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Abstract
Lower limb amputation (LLA) secondary to trauma, oncologic, diabetic, and vascular disease represents a 
significant patient challenge in terms of restoring function to pre-injury levels. This can be secondary to wear and 
use of a prosthetic limb, as well as limitations in range of motion or chronic pain. This study aimed to review and 
discuss the available, and potentially soon-to-be-available, roles of artificial intelligence (AI) in extremity 
amputation care. Specifically, we discuss the current state of AI technology in LLA prevention, management, 
peripheral nerve injury treatment, and lower limb prosthesis design, as well as highlighting current advancements 
and the direction of these linked fields.

Keywords: Artificial intelligence, machine learning, deep learning, lower limb, amputation, prosthesis, peripheral 
nerve injury

INTRODUCTION
Artificial intelligence (AI) and machine learning (ML) offer the potential to improve treatments and 
outcomes among lower limb amputation (LLA) patients, with more than 150,000 patients in the United 
States each year[1]. Of these, over half are secondary to peripheral artery disease (PAD) and diabetes 
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mellitus[2,3]. Chronic limb-threatening ischemia (CLTI), the most severe form of PAD, carries an estimated 
1-year major limb amputation rate of 22%[4], and patients with concomitant PAD and diabetes have a four 
times higher risk of amputation compared to the national average[3,5]. In addition, various forms of 
oncologic management, severe trauma, and battlefield injuries are affected by LLA. The 5-year mortality 
rate for patients with index LLA is reported to be as high as 77%[6], especially with comorbid diseases such as 
diabetes mellitus. When compared to amputation above the ankle, limb free-flap reconstruction has been 
shown to significantly increase the 5-year survival rate (86.8% vs. 41.4%, P < 0.001)[7].

The conventional socket attachment of a prosthetic limb presents inherent functional limitations, and many 
of these limitations may remain chronic or present despite numerous treatments. Mechanical imbalance can 
contribute to difficulty with gait or even increased wear and osteoarthritis on the spine and contralateral 
lower extremity[8]. Even with an optimal soft-tissue envelope, changes in strength, tactile feedback, and 
range of motion can be limited. Relative motion between the residual limb and socket may also cause 
chronic pain, ulceration, and breakdown[9].

Another limiting factor following LLA contributing to decreased prosthetic use, increased rate of surgical 
revision or proximal amputation can be the various forms of neurogenic pain following amputation. 
Chronic post-amputation pain, including residual limb pain and/or phantom limb pain (PLP), limits 
function by interfering with the use of lower limb prosthesis[10-12]. Surgical methods such as targeted muscle 
reinnervation and regenerative peripheral nerve interfaces have led to improvements in both amputation-
related pain symptoms and myoelectric prosthetic control[13-17]. Current autonomous lower limb prostheses 
can assist in cyclic gait; however, they lack versatility and anticipatory adjustment based on user input[18,19]. 
In the last decade, research on myoelectric lower limb prostheses has started to emerge[20,21], yet the literature 
lacks consensus on the methodology for electromyographic control of lower limb prostheses[18].

Novel strategies and technologies such as AI and ML are emerging to overcome the distinct challenges faced 
by patients with LLA. Herein, we present a scoping review describing how AI and ML can optimize 
diagnosis, treatment, and postoperative outcomes among patients with LLA. Further, we aimed to describe 
how AI and ML applications can improve peripheral nerve injury outcomes in this population.

EVALUATING THE ROLE OF AI
AI refers to the ability of computer systems to resemble human cognition in learning, synthesis, and 
perception of information. ML is a subset of AI in which algorithms can learn from data. ML is driven by 
mathematical models that are trained to yield optimized predictions based on a training dataset. There are 
two primary methods by which these models are trained. In supervised training, the algorithm learns from 
pre-labeled data known as the “ground truth”. In unsupervised training, the input data are not labeled, and 
the algorithm autonomously derives meaningful organization from the dataset. A subfield of ML known as 
“deep learning” (DL) employs multiple layers of artificial neural networks. This method allows for an 
increased level of abstraction and performance via convolutional neural networks (CNN) [Figure 1].

While basic science and translational research is well established in lower extremity amputation care, there 
are limited studies elucidating the direct application of AI in the field of LLA. Until recently, most AI 
extremity research had focused on hand and upper extremity amputations[22], though an understanding of 
prior applications can guide efforts to improve LLA outcomes. AI-assisted analysis of medical images is well 
established in the literature, including the interpretation of radiographs, electrocardiograms, magnetic 
resonance imaging (MRI) slices, and histopathological images[23-26].
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Figure 1. Simplified illustration of an artificial neural network divided into an input layer, a series of interconnected hidden layers that 
organize and process data, and an output layer. Created in BioRender. Jabbari, K. (2025) https://BioRender.com/9vvp8o3.

