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Abstract

In the navigation of unmanned surface vehicles (USVs), various types of obstacles may be encountered, which can
be categorized into real-time collision avoidance among multiple USVs and obstacle avoidance between USVs and
other obstacles. Most existing autonomous obstacle avoidance algorithms do not account for the nonlinear motion
characteristics of USVs, often resulting in non-compliance with the International Regulations for Preventing Colli-
sions at Sea (COLREGs) and a tendency to fall into local optima. To address these issues, this paper proposes a
path planning algorithm that integrates the dynamic window approach (DWA) considering nonlinear characteristics
with COLREGs, making the USV's motion trajectory more applicable to practical engineering scenarios. A kinematic
mathematical model is established based on the motion characteristics of USVs, and an evaluation function for the
optimal path is constructed using DWA. The fully informed search algorithm (FISA) is employed to select the opti-
mal set of velocities and steering angles from the velocity sampling set, based on different cost calculation methods.
The USVs use a laser radar for local obstacle detection, enabling real-time dynamic obstacle avoidance. To address
the real-time collision avoidance problem among multiple USVs in open waters, the algorithm filters out COLREGs-
compliant avoidance maneuvers during path planning. The correctness and feasibility of the fusion algorithm were
verified through comparative simulations. In the simulated environment model, the influence of ocean currents on
the USV was introduced, and multiple sets of experiments under different conditions were conducted to compare the
motion trajectories, average travel distances, and average travel times of the USV. The simulation results indicate that
the USV can perform accurate obstacle avoidance when encountering various types of obstacles. Compared to the
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traditional DWA algorithm, the proposed approach demonstrates advantages in terms of travel distance and travel
time, while still achieving effective obstacle avoidance.

Keywords: Path planning, improved algorithm, USV, COLREGs

1. INTRODUCTION

With the continuous development of intelligent control and path planning technologies, unmanned surface
vehicles (USVs) possess characteristics of high maneuverability and autonomy, enabling them to perform au-
tonomous navigation and gradually becoming a crucial component of modern maritime operations!). In the
complex and variable marine environment, the path planning technology of USVs is particularly critical as it
not only relates to the safety and reliability of USV's but also directly affects the efficiency and success rate of task
execution. USV's operate in complex environments, and when navigating along a set path, they may encounter
ships, buoys, and other potential maritime obstacles (23] Given the uncertainty in the marine environment,
the obstacle avoidance system of a USV must be highly adaptable. Path planning is an essential component
of USV obstacle avoidance technology, which can be divided into global and local path planning. Global path
planning involves charting a feasible route for the USV based on known environmental information and task
objectives ). Local path planning, on the other hand, requires the USV to take appropriate actions to adjust
speed or direction in real-time effectively when encountering static or dynamic obstacles during navigation,
ensuring safe movement to the target location ¢!, This paper primarily focuses on the local path planning
issues of USVs, especially the dynamic obstacle avoidance problem.

In the field of path planning for USVs, numerous scholars have conducted research. MahmoudZadeh et al.
introduce a continuous path planning system that facilitates multi-USV operations for ocean sampling tasks,
enabling the handling of multiple objectives while being computationally suitable for real-time implementa-
tion!”). Du et al. propose a safe Lyapunov boundary deep deterministic policy gradient (SLDDPG) algorithm,
analyzing the uniform ultimate bounded (UUB) stability of control systems under finite safety constraints. It
applies single neuron proportional adaptive control (SNPAC) to the pre-training of deep policy networks to
accelerate the training process, exhibiting superior performance in terms of stability and safety®]. Sun et al.
discuss a collision avoidance method across ships based on artificial potential fields and a strategy for ship colli-
sion avoidance following the International Regulations for Preventing Collisions at Sea (COLREGs), achieving
self-organized coordination among multiple USVs in the presence of dynamic obstacle ships!®). Chen et al.
introduce a local trajectory planning algorithm based on collision hazard assessment, using the analytic hi-
erarchy process and differential methods to determine the collision risk indices for different scenarios and
incorporating fuzzy reasoning theory to provide a decision-making basis for avoidance strategies, optimizing
the USV routes under unexpected encounters through COLREGs!'°). Wu et al. present an obstacle avoidance
strategy based on deep reinforcement learning and the dynamic window approach (DWA), defining the action
space for the proximal policy optimization (PPO) algorithm based on descriptions of linear and angular veloc-
ities of ship movements within the DWA and improving the PPO’s reward function using distance, velocity,
and heading evaluation functions in the DWA ("'}, Gonzalez-Garcia et al. design an impulse velocity and head-
ing variable motion control strategy based on adaptive sliding mode control, using time-varying look-ahead
distance for path following guidance!'?). Zheng et al. propose a new model that utilizes partially observ-
able Markov decision processes (POMDP) to build a decision-making model for autonomous ship collision
avoidance under mixed obstacle environments, addressing the complexity and uncertainty of the environment
and enhancing decision-making accuracy!"*. These documents provide references for USV path planning re-
search, yet they do not simultaneously consider the real-time collision avoidance issues for multiple USV's nor
optimize and improve path planning algorithms to address the nonlinear characteristics specific to USVs.
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In response to the issues discussed above, this paper proposes a path planning algorithm that integrates the
DWA and the COLREGsS, considering the nonlinear characteristics of USVs. Additionally, the influence of
ocean currents on the motion of the USV was incorporated into the environmental model. The speed selection
within the DWA utilizes the fully informed search algorithm (FISA), which chooses the optimal (minimum
cost) operational speeds and steering sets from a velocity sampling set based on different cost calculation meth-
ods. This integrated algorithm allows for more flexible obstacle avoidance within the hardware constraints of
the USV, avoiding entrapment in local optima and stagnation in complex environments with multiple obsta-
cles. Furthermore, since the motion of the USV may be affected by external factors such as ocean currents,
ocean currents were incorporated into the environmental model. This allows the USV to be applicable in
a wider range of scenarios. Overall, the proposed integration algorithm seeks optimal paths while ensuring
obstacle avoidance for USVs. Compared to existing works, the main contributions of this paper are as follows:

