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Abstract
The failure of urban street trees caused by strong winds and has several adverse effects on urban functions and 
public safety. This study developed a wind fragility model based on the mechanical analysis of urban street trees. 
The uncertainty of the important parameters involved in this model was quantified for species of interest. 
Specifically, the vine copula function was used to estimate the joint probability distribution of the geometric 
parameters. Furthermore, the tree fragility curves were obtained and then validated by the historical measured 
date. The proposed model may help in effectively identifying high-risk streets and regions.
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INTRODUCTION
The breakage and falling of street trees caused by extreme winds may lead to direct economic losses and 
indirect impacts, such as the failure of structures, lifeline facilities, and traffic systems, which severely 
threaten the lives and properties of residents.

Existing studies on wind damage to trees can be roughly categorized into mechanistic and statistical 
approaches. The statistical approach directly estimates the probability of damage and the factors influencing 
tree failures from historical data using various regression and statistical techniques[1,2]. However, because the 
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date used for statistical analysis is typically locally specific, it has not been confirmed whether the developed 
statistical model can be generalized[3,4]. Moreover, statistical models face difficulties in elucidating the actual 
mechanism of wind effects on trees.

In contrast, the mechanistic approach is predominant in studies on wind-induced tree failure. As early as 
1881, Greenhill investigated the stability of trees using a bottom-fixed tapered rod[5]. Subsequently, 
researches on the mechanistic tree model developed toward two directions. One direction tends to develop 
increasingly more refined and sophisticated tree models[6,7]. The finite element model considering precise 
tree geometry and wind-tree interaction is particularly popular[8-14]. The other direction is more practical 
and application-oriented. It tends to use models with relatively simple geometry, and focuses on the 
specification and quantification of the key model parameters. Specifically, HWIND[15], GALES[16], and 
FOREOLE[17] are the most widely investigated models. The three above-mentioned modeling approaches 
simplify the tree as a tapered rod and adopt quasi-static analysis[18]. The widely acknowledged Hazus model 
for multi-hazard loss estimation[19] involves a module for tree blowdown, whereby an individual tree is 
modeled as a single-degree-of-freedom (SDOF) oscillator. However, the accuracy of this model is still 
unsatisfactory.

To evaluate the wind risk, most mechanistic models, such as HWIND, GALES, and FOREOLE, resort to 
calculating the critical wind speed (CWS) required to cause the damage to an "average tree"[18,20]. In contrast, 
the Hazus tree blowdown model estimates tree damage using the fragility curve, that is, by calculating the 
conditional failure probability corresponding to different wind speeds. Owing to the inherent randomness 
of tree morphology, the environment, and tree failure occurrence, this study adopted the fragility scheme 
for risk assessment.

However, almost all the above-mentioned studies have focused either on forest trees or simply on individual 
trees. Despite the severe and potentially catastrophic impact of urban tree failure[21,22], and the significant 
differences between the wind environment and tree features of urban areas and forests[23], few studies have 
established quantitative wind risk assessment models for urban trees[24]. Studies focusing on trees in urban 
areas have practical significance, while the computational efficiency of the single-tree model is important for 
facilitating subsequent city-scale analysis.

This study developed a wind risk assessment model for trees in urban streets. To predict wind-induced 
failure, a mechanistic model based on the HWIND and GALES models is proposed. Further, focusing on 
the quantification of the involved uncertainties, the probability distributions of significant parameters were 
investigated in detail. Specifically, the joint probability distributions of the geometric parameters were 
estimated using the vine copula function, based on the data from an urban tree database. Finally, the tree 
fragility curves were obtained and validated.