AI in the prevention of LLAs
Although peripheral arterial disease is associated with LLA, rates of PAD diagnosis remain persistently low 
due to variable, atypical presentation[27]. As such, early diagnosis and staging may help attenuate poor 
management and amputation rates. Dai et al. recently developed a CNN for the analysis of lower extremity 
computed tomography angiograms and the classification of PAD[25]. Their CNN utilized 17,050 axial images 
to develop distinct classification systems for both above-knee and below-knee artery stenoses. Compared to 
the reference standard of digital subtraction angiography, the CNN model demonstrated an accuracy of 
greater than 90% across most stenosis classes.

Similar innovations have been made in MRI processing and analysis. Zhang et al. developed a model with 
accelerated interpretation of dynamic contrast-enhanced MRIs and mapping of calf muscle perfusion[26]. 
They created a feedforward neural network using pre- and post-exercise MRI scans from subjects with and 
without PAD. Compared to the reference standard of tracer kinetic analysis, the model produced 
comparable exercise-stimulated perfusion estimates and notably faster calf muscle perfusion maps. 
Similarly, another group assessed atherosclerosis of popliteal arteries with a CNN model, which reduced 
vessel wall segmentation times from an order of hours to only minutes[28,29].
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Affordable and convenient PAD screening may offer significant benefits in various clinical settings. Kim 
et al. performed one of the first proof-of-concept studies using deep CNN to detect and assess the severity 
of PAD based on brachial and arterial pulse waveforms[30]. Their work showed that DL may diagnose PAD 
more accurately compared to current ankle-brachial index techniques. Allen et al. further demonstrated the 
value of DL-based approaches in PAD screening[31]. Their team used DL-based photoplethysmography 
(DLPPG) classification to achieve high diagnostic performance with toe PPG signals. Within this portable 
and inexpensive model, data are transmitted to servers where DL algorithms facilitate accelerated and 
accurate diagnoses of PAD.

Additionally, timely detection of diabetic foot ulcers is critical in preventing LLA. Several reviews have 
reported on the application of AI in the diagnosis and treatment of diabetic foot[32,33]. A recent proof-of-
concept study by Cassidy et al. demonstrated accurate diabetic foot ulcer detection with an AI system on 
smartphones[34]. A total of 203 photographs were taken by smartphone, analyzed by the AI system, and 
compared against expert clinical judgment. The predictions and decisions made by the AI system displayed 
high sensitivity (0.92) and specificity (0.86).

AI in patient management and clinical decision making
The application of AI in clinical decision making may revolutionize surgical practice through novel patient-
centered approaches. Chung et al. used ML to generate an accurate risk prediction model for CLTI[35]. Their 
multicenter, nested study included clinical trial data from 1,238 patients undergoing infrainguinal vein 
bypass for the treatment of ischemic rest pain or ischemic tissue loss. Supervised topic model cluster 
analysis was able to differentiate three distinct clusters of patients within the nested cohort, each designated 
as a specific stage within CLTI. Cluster analysis revealed 1-year CLTI-free survival rates of 82.3% for stage 1, 
61.1% for stage 2, and 53.4% for stage 3. Stratification by stage revealed major limb amputation rates of 4.2% 
for stage 1, 10.8% for stage 2, and 18.4% for stage 3. Among those without a major amputation, the rate of 
CLTI recurrence was directly related to increasing stage number. Similarly, Oei et al. developed ML 
algorithms to predict the risk of LLA in 2,559 patients with diabetic foot ulcers[36]. Their model performed 
well in the prediction of major [area under the receiver operating characteristic curve (AUROC): 0.820], 
minor (AUROC: 0.637), and any (AUROC: 0.756) LLA events. They further determined total white cell 
count, comorbidity score, and red blood cell count as key factors associated with the risk of major 
amputation. The above studies depict emerging methods for risk stratification and outcome prediction, 
highlighting the power of AI applications in surgical decision making.

The management of the mangled extremity represents yet another complex decision-making scenario. The 
decision for amputation or limb salvage will likely be innovated by AI models and replace traditional 
scoring systems[37]. Perkins et al. developed a Bayesian network (BN) prediction model using a supervised 
ML approach to estimate the outcome of limb revascularization, a metric often critical to attempting limb 
salvage versus amputation[38]. The prediction model sourced information from domain knowledge, 
published data, and US Department of Defense Data. Their model accurately predicted failed 
revascularization (AUROC: 0.95), with maintained performance on external validation (AUROC: 0.97). The 
BN prognostic model outperformed the traditional mangled extremity severity score in predicting the need 
for amputation [AUROC: 0.95 (0.92-0.98) vs. 0.74 (0.67-0.80); P < 0.0001].

