doi.org/10.1038/s41929-018-0142-1
https://dx.doi.org/10.1038/nchem.367
http://www.ncbi.nlm.nih.gov/pubmed/21378936
https://dx.doi.org/10.1016/j.comptc.2022.113968
https://dx.doi.org/10.1038/s41467-022-34507-y
http://www.ncbi.nlm.nih.gov/pubmed/36369277
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9652424
https://dx.doi.org/10.1149/1.1856988
https://dx.doi.org/10.1021/jp047349j
http://www.ncbi.nlm.nih.gov/pubmed/39682080
https://dx.doi.org/10.1038/nmat1752
http://www.ncbi.nlm.nih.gov/pubmed/17041585
https://dx.doi.org/10.1038/ncomms15438
http://www.ncbi.nlm.nih.gov/pubmed/28530224
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458145
https://dx.doi.org/10.1021/acscatal.1c01478
http://www.ncbi.nlm.nih.gov/pubmed/34239771
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256421
https://dx.doi.org/10.1021/acscatal.7b03807
https://dx.doi.org/10.1021/acscatal.4c02126
https://dx.doi.org/10.1021/acscatal.2c05611
https://www.chinesechemsoc.org/doi/full/10.31635/ccschem.024.202404955
https://dx.doi.org/10.1038/s41467-022-33256-2
http://www.ncbi.nlm.nih.gov/pubmed/36184625
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9527237


Page 14 of Wu et al. J. Mater. Inf. 2025, 5, 14 https://dx.doi.org/10.20517/jmi.2024.7715

Xiong, Y.; Wang, Y.; Zhou, J.; Liu, F.; Hao, F.; Fan, Z. Electrochemical nitrate reduction: ammonia synthesis and the beyond. Adv. 
Mater. 2024, 36, e2304021.  DOI  PubMed

19.     

Zheng, S.; Yang, X.; Shi, Z. Z.; Ding, H.; Pan, F.; Li, J. F. The loss of interfacial water-adsorbate hydrogen bond connectivity position 
surface-active hydrogen as a crucial intermediate to enhance nitrate reduction reaction. J. Am. Chem. Soc. 2024, 146, 26965-74.  DOI  
PubMed

20.     

Enger, B. C.; Holmen, A. Nickel and Fischer-Tropsch synthesis. Catal. Rev. 2012, 54, 437-88.  DOI21.     
Chen, Y.; Wei, J.; Duyar, M. S.; Ordomsky, V. V.; Khodakov, A. Y.; Liu, J. Carbon-based catalysts for Fischer-Tropsch synthesis. 
Chem. Soc. Rev. 2021, 50, 2337-66.  DOI  PubMed

22.     

Weststrate, C. J. K.; Sharma, D.; Garcia, R. D.; Gleeson, M. A.; Fredriksson, H. O. A.; Niemantsverdriet, J. W. H. Mechanistic insight 
into carbon–carbon bond formation on cobalt under simulated Fischer-Tropsch synthesis conditions. Nat. Commun. 2020, 11, 750.  
DOI  PubMed  PMC

23.     

Ai, C.; Chang, J. H.; Tygesen, A. S.; Vegge, T.; Hansen, H. A. Impact of hydrogen concentration for CO2 reduction on PdHx : a 
combination study of cluster expansion and kinetics analysis. J. Catal. 2023, 428, 115188.  DOI

24.     

Deshpande, S.; Maxson, T.; Greeley, J. Graph theory approach to determine configurations of multidentate and high coverage 
adsorbates for heterogeneous catalysis. npj. Comput. Mater. 2020, 6, 345.  DOI

25.     

Bang, K.; Hong, D.; Park, Y.; Kim, D.; Han, S. S.; Lee, H. M. Machine learning-enabled exploration of the electrochemical stability of 
real-scale metallic nanoparticles. Nat. Commun. 2023, 14, 3004.  DOI  PubMed  PMC

26.     

Liu, P.; Wang, J.; Avargues, N.; et al. Combining machine learning and many-body calculations: coverage-dependent adsorption of 
CO on Rh(111). Phys. Rev. Lett. 2023, 130, 078001.  DOI  PubMed

27.     

Jenner, B.; Köbler, J.; Mckenzie, P.; Torán, J. Completeness results for graph isomorphism. J. Comput. Syst. Sci. 2003, 66, 549-66.  
DOI

28.     

Sumaria, V.; Sautet, P. CO organization at ambient pressure on stepped Pt surfaces: first principles modeling accelerated by neural 
networks. Chem. Sci. 2021, 12, 15543-55.  DOI  PubMed  PMC

29.     