(1) Utilization of the traditional DWA for obstacle avoidance can be risky if the USV approaches obstacles at
high speeds, potentially failing to perform avoidance maneuvers in time and causing accidents. This paper
adopts the fully informed selection algorithm and evaluation metrics for online speed and angular velocity
selection, enabling the USV to choose optimal speeds within its hardware design range and perform flexible
steering actions, thus preventing accidents. It also mitigates the risk of the DWA falling into local optima,
alleviating the issue of the USV being unable to escape from complex local environments when facing multiple
obstacles.

(2) Traditional DWA-based obstacle avoidance might lead USVs to plan trajectories that contravene the COL-
REGs, potentially interfering with the normal operation of other USVs and causing accidents. This paper’s
algorithm considers the COLREGs during obstacle avoidance, making the navigation of USVs safer.

(3) The traditional DWA is typically applied to ground mobile robots, but it has not been optimized for the
unique motion characteristics of USVs. In this paper, the DWA was optimized based on the motion charac-
teristics and control methods of USVs. Additionally, during environmental modeling, the potential impact of
water currents on the USV was considered, leading to the incorporation of ocean currents in the environment.

The remainder of this paper is organized as follows. Section 2 addresses the kinematic mathematical modeling
of USVs and introduces maritime collision avoidance regulations. Section 3 describes the principles of the fully
informed selection algorithm and the DWA, and discusses improvements and integration of the algorithms.
Section 4 presents simulation experiments of the integrated algorithm and provides a comparative analysis of
the results. Finally, Section 5 summarizes our work.

2. KINEMATIC MODEL AND COLLISION AVOIDANCE RULES

2.1 Kinematic model of USVs

Figure 1 presents a two-dimensional motion model for local path planning of USVs. For the responsive model,
the heading is usually defined as the angle between the USV’s heading (longitudinal axis direction) and the
Earth’s true north direction, with a value range of 0° 360°, 0° when it coincides with the true north direction, and
increases in a clockwise direction. In the navigation coordinate system a, north (N) is the x-axis and east (E) is
the y-axis. P is the position of the USV in the navigation coordinate system, represented by the coordinates of
its center of gravity, and is also the origin of the hull coordinate system b. The hull coordinate system b takes
the heading of the USV as the x-axis and the starboard direction of the USV as the y-axis. The motion of USVs
is described using six degrees of freedom: surge, sway, yaw, heave, roll, and pitch [*]. To reduce the complexity
of motion control for USVs, it is often sufficient to focus on the movements within the horizontal plane, which
includes only the degrees of freedom for surge, sway, and yaw. This paper primarily investigates the motion of
USVs on a two-dimensional horizontal plane, disregarding the forces of disturbance caused by environmental
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Figure 1. Two-dimensional motion diagram for local path planning of USV. USV: Unmanned surface vehicle.

factors such as wind and ocean currents. Consequently, the relationships for the transformation of velocity
vectors between the navigation coordinate system a and the body coordinate system b, as well as the USV’s
three-degree-of-freedom control model, are given as['>'8:

X =ucosy —vsiny
y=usiny + vsiny (1)

i=r

where [x y | represents the position and yaw angle of the USV in the navigation coordinate system a, and

[u v r]represents the surge velocity, sway velocity, and yaw rate in the body coordinate system b. As shown
in Figure 1, assume the USV is moving forward, that is, the surge speed u > 0. The direction of movement y
is not equal to the heading angle , and the sailing speed is given by v, = Vu? + v? it is not merely the surge
speed u.