MECHANISTIC WIND DAMAGE TREE MODEL
A mechanistic tree model for the deterministic analysis of a single tree subjected to wind loading is 
proposed. The proposed model combines the HWIND and GALES models, and involves the simplification 
of trees into a cantilever corresponding to the trunk, as shown in Figure 1. The cantilever beam is separated 
into several elements. Each element is considered as a cylinder, and the wind load is considered to be 
uniformly distributed on each element. Subsequently, the internal force and stress of each node can be 
calculated and the tree damage can be assessed.
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Figure 1. Diagram of tree model. H: tree height; Hc: crown height; n: number of elements; nc: number of elements in crown area; ns:
number of elements in stem area.

Parameters of tree model
The basic parameters required to determine the proposed structural model are geometric and material 
parameters.

The three most fundamental geometric parameters of trees are the diameter at breast height (DBH), crown 
diameter (Dc), and crown height (Hc). All of them can be considered as random variables depending on the 
tree height and will be discussed in later sections.

Except for the three fundamental parameters, the taper equation of the trunk is essential for determining the 
element diameters. The proposed model adopts the widely used Max and Burkhart equation, which is 
expressed as follows[25]:

where dz denotes the stem diameter at height z; b1, b2, b3, and b4 are the shape parameters; a1 is the relative 
height of the first knot, that is, the point of transition between a paraboloid and a cone in the upper part of 
the stem; a2 is the relative height of the second point of transition between a neiloid and a paraboloid in the 
lower part; I1 = 1 if z/H < a1, otherwise I1 = 0; I1 = 1 if z/H < a2, otherwise I2 = 0.

The crown shape is an important geometric factor for tree modeling because it directly affects the estimated 
wind loads on trees. The following relationship is used to fit the crown profile[26]:

where dci denotes the crown diameter of the i-th element from the bottom of the crown; nc is the number of 
elements in the crown area; t is the shape parameter. According to the US urban tree database[27], most 
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conifers have a paraboloid crown, that is, they are widest at the bottom third of the crown. Herein, the shape 
parameter for conifers was considered as 1.4[26], which satisfies the shape of a paraboloid. The dominant 
crown shape of broadleaf trees is ellipsoid; therefore, the shape parameter was considered to be equal to 2.

The material parameters include the stem density ρs, crown-to-stem weight ratio rcs, and modulus of rupture 
σr. Species-varying random variables are considered. The values and distributions of these parameters are 
discussed below.

Loads on trees
The self-weight of trees is calculated using elements. For elements in the crown area, the weight of the 
element is the combination of the stem and crown weight. The weight of the stem can be determined from 
the stem density ρs and stem diameter at the height of each element. The weight of the crown can be 
calculated from the crown-to-stem weight ratio rcs. Then, the crown weight is assigned to each crown-area 
element according to the crown diameter Dci of that element.

The mean wind speed at the top of the tree  can be obtained from the power law[28] as follows:

where U10 is the 10-min mean wind speed at the height of 10 m, and a is the ground roughness coefficient. 
Hereafter, unless otherwise specified, all mean wind speeds are averaged over a 10-min period. Within the 
tree height, the mean wind speed can be calculated as follows[10]:

Because quasi-static analysis is adopted for the proposed tree model, the effect of the fluctuating wind is 
considered by introducing a gust factor, as follows:

where Up is the peak wind speed, and  denotes the mean wind speed. The gust factor is considered as a 
random parameter and will be discussed in a later section.

The wind load on each element is represented by a point load concentrated at the center of the element, as 
follows:
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where CD is the drag coefficient (for elements in the crown area, CD is taken as 0.25 for broadleaf species, 
and 0.3 for conifers[16,29]; otherwise, CD is taken as 1[29]); ρa denotes the air density and takes the value of 
1.293 kg/m3 in this model; St is the dimensionless streamlining coefficient, and is given as follows[16]:

where (z) is the mean wind speed at height z; Ai is the area against the wind of the element; UP(zi) = Gf  
denotes the peak wind speed at height zi, and zi is the height of the center of the element.

Failure determination
The overall and local failure of trees are considered. The overall failure includes the stem breakage mode 
and uprooting (or overturning) mode, while local failure refers to the branch breakage mode, which is 
typically more likely to occur compared with overall failure, but has a negative impact on the urban road 
environment as well.