Yang, Y.; Jiménez-Negrón, O. A.; Kitchin, J. R. Machine-learning accelerated geometry optimization in molecular simulation. J. 
Chem. Phys. 2021, 154, 234704.  DOI  PubMed

30.     

Jha, D.; Gupta, V.; Ward, L.; et al. Enabling deeper learning on big data for materials informatics applications. Sci. Rep. 2021, 11, 
4244.  DOI  PubMed  PMC

31.     

Zhang, L.; Han, J.; Wang, H.; Car, R.; E, W. Deep potential molecular dynamics: a scalable model with the accuracy of quantum 
mechanics. Phys. Rev. Lett. 2018, 120, 143001.  DOI  PubMed

32.     

Ulissi, Z. W.; Tang, M. T.; Xiao, J.; et al. Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal 
active site motifs for CO2 reduction. ACS. Catal. 2017, 7, 6600-8.  DOI

33.     

Sumaria, V.; Nguyen, L.; Tao, F. F.; Sautet, P. Atomic-scale mechanism of platinum catalyst restructuring under a pressure of reactant 
gas. J. Am. Chem. Soc. 2023, 145, 392-401.  DOI  PubMed

34.     

Xu, W.; Reuter, K.; Andersen, M. Predicting binding motifs of complex adsorbates using machine learning with a physics-inspired 
graph representation. Nat. Comput. Sci. 2022, 2, 443-50.  DOI  PubMed

35.     

Boes, J. R.; Mamun, O.; Winther, K.; Bligaard, T. Graph theory approach to high-throughput surface adsorption structure generation. 
J. Phys. Chem. A. 2019, 123, 2281-5.  DOI  PubMed

36.     

Eren, B.; Zherebetskyy, D.; Patera, L. L.; et al. Activation of Cu(111) surface by decomposition into nanoclusters driven by CO 
adsorption. Science 2016, 351, 475-8.  DOI  PubMed

37.     

Pérez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. Spectroscopic observation of a hydrogenated CO dimer 
intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. Engl. 2017, 56, 3621-4.  DOI  PubMed

38.     

Nakano, H.; Nakamura, I.; Fujitani, T.; Nakamura, J. Structure-dependent kinetics for synthesis and decomposition of formate species 
over Cu(111) and Cu(110) model catalysts. J. Phys. Chem. B. 2001, 105, 1355-65.  DOI

39.     

Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. Electrochemical reduction of carbon dioxide at various series of copper single crystal 
electrodes. J. Mol. Catal. A. Chem. 2003, 199, 39-47.  DOI

40.     

Wang, S.; Jian, M.; Su, H.; Li, W. First-Principles microkinetic study of methanol synthesis on Cu(221) and ZnCu(221) surfaces. Chin. 
J. Chem. Phys. 2018, 31, 284-90.  DOI

41.     

Schouten, K. J. P.; Pérez, G. E.; Koper, M. T. M. Structure sensitivity of the electrochemical reduction of carbon monoxide on copper 
single crystals. ACS. Catal. 2013, 3, 1292-5.  DOI

42.     

Guo, W.; Vlachos, D. G. Effect of local metal microstructure on adsorption on bimetallic surfaces: atomic nitrogen on Ni/Pt(111). J. 
Chem. Phys. 2013, 138, 174702.  DOI  PubMed

43.     

Deshpande, S.; Greeley, J. First-Principles analysis of coverage, ensemble, and solvation effects on selectivity trends in NO 
electroreduction on Pt3Sn alloys. ACS. Catal. 2020, 10, 9320-7.  DOI

44.     

Ojeda, M.; Nabar, R.; Nilekar, A. U.; Ishikawa, A.; Mavrikakis, M.; Iglesia, E. CO activation pathways and the mechanism of Fischer-
Tropsch synthesis. J. Catal. 2010, 272, 287-97.  DOI

45.     

Stróż, K. Plane groups - from basic to advanced crystallographic concepts. Z. Kristallogr. Cryst. Mater. 2003, 218, 642-9.  DOI46.     
Hoffmann, F. Symmetry in the plane: about wallpaper patterns, islamic mosaics, drawings from escher, and heterogeneous catalysts. In 
Introduction to Crystallography; Hoffmann, F., Eds.; Springer International Publishing: Cham, 2020; pp 127-50.  DOI

47.     