The dynamic model of the USV is established as follows [*):

= (m22vr - hu + T+ Tud)/mll
V= (=mpur—h,+1,4)/mn (2)
i =[(my —mp)uv — hy + 7, + 7,4 /m33

where m;;,i = 1,2, 3 are positive constants that stand for ship inertia masses. 7, and 7, are control inputs. 7,4,
Ty¢ and 7,4 stand for the time-varying unknown external disturbances, which are induced by ocean currents,
winds and waves. The nonlinear hydrodynamic damping #;,7 = u, v, r are expressed as follows:

hy = Xy + Xy |ulu + Xuutt®
hy :YvV+Y|v|v|V|V+YIr|v|r|V (3)
hy = Npr + Ny |vIr + Ny |r|r

Here, X(-), Y(-) and N(-) stand for the linear and quadratic hydrodynamic coefficients in the surge, sway and
yaw motions, respectively.

Remark 1 It should be pointed out that there are only two control inputs 7, and 7, in model dynamics, while
the control force in the sway channel is not provided. Therefore, the USV denoted by Equations (1) and (2) is
underactuated. In trajectory tracking control issues of USVs, the difficulty lies in how to eliminate the cross-
tracking error with uncontrollable sway dynamics. Compared to the fully actuated USV, the control problem
for underactuated ones will be more challenging.
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Remark 2 In engineering applications, the USV platform is often designed to be underactuated since the instal-
lation of the lateral thruster is not only costly, but also impairs hull hydrodynamic performance in high-speed
scenarios. In general, most surface vessels are only equipped with propellers and rudders for surge and yaw
motion. This means the contribution of this work will be meaningful for practice.

Remark 3 The vessels’ hydrodynamic damping 4;,i = u,v,r are composed of serval hydrodynamic terms
involving potential damping, wave drift damping, skin friction, and so on?°. Thus, it poses many challenges
to accurately acquire this kind of information in practice. In this paper, h;,i = u,v,r are supposed to be
unknown for controller designers.

2.2 2-D Ocean current environment model

Due to the rapid rotation of the Earth, the horizontal scale of ocean currents is significantly larger than the
vertical scale of movement. Therefore, ocean currents can be considered as motion across multiple layers of
two-dimensional horizontal planes. In this paper, the numerical equations for the ocean current model are
represented by the superposition of two viscous Lamb vortices. The mathematical description is given as>!):

— (F=7p)? - (F=7p)?
Vo) = -2 [1 - e-w?)} V() =r——2 [1 - ’] (4)
2r (?— 7()) 2r (17 - }70)

where 7 represents the position vector of the vortex center, while § and w denote the vortex radius and vor-
tex intensity, respectively. V,(7) and V,(¥) are the horizontal and vertical components of the vortex velocity,
respectively. Equation (4) represents the physical model of the velocity field surrounding the USV. This study
only considers the spatial variation of ocean currents, allowing us to assume that the ocean current motion in
the corresponding region remains constant throughout the mission. In the paper, the current environmental
parameters are set as § = 1, I' = 10, and the vortex center vector ry is chosen from two points on the current
plane. Thus, under the influence of ocean currents, the kinematic model of the USV can be given as:

X =v;cos xy + Vi(F)
. . - (5)
y =v;siny + V,(7)

2.3 Constraints of COLREGs

The COLREGs are traffic rules established by the International Maritime Organization to prevent collisions
between vessels at sea. COLREGs delineate three types of encounters: head-on, cross, and overtaking. Specif-
ically, the cross encounter includes two scenarios: crossing from the left (cross-left) and crossing from the
right (cross-right). The regional division method adopted by COLREGs in this paper is illustrated in Figure 2.
Article 8 of the COLREGs outlines the fundamental principles for collision avoidance during the design of
local path planning, which should adhere to the following principles: Actions should be taken as early as pos-
sible; substantial evasive actions should be taken to ensure they are observable by visual or radar means and
to ensure passing at a safe distance; when sufficient space is available, steering alone should be used, as it is
the most effective means of avoiding a close-quarters situation and during evasion, avoiding a series of minor
changes to speed or direction; continuous monitoring of the effectiveness of the collision avoidance actions
should be maintained until the other vessel has past and is clear 2224,