Table 1 summarizes the specific failure criterion of each failure mode employed in this model. Notably, 
owing to the taper equation adopted herein, the element diameters  shrink rapidly when approaching the 
canopy, as shown in Figure 2A. Consequently, for broadleaf species, the section stress along the tree height 
always exhibits a double-peak mode, as shown in Figure 2B, and the largest peak typically occurs at the 
second node from the top. It is clear that the overall breakage of the stem cannot be determined by this peak 
at the top area. Therefore, the model is divided into two parts: one corresponding to the trunk and the other 
corresponding to the branches. The midline of the crown is considered as the approximate boundary of 
these two regions.

The failure criterion for uprooting is expressed as follows:

In this equation, the critical base moment Mb, crit against uprooting can be determined as follows[16]:

where Ws (kg) denotes the stem weight, and Creg (Nm·kg-1) is a regression constant that comprehensively 
reflects the root and soil characteristics. In the proposed model, Creg is considered as a random variable, and 
its value and distribution are discussed later.

The bending moment of each node is obtained as follows:
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Table 1. Description of failure modes

Failure category Failure mode Failure criterion

Overall Failure Uprooting Base bending moment (Mb) exceeds the critical uprooting moment (Mb, crit)

Stem breakage Maximum section stress in the trunk region (σmax, s) exceeds the modulus of rupture (σr)

Local Failure Branch breakage Maximum section stress in the branch region (σmax, b) exceeds the modulus of rupture (σr)

Figure 2. Typical section diameter and stress of broadleaf species. (A) Section diameter; (B) Section stress.

where Fj denotes the wind load given by Equation (6); n is the total number of elements, and the nodes are 
counted from the base to the top. Further, the base bending moment, which is also the maximum moment, 
is obtained as follows:

Notably, the additional moment in the HWIND model, which accounts for the p-delta effect caused by the 
self-weight and wind-induced horizontal displacement, is not considered herein because the proposed 
model only considers the linear-elastic response of trees. Consequently, the additional moment is relatively 
small compared with the moment generated directly by the wind loads. Figure 3 shows the comparison 
between the additional moment and the direct moment from wind for U10 = 40 m/s. Note that, the 
additional moment increases with the wind speed. However, as can be seen, the additional moment is still 
negligible even for U10 up to 40 m/s. The simplification of neglecting the additional moment in the proposed 
model greatly reduces the computational costs. It is because it eliminates the calculation of structural 
displacement for the determination of the additional moment.

The failure criterion for stem breakage is expressed as follows:

where σmax, s is the maximum stress in the stem region, and is expressed as follows:

where  means rounding off to the nearest whole number; nc is the number of elements in the crown 
region; σi denotes the stress at node i, and is expressed as follows[29]:
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where di, Ai, and Ii denote the diameter, area, and moment of inertia of the stem cross section at node i, 
respectively; Mi can be calculated using Equation (10); Ni is the axial force caused by the self-weight.

The failure criterion for branch fracture is expressed as follows:

where σmax, b denotes the maximum stress in the stem region and is expressed as follows:

QUANTIFICATION OF STOCHASTIC PARAMETERS
In this section, the stochastic parameters involved in the proposed mechanistic model are quantified. 
Specifically, the joint distributions of the geometric parameters are fitted using data from the USDA urban 
tree database[27] via copula functions. However, owing to the lack of data, the probability distributions of 
material parameters are given empirically with mean values obtained from the literature. The distribution of 
the wind gust factor is identified from the time histories of the fluctuating winds generated using the 
Davenport spectrum[30].

Because the geometric and material parameters of trees are species-dependent, to facilitate the model 
validation discussed in the next section, typical broadleaf trees and conifers were considered as the target 
species in this study. Notably, the same methodology can be applied to the analysis of other specific species 
when the corresponding information is provided.