Hahn, T. The 17 plane groups (two-dimensional space groups). In International Tables for Crystallography Volume A: Space-group 48.     

https://dx.doi.org/10.1002/adma.202304021
http://www.ncbi.nlm.nih.gov/pubmed/37294062
https://dx.doi.org/10.1021/jacs.4c08256
http://www.ncbi.nlm.nih.gov/pubmed/39303080
https://dx.doi.org/10.1080/01614940.2012.670088
https://dx.doi.org/10.1039/d0cs00905a
http://www.ncbi.nlm.nih.gov/pubmed/33393529
https://dx.doi.org/10.1038/s41467-020-14613-5
http://www.ncbi.nlm.nih.gov/pubmed/32029729
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005166
https://dx.doi.org/10.26434/chemrxiv-2023-kkk48
https://dx.doi.org/10.1038/s41524-020-0345-2
https://dx.doi.org/10.1038/s41467-023-38758-1
http://www.ncbi.nlm.nih.gov/pubmed/37230963
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213026
https://dx.doi.org/10.1103/PhysRevLett.130.078001
http://www.ncbi.nlm.nih.gov/pubmed/36867825
https://dx.doi.org/10.1016/s0022-0000(03)00042-4
https://dx.doi.org/10.1039/d1sc03827c
http://www.ncbi.nlm.nih.gov/pubmed/35003583
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8654054
https://dx.doi.org/10.1063/5.0049665
http://www.ncbi.nlm.nih.gov/pubmed/34241251
https://dx.doi.org/10.1038/s41598-021-83193-1
http://www.ncbi.nlm.nih.gov/pubmed/33608599
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895970
https://dx.doi.org/10.1103/physrevlett.120.143001
http://www.ncbi.nlm.nih.gov/pubmed/29694129
https://dx.doi.org/10.1021/acscatal.7b01648
https://dx.doi.org/10.1021/jacs.2c10179
http://www.ncbi.nlm.nih.gov/pubmed/36548635
https://dx.doi.org/10.1038/s43588-022-00280-7
http://www.ncbi.nlm.nih.gov/pubmed/38177870
https://dx.doi.org/10.1021/acs.jpca.9b00311
http://www.ncbi.nlm.nih.gov/pubmed/30802053
https://dx.doi.org/10.1126/science.aad8868
http://www.ncbi.nlm.nih.gov/pubmed/26823421
https://dx.doi.org/10.1002/anie.201700580
http://www.ncbi.nlm.nih.gov/pubmed/28230297
https://dx.doi.org/10.1021/jp002644z
https://dx.doi.org/10.1016/s1381-1169(03)00016-5
https://dx.doi.org/10.1063/1674-0068/31/cjcp1803038
https://dx.doi.org/10.1021/cs4002404
https://dx.doi.org/10.1063/1.4803128
http://www.ncbi.nlm.nih.gov/pubmed/23656147
https://dx.doi.org/10.1021/acscatal.0c01380
https://dx.doi.org/10.1016/j.jcat.2010.04.012
https://dx.doi.org/10.1524/zkri.218.9.642.20676
https://dx.doi.org/10.1007/978-3-030-35110-6_4


Page 15 of Wu et al. J. Mater. Inf. 2025, 5, 14 https://dx.doi.org/10.20517/jmi.2024.77 15

symmetry; Hahn, T., Ed. Springer Netherlands: Dordrecht, 2002; pp 92-109.  DOI
Chanussot, L.; Das, A.; Goyal, S.; et al. Open catalyst 2020 (OC20) dataset and community challenges. ACS. Catal. 2021, 11, 6059-72.  
DOI

49.     

Lu, D.; Wang, H.; Chen, M.; et al. 86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio 
accuracy. Comput. Phys. Commun. 2021, 259, 107624.  DOI

50.     

Weng, M.; Wang, Z.; Qian, G.; et al. Identify crystal structures by a new paradigm based on graph theory for building materials big 
data. Sci. China. Chem. 2019, 62, 982-6.  DOI

51.     

Li, S.; Chen, Z.; Wang, Z.; et al. Graph-based discovery and analysis of atomic-scale one-dimensional materials. Natl. Sci. Rev. 2022, 
9, nwac028.  DOI  PubMed  PMC

52.     

Li, S.; Liu, Y.; Chen, D.; Jiang, Y.; Nie, Z.; Pan, F. Encoding the atomic structure for machine learning in materials science. WIREs. 
Comput. Mol. Sci. 2022, 12, e1558.  DOI

53.     

Xie, T.; Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material 
properties. Phys. Rev. Lett. 2018, 120, 145301.  DOI  PubMed

54.     

Steiner, M.; Reiher, M. Autonomous reaction network exploration in homogeneous and heterogeneous catalysis. Top. Catal. 2022, 65, 
6-39.  DOI  PubMed  PMC

55.     

Gu, G. H.; Lee, M.; Jung, Y.; Vlachos, D. G. Automated exploitation of the big configuration space of large adsorbates on transition 
metals reveals chemistry feasibility. Nat. Commun. 2022, 13, 2087.  DOI  PubMed  PMC

56.     