Following the decision to perform a procedure, surgeons are often faced with postoperative patient 
complications. In general, the perioperative period serves as the source of initial exposure for many patients 
with chronic opioid use[39,40]. Using a ML approach, Gabriel et al. developed predictive models for persistent 
opioid use following lower extremity joint arthroplasty[41]. They demonstrated that ensemble learning can 
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improve predictive models, as evidenced by the balanced bagging classifier with a F1 score of 0.80 and an 
AUC of 0.94. This model identified several important features, such as postoperative day 1 opioid use, body 
mass index, age, preoperative opioid use, prescribed opioids at discharge, and hospital length of stay. The 
identification of high-risk patients may guide clinical decisions and interventions.

Another postoperative challenge specific to amputation patients is the development of pain or sensation 
that originates from the absent, amputated limb, known as PLP. Ortiz-Catalan et al. showed that motor 
execution of the phantom limb via ML, augmented and virtual reality, and gaming may hold potential as a 
treatment for PLP[42]. Their cohort included fourteen patients with upper limb amputation and chronic 
intractable PLP. After the 12-session study period, a comparison of pre- and post-treatment PLP 
demonstrated significant decreases by 47% (P = 0.001) for weighted pain distribution, 32% (P = 0.007) for 
the numeric rating scale, and 51% (P = 0.0001) for the pain rating index. These findings further exemplify 
the potential role of AI applications in the evolution of treatment options for LLA patients.

AI in lower extremity nerve injuries
There is a need for innovative peripheral nerve injury strategies among LLA patients, as neurogenic pain 
secondary to hyperactive terminal neuroma formation is largely responsible for postoperative morbidity. In 
this effort, AI technologies can be used to understand the pathology of PNI and to better explore 
therapeutic approaches.

Such an approach has led to the development of new research methods and strategies for nerve 
regeneration. Romeo-Guitart et al. showed the power of therapeutic performance mapping system (TPMS) 
technology for the design of drug therapies promoting nerve regeneration and functional recovery after 
PNI[43]. TPMS develops mathematical models that simulate human physiology in silico, a process that is 
based on AI and pattern recognition models that source all available biological, medical, and 
pharmacological knowledge. A total of 5,400 drugs were screened, generating approximately 15 million 
binary drug combinations. After further screening, the team selected the top 3 binary combinations with 
more than 75% of potential regenerative capabilities. The neuroprotective effects of these drug combinations 
were then validated in in vitro and in vivo models. This strategy elucidated the therapeutic actions of 
combinatorial drug therapy with acamprosate plus ribavirin. Most importantly, the authors demonstrated 
the discovery of repurposed drug therapies with a network-centric approach, which uses ML tools to 
validate both efficacy and mechanism of action with preclinical in vivo models.

Additionally, large image datasets can be utilized by AI systems for rapid biomedical research. Daeschler 
et al. validated a DL model of automated segmentation and histomorphometry of myelinated peripheral 
nerves via light microscopic images[44]. A CNN was trained for automated axon and myelin segmentation 
using a dataset of light-microscopic cross-sectional images of rat nerves at various stages of axonal 
regeneration. Their CNN model demonstrated high pixel-wise accuracy for nerve fiber segmentation with 
ground truth overlap (mean ± standard deviation) of 0.93 ± 0.03 and 0.99 ± 0.01 for axons and myelin 
sheaths, respectively. Nerve fibers were identified with high sensitivity (0.99) and precision (0.97), with 
automated histomorphometry reducing analysis time to less than 2.5% of that for manual morphometry. 
Neural network-powered biomedical image analysis can significantly increase the rate of experimental nerve 
research via performance, time, and resource efficiency.

Beyond its role in drug therapy and image processing, AI has potential applications in the direct repair of 
PNI using 3D printing and biomaterials. Nerve guidance conduits (NGCs) have been widely explored for 
the treatment of PNI. Current research on functional NGCs attempts to create microenvironments that 
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promote greater axonal elongation and myelination[45,46]. In this effort, ML modeling can significantly 
accelerate biomaterial experimentation by identifying optimal biochemical and biophysical properties from 
large datasets[47]. For instance, Li et al. developed a library of 2,000 peptide-based self-assembling hydrogels 
to identify optimal motifs for hydrogel self-assembly[48]. In another ML model of biomaterial synthesis, 
Kosuri et al. discovered chondroitinase ABC complexes that best retained enzymatic activity for neural 
regeneration applications[49]. Such AI-driven advances in NGC and biomaterial design may be applied to 
emerging strategies in lower extremity nerve repair and the parallel application of AI technology to nerve 
regenerative strategies has potential for revolutionary biotechnologies.