Geometric parameters
The basic geometric parameters, that is, the diameters at breast height (DBH), crown diameter (Dc), and 
crown height (Hc) are estimated by the polynomial functions of the tree height (H).

The data used for regression were obtained from the USDA urban tree database[26]. For each species, the 
regression parameters and the distribution of random variables were fitted. The model employed to fit the 
data points is expressed as follows:

where yi is the i-th sample value of the parameter, and may refer to DBH, Dc, or Hc; xi is the tree height (H) 
of the i-th sample; f (x) denotes the regression polynomial function; θi is the i-th sample value of the random 
variable corresponding to the considered parameter.

The distributions of random variables θDBH, θDc, and θHc are considered to be independent of the tree height 
H. Figure 4 shows the samples of θDBH, θDc, and θHc against H for various typical cases. For varying values of 
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Figure 3. Comparison of additional moment and direct moment.

Figure 4. Part of data of geometric random variables θ DBH, θ Dc, and θ Hc. DBH: diameter at breast height; Dc: crown diameter; Hc: crown 
height; θi: random variable corresponding to considered parameter. (A) θDBH of broadleaf species; (B) θDc of broadleaf species; 
(C) θHc of conifers.

H, all three random variables are approximately homoscedastic.

The linear polynomial function is employed for the regression of diameter at breast height (DBH) and 
crown height (Hc); the quadratic regression function is used for the crown diameter (Dc). The 
comparisons of the regression functions are presented in Figure 5, and the parameters obtained 
by the least squares algorithm are presented in Table 2. As shown in Figure 5, compared with 
the other two geometric random variables, the differences among the crown height (Hc) regression 
results for different species are relatively small, and the corresponding variance in the samples is the 
smallest.

Before constructing the joint distribution of the random variable using copula theory, the marginal
distributions of the variables were determined. In this study, five distribution types, namely, the normal
distribution, lognormal distribution, Gamma distribution, Weibull distribution, and Burr type XII
distribution, were considered and fitted by the maximum likelihood estimation.

Figure 6 shows the fitting results for the distributions of typical broadleaf trees.

The D value in the Kolmogorov-Smirnov (K-S) test was used to determine the best-fitted distribution, as
follows[31]:
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where F (x) denotes the assumed cumulative density function (CDF) of random variable X, and Sn (x) is the 
stepwise cumulative frequency function of the sample data. Table 3 gives the best-fitted distribution of each 
species and geometric random variable, and the corresponding parameters.

The joint distributions of the geometric random variables (θDBH, θDc, and θHc) for each species are estimated 
by copula theory. To determine the dominating variable for constructing the vine copula structure, the 
Pearson, Spearman, and Kendall correlation coefficients for each random variable pair of all considered 
species were calculated as presented in Table 4. As can be seen, the correlation between θDBH and θDc is much 
stronger compared with the correlation between θHc and any of these two random variables. Based on the 
discriminant formulae[32] for independence determination, the independence hypotheses for random 
variable pairs [θDBH, θHc] and [θDc, θHc] were rejected. Therefore, θHc was still considered as dependent, and the 
vine copulas were used to construct the three-dimensional joint probability density function.

Herein, five copula function types were considered: the Ali-Mikhail-Haq (AMH) copula, Frank copula, 
Clayton copula, Gaussian copula, and t copula. According to the Akaike information criterion (AIC), the 
best-fitted copula has the minimum AIC value[33]. For each random variable pair, the best-fitted copula 
functions and their parameters are presented in Table 5. Figure 7 shows the comparison between the 
original 11,567 data points and the 1000 samples generated by the estimated vine copula function and 
marginal distributions for broadleaf trees. As can be seen, the results are in good agreement.

Material Parameters and critical bending moment
In the proposed model, the random material and strength parameters of trees include the stem density ρs, 
modulus of rupture σr, crown-to-stem weight ratio rcs, and regression coefficient of critical bending moment 
Creg. Similar to the geometric parameters, these parameters are expressed as follows:

where X is a random material parameter and may refer to ρs, σr or rcs;  denotes the mean value of the 
random parameter; θ is a random variable with a mean equal to 1, and the standard deviation is equal to the 
coefficient of variation of X.