Articles 13, 14, and 15 of the COLREGs specify the judgment methods and action rules for vessels in overtaking,
head-on, and cross-encounter situations>>2%), classifying the USV either as a give-way or stand-on vessel
depending on the situation. Detailed action rules for the USV are as follows:

(1) Overtaking: When a USV is navigating behind a moving vessel within an angle range of [112.5°, 247.5°),
and the USV is faster, it should take action to avoid the vessel by turning left or right.
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Figure 2. Regional division method of COLREGs. COLREGs: International Regulations for Preventing Collisions at Sea.
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Figure 3. Avoidance methods for the USV. USV: Unmanned surface vehicle.

(2) Head-on: A head-on encounter refers to two vessels sailing in opposite or nearly opposite directions, with
the moving vessel within the bearing range of [0°,10°) or [355°,360°) from the USV. The USV should turn right,
the oncoming vessel should turn left, and the USV should pass as far away as possible from the left side of the
moving vessel.

(3) Cross-left: This encounter refers to a moving vessel being within the bearing range of [247.5°,350°) from
the USV. The USV is not the give-way vessel, so it should maintain its course.

(4) Cross-right: This type refers to a moving vessel within the bearing range of [10°, 112.5°) from the USV. The
USV should turn right and navigate behind the moving vessel as much as possible, avoiding crossing in front
of the other vessel.

The correct evasive routes for these four encounter scenarios are shown as dashed lines in Figure 3. The local
path planning algorithm should also comply with these action rules.
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3. IMPROVED ALGORITHM

Given the often open and complex environment in which USVs operate, not only must planning account for
obstacles marked on maps, but it must also dynamically evade obstacles detected by sensors onboard the USV.
Local path planning is well-suited to address this issue.

The DWA is a local planning method based on velocity sampling that enables smooth path planning and local
obstacle avoidance. The core idea of DWA is to determine trajectories within a specified timeframe in the
velocity space, based on the current position and velocity states of the mobile robot. These trajectories are
then evaluated using a cost function, and the trajectory with the optimal evaluation is selected as the motion
path for the robot. The algorithm process starts by initializing the robot’s velocity, acceleration, and evaluation
functions, then calculates the current velocity range, computes the predicted states at different velocities, and
evaluates these states using the cost function. The cost function values are normalized, the optimal value is se-
lected as the solution, and the robot’s state is updated accordingly. This cycle continues until the robot reaches
its destination?”-2°l. The improved algorithm introduces FISA to pre-filter feasible paths before evaluating
them with the DWA cost function, thereby generating a set of candidate paths. To enhance the USV’s move-
ment speed and reduce the travel path length, the cost function of FISA is designed to minimize changes in
angular velocity while maximizing the allowable speed. Since FISA randomly generates a value in each feasible
interval, the effect of this randomness is minimized through repeated iterative calculations. Compared to the
traditional DWA, the selected speed set has the advantages of higher speed and shorter travel distance, while
also reducing the risk of getting stuck in local optima, which is a common issue for DWA. The flowchart of the
algorithm is shown in Figure 4.

3.1 Velocity search space

The velocity search space is a two-dimensional space of speeds derived from the constraints specific to the USV
and the operational environment. The purpose of this search space is to identify the optimal movement strategy
for the USV to avoid obstacles, achieve path planning, and complete tasks within the current environment. The
limiting factors can be categorized into three types: intrinsic speed limits of the USV, acceleration limits, and

obstacle constraints 331,

Intrinsic speed limits of the USV refer to the physically feasible range of speeds for the USV, including limita-
tions on linear and angular velocities. These limits are determined by factors such as the power structure and
physical design of USVs. The intrinsic speed limits of the USV are given as

Umin < U < Umax
Vm = {(”a r)| } (6)

Tmin <7 < Fmax

IA

where u represents the linear speed (surge velocity) of the USV, and r represents the angular velocity (yaw
rate), Umin = 0, Fywin = —Fmax. The acceleration limits of a USV are defined to ensure that the motion paths
selected within the dynamic window are physically feasible and stable. These limits are primarily influenced by
the power and torque of the USV’s drive motors, imposing a maximum acceleration limit[*?!. Since the USV
operates as a nonlinear system, its acceleration is dependent on its current state of motion, and thus, traditional
computation methods are not applicable. The relationships between u4x, Fimax» 4 and r are given as

(F™+X,, u+X|uju |u |u+quu'43)

Umax =

m
. (F)r;nilxlr+N)'r+N|r\r|r|r+Nrrrr3) (7)
Fmax = I,

where /, represents the longitudinal distance from the center of gravity of the USV to the thruster, X,;, Xju»
Xuuu> Nrs Ny and N, denote hydrodynamic coefficient, m stands for the mass of the USV, F, means the
longitudinal force produced by the thruster, Fy points to the lateral force produced by the thruster, and I,
indicates the moment of inertia about the z-axis.
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Figure 4. Flowchart of fusion method.