AI in lower extremity prosthetic use and design
The ability to stimulate and record signals from the peripheral nervous system (PNS) is an important 
component of new bioelectronic systems. In neurologically intact individuals, sensory signals from the 
lower limbs, such as tactile sensation in the foot and proprioception, influence motor output[50]. Traditional 
prostheses do not restore sensory feedback in amputees, which contributes to asymmetric gait, poor 
balance, risk of falls, and perception of the prosthesis as an external object (low embodiment)[50-53]. Several 
strategies have been employed to restore somatosensory feedback to lower extremity amputees[54-57]. Notably, 
advances in PNS interfacing represent a promising alternative to current neuromodulation modalities[58].

Direct interface with remaining nerves in the residual limb may restore the sensations necessary for human 
locomotion among patients with LLA[59,60]. Charkhkar et al. mapped elicitation sensations in transtibial 
amputees with implanted nerve cuff electrodes[61]. Neural stimulation was perceived by patients as 
originating from the missing limb, with discrete localization to missing toes, foot, and ankle, as well as the 
residual limb. These findings reflect the paradigm shift in prostheses development, where high-density cuff 
technology can be applied to neuroprosthesis with natural sensory feedback [Figure 2]. To this end, AI-
driven methodology can be applied to the evolution of prosthesis development. Koh et al. used CNN to 
correlate signals from naturally evoked compound action potentials (CAPs) and neural pathways of 
interest[62]. Using a rat model, nerve cuff electrodes were implanted on the sciatic nerve and afferent activity 
was selectively evoked in different fascicles via mechanical stimuli. Based on the predicted firing patterns 
from the CNN, a recurrent neural network was used to predict joint angles. They showed high accuracy in 
CAP-based classification, which can track physiological measurements such as joint ankles. These results 
demonstrate the role of AI in the development of more effective neuroprosthetic systems.

Although promising, the above reports lacked prosthesis connection or functional assessment. This was 
addressed by Petrini et al., who utilized intraneural electrodes to develop a leg neuroprosthesis with real-
time tactile and proprioception feedback through nerve stimulation[63]. Functional assessment showed 
improved mobility, fall prevention, and increased embodiment of the prosthesis. It has become evident that 
induced sensory feedback integration is an important component of care for LLA patients. As such, there is 
a need to optimize neural interface design. Zelechowski et al. developed a computational model of sciatic 
nerve behavior in response to electrical stimulation[64]. Their model reported optimal interfaces for use in 
humans and their surgical placement. The authors noted, however, that limitations in imaging technique 
and computational power precluded their ability to develop patient-specific devices. Instead, their study 
suggests indications for the use and design of these devices. This barrier represents yet another potential 
application of AI in the natural evolution of lower limb prostheses.

Osseointegration of prosthetic implants has recently emerged as a viable alternative to traditional socket 
prostheses, which are not always suitable for LLA patients[65]. Yet, to our knowledge, the application of AI 
technology to osseointegration strategies is not well studied outside the field of implant dentistry[66,67]. Lu 
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Figure 2. Schematic of implanted nerve cuff electrode technology and potential application of AI to develop patient-specific devices via 
advanced imaging and computational power. Created in BioRender. Jabbari, K. (2025) https://BioRender.com/t0gdy9v.

et al. utilized artificial neural networks to enhance the antimicrobial and osteointegration-promoting 
properties of micro/nanostructures in the setting of dental implantation[66]. A similar application of AI-
driven strategies for LLA prosthetic osteointegration would likely prove to be invaluable. Osseointegration 
aids in the relief of socket-related pain and further facilitates sensory feedback via the phenomenon of 
osseoperception[65].

CONCLUSIONS
AI-based strategies complement clinical judgment and support innovations in lower extremity amputation 
care. In this scoping review, we described the current and emerging roles of AI in LLA prevention, 
management, peripheral nerve injury treatment, postoperative outcomes, and lower limb prosthesis design. 
AI as a methodology holds promise in revolutionizing the practice of LLA by way of computational analysis 
of large datasets. This feature of AI represents both an inherent strength and challenge in the field. Recent 
research has underscored that AI algorithms could be susceptible to security breaches[68]. Thus, the 
integration of AI into LLA care also necessitates comprehensive guidelines for secure use and safety. 
Nonetheless, our review suggests that the integration of AI in LLA is not only rapidly growing but is 
seemingly inevitable.
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