Qiao, Z.; Nie, W.; Vahdat, A.; Miller, T. F.; Anandkumar, A. State-specific protein-ligand complex structure prediction with a 
multiscale deep generative model. Nat. Mach. Intell. 2024, 6, 195-208.  DOI

57.     

Grabow, L. C.; Hvolbæk, B.; Nørskov, J. K. Understanding trends in catalytic activity: the effect of adsorbate-adsorbate interactions 
for CO oxidation over transition metals. Top. Catal. 2010, 53, 298-310.  DOI

58.     

Lausche, A. C.; Medford, A. J.; Khan, T. S.; et al. On the effect of coverage-dependent adsorbate-adsorbate interactions for CO 
methanation on transition metal surfaces. J. Catal. 2013, 307, 275-82.  DOI

59.     

Huang, Y.; Handoko, A. D.; Hirunsit, P.; Yeo, B. S. Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of 
CO* coverage on the selective formation of ethylene. ACS. Catal. 2017, 7, 1749-56.  DOI

60.     

Hou, J.; Chang, X.; Li, J.; Xu, B.; Lu, Q. Correlating CO coverage and CO electroreduction on Cu via high-pressure in situ 
spectroscopic and reactivity investigations. J. Am. Chem. Soc. 2022, 144, 22202-11.  DOI  PubMed

61.     

Jin, J.; Wicks, J.; Min, Q.; et al. Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction. Nature 2023, 617, 724-9.  
DOI  PubMed

62.     

Zheng, Y.; Zhang, J.; Ma, Z.; et al. Seeded growth of gold-copper janus nanostructures as a tandem catalyst for efficient 
electroreduction of CO2 to C2+ products. Small 2022, 18, e2201695.  DOI  PubMed

63.     

Sun, W.; Wang, P.; Jiang, Y.; et al. V-doped Cu2 Se hierarchical nanotubes enabling flow-cell CO2 electroreduction to ethanol with 
high efficiency and selectivity. Adv. Mater. 2022, 34, e2207691.  DOI  PubMed

64.     

Yan, X.; Chen, C.; Wu, Y.; et al. Boosting CO2 electroreduction to C2+ products on fluorine-doped copper. Green. Chem. 2022, 24, 
1989-94.  DOI

65.     

Reller, C.; Krause, R.; Volkova, E.; et al. Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high 
current density. Adv. Energy. Mater. 2017, 7, 1602114.  DOI

66.     

Xiang, K.; Shen, F.; Fu, Y.; et al. Boosting CO2 electroreduction towards C2+ products via CO* intermediate manipulation on copper-
based catalysts. Environ. Sci. Nano. 2022, 9, 911-53.  DOI

67.     

https://dx.doi.org/10.1107/97809553602060000512
https://dx.doi.org/10.1021/acscatal.0c04525
https://dx.doi.org/10.1016/j.cpc.2020.107624
https://dx.doi.org/10.1007/s11426-019-9502-5
https://dx.doi.org/10.1093/nsr/nwac028
http://www.ncbi.nlm.nih.gov/pubmed/35677223
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170357
https://dx.doi.org/10.1002/wcms.1558
https://dx.doi.org/10.1103/physrevlett.120.145301
http://www.ncbi.nlm.nih.gov/pubmed/29694125
https://dx.doi.org/10.1007/s11244-021-01543-9
http://www.ncbi.nlm.nih.gov/pubmed/35185305
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8816766
https://dx.doi.org/10.1038/s41467-022-29705-7
http://www.ncbi.nlm.nih.gov/pubmed/35474063
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9043206
https://dx.doi.org/10.1038/s42256-024-00792-z
https://dx.doi.org/10.1007/s11244-010-9455-2
https://dx.doi.org/10.1016/j.jcat.2013.08.002
https://dx.doi.org/10.1021/acscatal.6b03147
https://dx.doi.org/10.1021/jacs.2c09956
http://www.ncbi.nlm.nih.gov/pubmed/36404600
https://dx.doi.org/10.1038/s41586-023-05918-8
http://www.ncbi.nlm.nih.gov/pubmed/37138081
https://dx.doi.org/10.1002/smll.202201695
http://www.ncbi.nlm.nih.gov/pubmed/35398985
https://dx.doi.org/10.1002/adma.202207691
http://www.ncbi.nlm.nih.gov/pubmed/36193772
https://dx.doi.org/10.1039/d1gc04824d
https://dx.doi.org/10.1002/aenm.201602114
https://dx.doi.org/10.1039/d1en00977j