Based on the current motion state of the USV and its acceleration, the range of velocity values v, can be
determined by
U= Umindt < u < U+ lUpaxdt
va = (u,r)] S e (8)
7= Fmindt <7 <7+ Fraxdt

The schematic diagram of velocity values is given as Figure 5.

The process of velocity search and generation of potential trajectory sets is one of the most critical processes
in DWA. Only after determining the set of velocities can trajectory sets be generated and evaluated using an
evaluation function, with the optimal trajectory ultimately being selected. In this algorithm, FISA is employed
for velocity search within the velocity search space. Compared to traditional search methods, the use of FISA
has refined the velocity search mechanism of DWA. The improved algorithm significantly reduces the likeli-
hood of DWA getting trapped in local optima, thus alleviating issues where the USV is unable to navigate out
of complex environments with multiple obstacles.

The FISA is an intelligent optimization algorithm that operates on the principle of random interactions between
the best and worst solutions obtained during the optimization process, as well as among candidate solutions.
It requires only common control parameters such as population size and the number of iterations, without
needing any algorithm-specific control parameters. FISA relies on a difference vector obtained by subtracting
the position of the worst individual from the best individual in the current iteration. This ensures that the set of
solutions always progresses towards better outcomes. Compared to traditional optimization algorithms, FISA
improves the optimization of the shift function while maintaining the simplicity and lack of control parameters
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VA

u+tu_ dt, r+r_ dt
max max

(w—u,dt, r—r. dt)

Figure 5. The schematic diagram of velocity values.

characteristic of traditional algorithms, pushing the dataset towards superior solutions *?]. The flowchart of
FISA is shown in the Figure 6, and the process is given as

X7 = X" 411 (M X = X157 472, (XS = MXgers, 1) (9)

best,j S worst, j
{Xiltenl — Xinewiff(XineW) < f(XiIterH ) ( ) O)

X[Iter+1 — Xl_lter else

Where X/*" represents the position of the i — A solution in the current iteration Iter; j (ranging from 1 to
D) denotes the j — rh dimension of each solution; X/'" and X[/’ | sequentially represent the positions of the
members with the highest and lowest performance in the population during the current iteration; r| and r; are
two randomly selected values between 0 and 1 for each of the D dimensions; X;"*" represents the position of
the k — th solution chosen indiscriminately; and f(-) denotes the numerical output of the function currently
being optimized for the corresponding solution, which includes cost computation. Using Equation (10), the

position of the i — ¢4 solution for the next iteration is calculated.

In fact, in FISA, each member moves away from the average position of individuals with poorer fitness within
the population and closer to the average position of individuals with better fitness than the respective member.
Then, Equation (10) is used to update the position of each member. In Equation (9), the values of M Xéteesrt and

Iter . . . .
MX, ., in each iteration are given as

Iter Tter
Xbest+2[€ Bi X[

Tter _
MXbest T length(Bi)+1 (11)
Xlter +Z X XIter
M XIter — Zworst 1eWi 2
worst length(Wi)+1

where B; and W; represent the subsets of population members whose fitness values are respectively better
and worse than that of the i — & member in iteration Iter. The function length(-) indicates the number of
individuals in each subset.

In the application of this integrated algorithm, the current motion state’s linear and angular velocity limits
of the USV are input into FISA. By continuously iterating the values of MX/*" and MX[/¢’  simultaneously

wor st

calculating costs, the set of velocities X"

mal trajectory from this set of velocities using the evaluation function, which becomes the final operational
trajectory for the USV.

that minimizes cost is selected. The DWA then selects the opti-
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3.2 Obstacle constraints

Local planning necessitates dynamic and real-time obstacle avoidance capabilities. For the safety of USVs, it
is essential to ensure that the vessel does not collide with any obstacles. The USV must maintain a sufficient
distance at any given moment to allow for stopping under maximum deceleration [**. The constraint that the
USV does not collide with surrounding obstacles at any moment is given as

e )|u§\/2-(p(u,r)-blmm
ENT r <2 0 u,r) - Fmax

where ¢(u,r) is the distance evaluation function. If there are no obstacles around the USV or if the nearest
distance to any obstacle is greater than a set threshold, then the value of distance evaluation function is set to a
large constant. When the distance to an obstacle is less than the set threshold, the distance evaluation function
is defined as the closest distance from the simulated trajectory at the current speed to the obstacle.

(12)

Traditional DWA uses the above methods to restrict velocities, preventing collisions between mobile robots
and obstacles. However, when applying DWA for obstacle avoidance in USVs, the USV itself is also consid-
ered an obstacle, necessitating improvements to obstacle constraints. The COLREGs prescribe the division
of responsibilities and avoidance strategies when two vessels meet, and based on COLREGs, priorities among
multiple USVs are assigned and specific avoidance strategies are designated (*°.

When assessing the motion states of other USV’s, given that USVs are typically smaller and often operate in rel-
atively open and calm waters, this paper determines the priorities and establishes avoidance strategies based
on the distance and coordinate relationships between USVs. Additionally, when multiple USV's are operat-
ing together, the relationships between them are continuously changing. Therefore, it is crucial to determine
whether a previous avoidance action has ended in order to improve the smoothness of the travel trajectory.
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In response to multiple USVs encountering each other, this paper draws from the COLREGs to establish the
following strategies for division of responsibilities when two vessels meet. The specific rules are as follows:

(1) Head-On: The vessel on the starboard (right) side generally has the right of way, while the vessel on the
port (left) side should take evasive action. Head-on encounters are divided into two scenarios: USVa traveling
from south to north and USVDb traveling from north to south: In this case, USVa has the right of way and
USVDb should yield. USVa traveling from west to east and USVDb traveling from east to west: Here, USVa has
the right of way and USVb should yield; (2) Overtaking: If USVa is faster than USVb and is behind it with
a relative angle of -10° to 10°, USVa needs to overtake USVb from either the left or right side; (3) Crossing
Situations follow these rules: Cross-right: If USVa is traveling from south to north and USVD from west to
east, USVa has the right of way and USVDb should yield. Cross-left: If USVa is traveling from south to north
and USVDb from east to west, USVD has the right of way and USVa should yield.

When two USVs reach a judgment distance within a predictive range and one USV has a higher priority, its
navigation is not affected by the other USV, and the traditional approach can still be used for trajectory selec-
tion using the evaluation function. The USV with lower priority needs to take evasive action, thus requiring
optimization of the distance evaluation function, as given in

min d,’j min d,‘j > Ry
e(u,r) = (13)
Z’IH kn-mind;; mind;; < Ry

where d;; represents the distance between the USV and another USV, and R, is the judgment distance. When
the USV has a higher priority, k = 1; when it has a lower priority, & = 2.

If the minimum value of d;; is less than the obstacle avoidance distance of the USV, the lower-priority USV
should stop and wait for the higher-priority USV to pass before resuming its actions.

3.3 Evaluation function

After determining the velocity range constrained by the USV’s capabilities, some simulated velocity trajectories
may be feasible, while others may not meet the required standards. Therefore, it is necessary to evaluate and
select the best trajectories from the multiple sets of sampled trajectories. By evaluating the trajectories using
a standard evaluation function and comparing the scores, the optimal trajectory is selected to determine the
USV’s speed. The trajectory evaluation function is given as

Gu,r)=oc(axu(u,r))+c(Bxe(u,r))+o(yxd(u,r)) (14)

where p(u, r) is the heading angle evaluation function, which is used to assess the error between the direction
of the trajectory’s endpoint at the current sampled speed and the line connecting to the target point, denoted
as AG. Since a larger value of the evaluation function typically indicates a better result, 7 — A@ is used in the
evaluation, as expressed by u(u,r) = 7 — A6 : 6(u,r). 6(u,r) is the speed evaluation function, where a larger
value indicates a faster speed along the planned trajectory. This function is represented by the magnitude
of the current linear speed. However, since the USV operates on the water surface and has a slower speed
response, the planned speed needs to gradually change while ensuring obstacle avoidance. Thus, it is expressed
as 6(u,r) = |lu| — Au|. aBy represents the coeflicient of the evaluation function. Since local path planning
requires data collection from multiple sensors, and continuous information gathering is not always possible,
this can result in significant differences in the evaluation outcomes. Therefore, normalization (smoothing) is
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Table 1. Basic parameters for simulated USV

Parameters Value
Size/mm 900*630*300
Mass/kg 7

Draft depth/m 01

Maximum speed/(m/s) 7

Maximum power per motor/W 700
Maximum motor speed/rpm 7,000

USV: Unmanned surface vehicle.

necessary ¢, where o represents the normalization process. The normalization procedure is given as

— @)
o X u(u,r)= S
o xeur)= Zf—'fl(:z)’(i) (15)
=
o X 6(14,}") = ﬁlg(l)

where i represents the i — th simulated trajectory, and n represents the total number of sampled trajectories
under the given constraints. Using the above formula, a path that avoids obstacles and moves quickly toward
the target point can be obtained, enabling the USV to achieve optimal local path planning.

After sampling a set of (u, r), trajectory simulation is conducted based on the USV’s kinematic model. Once
all trajectories are generated, the trajectory with the best evaluation in the set is selected. After choosing the
optimal trajectory from the set, the DWA algorithm is used to continue predicting the trajectory at the next
time step until the final target point is reached.

4. SIMULATION RESULTS AND DISCUSSION

Based on the kinematic modeling and path planning algorithm, simulation experiments were conducted on the
USV. Table 1 presents the basic parameters of the USV used in the simulations. The simulations in this study
focused on simulating the USV’s path in open waters, where actual obstacles mainly include other vessels,
maritime buoys, and islands. To fully demonstrate the feasibility of the integrated algorithm and avoid any
accidental suitability to specific environments, the simulations included obstacles that may be encountered in
real-world operational scenarios. These obstacles were simulated by adding both known static obstacles and
unknown dynamic obstacles to the map, thereby validating the correctness and feasibility of the path planning
algorithm.

During the simulations, the USV was treated as a point mass; however, in real-world operations, the USV
has a certain volume. Therefore, an obstacle inflation method was applied to account for the USV’s size by
expanding the dimensions of the obstacles. The simulations were designed to replicate potential obstacles that
the USV might encounter during actual operations, based on its real usage scenarios. The simulations were
divided into three cases: Case1: A single USV without any obstacles. Case2: A single USV navigating through
multiple static obstacles. Case3: Four USVs navigating through a combination of multiple static obstacles and
dynamic obstacles. The evaluation function of the DWA is composed of the weighting factors for heading score,
distance score, speed score, and the time for forward trajectory simulation. These parameters were adjusted
and fine-tuned through repeated simulation experiments, as the weight of each factor significantly influences
the USV’s navigation behavior. The parameters for the USV’s DWA obstacle avoidance algorithm are shown
in Table 2.

A higher weighting factor for the heading score will cause the USV to prioritize moving in a direction that
avoids obstacles. When encountering an obstacle, the USV will preferentially adjust its heading to find a
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Table 2. Parameters of DWA

Parameters Value

Radius of dynamic and static obstacles/m 0.5

Time resolution/s 0.1
Linear velocity resolution/(m/s) 0.05
Angular velocity resolution/(rad/s) 0.5
Proportion of heading score 0.03
Proportion of distance score 0.2
Proportion of speed score [oX
Trajectory prediction time/s 3

DWA: Dynamic window approach.

feasible, obstacle-free path. However, this might lead the USV to favor turning maneuvers, making it difficult
to maintain a straight trajectory. On the other hand, a lower weighting factor for the heading score will make
the USV more committed to its current heading, potentially causing it to maintain its course even when close
to an obstacle, which might result in insufficient distance to complete an avoidance maneuver.

A higher weighting factor for the distance score will prompt the USV to maintain a greater distance from ob-
stacles, leading it to choose safer paths. In this case, the USV will start to avoid obstacles while still far away,
which is beneficial in narrow environments or situations where collision avoidance is critical. Conversely, a
lower weighting factor for the distance score will make the USV more likely to choose paths closer to obsta-
cles. In simulations, using a smaller distance parameter weighting might result in the USV being too close to
obstacles, making it difficult to plan an avoidance route.

A higher weighting factor for the speed score will cause the USV to prefer higher speeds, enabling it to traverse
the environment more quickly, which is more suitable in relatively safe, open areas. However, in simulation
experiments, a higher speed parameter weighting led to the USV’s linear speed being too high, preventing it
from promptly completing path planning and obstacle avoidance maneuvers due to the structural limitations
of the USV. A lower weighting factor for the speed score will make the USV more inclined to select lower
speeds, reducing the risk of collisions in complex environments.

Through multiple sets of simulation experiments, it was observed that optimizing the obstacle avoidance al-
gorithm hinges on determining the optimal values for these parameters. This process typically requires exper-
imentation and adjustment, as the effectiveness of the parameters is influenced by the specific environment,
USV performance, and mission requirements. In practical applications, this iterative process of experimenta-
tion and simulation involves observing the USV’s responses in various scenarios, adjusting the parameters to
better adapt to different environments, and thereby achieving superior obstacle avoidance performance. This
parameter adjustment process is ongoing and iterative, requiring continuous tweaking and optimization based
on the USV’s actual performance to eventually arrive at the optimal values.

4.1 Case1: static obstacles

In this case, the planned map is a rectangular area of 4 m by 14 m, with multiple static obstacles of 0.3 m
radius added to simulate small coral reefs and buoys that a USV might encounter at sea. The environment
model also includes the influence of ocean currents on the USV. In this simulation, there is only one USV, with
an initial pose of [0, 0, 90] and a target point of [0, 10]. To facilitate comparison of the improved algorithm
with the traditional DWA, the same experimental environment was set up and the results were compared.
The simulated trajectory indicates that the improved algorithm can avoid obstacles and reach the target point,
whereas the traditional DWA falls into a local optimum during obstacle avoidance, colliding with obstacles
and failing to reach the target. Furthermore, the improved algorithm generates a shorter and smoother path
compared to the traditional DWA. The simulation time is 21.67 s, and the simulated trajectory is shown in
Figure 7. Since the traditional DWA algorithm failed to reach the target point in the previous simulation, the
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Figure 7. Simulated trajectories of the USV. USV: Unmanned surface vehicle.
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Figure 8. Simulated trajectories of the USV. USV: Unmanned surface vehicle.

positions of the simulated obstacles were changed for another experiment. In this case, the traditional DWA
algorithm was able to avoid obstacles and reach the target point, with the simulated trajectory shown in Figure 8.
Comparing the trajectories, it can be seen that the path of the traditional DWA algorithm is longer, while the
improved algorithm generates a shorter and smoother path, making it easier for real-world trajectory tracking.
A comparison of the USV running times during the simulations of the improved and traditional algorithms is
shown in Figure 9. Based on 20 simulations, the average running time for the improved algorithm is around 20
s, whereas for the traditional DWA, it is around 35 s, indicating a reduction in running time. The comparison of
running distances is shown in Figure 10. When using the improved algorithm, the average running distance for
the USV is about 10 m, considering the straight-line distance between the target point and the initial position
is 9.5 m (d < 0.5 m is considered reaching the target). The traditional DWA’ average running distance is 11.3
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Figure 9. Average travel time of the USV. USV: Unmanned surface vehicle.
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Figure 10. Average travel distance of the USV. USV: Unmanned surface vehicle.
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Figure 11. Simulated trajectories of the USV. USV: Unmanned surface vehicle.

m, demonstrating a significant improvement.

4.2 Case2: dynamic obstacles

20
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In this case, the planned area is a 140 m by 140 m square region. The map includes two static obstacles and
five dynamic obstacles, simulating larger obstacles that the USV might encounter at sea, such as large islands
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Figure 12. Average travel time of the USV. USV: Unmanned surface vehicle.
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Figure 13. Average travel distance of the USV. USV: Unmanned surface vehicle.

and bridge piers of sea-crossing bridges. The coordinates of the static obstacles are [40, 40] and [60, 60], while
the dynamic obstacles start from random positions within the map area and move in random directions. The
influence of ocean currents on the USV movement is also included in the environment model. This simulation
involves four USVs: USV1, USV2, USV3 and USV4, with initial poses of [0, 0, 90], [100, 0, 90], [80, 100, -90],
and [20, 100, -90], respectively, and target points of [100, 100], [0, 100], [20, 0], and [80, 0].

In the first step of the simulation, USV1’s movement is normal, adhering to COLREGs and featuring dynamic
obstacle avoidance with the improved algorithm. USV2, USV3 and USV4 exhibit abnormal movements, as
they use only the traditional obstacle avoidance algorithm, with their simulated trajectories shown in Figure 11.
Since only USV1 has the integrated obstacle avoidance functionality, it can reach the target point quickly and
safely. At the beginning of the simulation, there is a collision risk between USV1 and USV4, but they use an
improved algorithm and the motion rules comply with COLREGs. According to the rule, USV1 has higher
priority and will pass in front of USV4. During the simulation, USV3 and USV4 face collision risks, having
reached the minimum safe distance(d < 0.5 m). A comparison of USV running times for the improved and
traditional algorithms is shown in Figure 12. Based on 20 simulations, USV1’s travel time is shorter than
that of USV2. A comparison of travel distances is shown in Figure 13. After 20 simulations, USV1’s tra<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>