The construction of accurate probabilistic distributions of the model parameters is always desirable. 
However, because a large data set of material parameters is not yet available, their distributions must be 
assumed based on experience. In the proposed model, the lognormal distribution is adopted for all random 
material and strength variables. The distribution parameters are determined by moment estimation; 
therefore, the mean value  and the coefficient of variation of the parameters still need to be determined.

The USDA Wood Handbook[34] provides the specific gravity (Sg) and modulus of rupture (σr) of various 
species. Notably, all material parameters in this model should take the value of green trees instead of 
overdried wood. With Sg of green trees, the stem density (ρs) can be obtained as follows:
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Table 2. Regression parameters for different species and geometric parameters (for linear function, f (x) = ax + b; for quadratic 
function, f (x) = ax2 + bx +c)

Species DBH (cm) Dc (m) Hc (m)

Broadleaf a = 3.5857 
b = -0.9613

a = -0.0144 
b = 1.0950 
c = -0.5046

a = 0.8424 
b = -1.0316

Conifer a = 2.8993 
b = 4.9477

a = -0.0105 
b = 0.7091 
c = 0.8331

a = 0.8203 
b = -0.1333

DBH: Diameter at breast height; Dc: crown diameter; Hc: crown height.

Table 3. Best-fitted distribution and parameters of geometric random variables

θDBH θDc θHc
Species

Distribution Parameters Distribution Parameters Distribution Parameters

Broadleaf Burr α = 1.0269 
c = 3.7257 
k = 1.3808

Burr α = 1.3840 
c = 4.0562 
k = 3.2724

Burr α = 1.1243 
c = 9.0512 
k = 2.1530

Conifer Burr α = 1.3891 
c = 3.1537 
k = 2.7291

Gamma a = 6.4717 
b = 0.1527

Weibull a = 1.0626 
b = 7.9837

DBH: Diameter at breast height; Dc: crown diameter; Hc: crown height; θi: random variable corresponding to considered parameter.

Table 4. Correlation coefficients for each random variable pair

Type of corr. coeff. Random variable pairs                                           Broad-leaf Conifer

[θDBH, θDc]                                                                            0.659 0.705

[θDBH, θHc]                                                                            -0.173 -0.088

Pearson

[θDc, θHc]                                                                              -0.144 -0.100

[θDBH, θDc] 0.711 0.729

[θDBH, θHc]                                                                           -0.182 -0.087

Spearman

[θDc, θHc]                                                                             -0.135 -0.152

[θDBH, θDc]                                                                            0.525 0.545

[θDBH, θHc]                                                                          -0.124 -0.060

Kendall

[θDc, θHc]                                                                            -0.091 -0.103

DBH: Diameter at breast height; Dc: crown diameter; Hc: crown height; θi: random variable corresponding to considered parameter.

Table 5. Best fitted copula function and their parameters

(uDBH, uDc) (uDBH, uHc) (wDc| DBH, wHc|DBH)
Species

Copula Parameters Copula Parameters Copula Parameters

Broadleaf t ρ = 0.7256 
ν = 8.7194

t ρ = -0.1937 
v = 7.8419

t ρ = -0.6687 
ν = 31.3205

Conifer Frank θ = 6.6617 t ρ = -0.0962 
ν = 7.2625

Frank θ = -0.0624

DBH: Diameter at breast height; Dc: crown diameter; Hc: crown height.

where MC denotes the moisture content of the green trees of the specific species considered, and 
ρw = 1000 kg/m3 is the density of water.
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Figure 5. Regression results for DBH, Dc, and Hc of different species. DBH: diameter at breast height; Dc: crown diameter; Hc: crown 
height. (A) diameter at breast height DBH; (B) crown diameter Dc; (C) crown height Hc.

Figure 6. Fitting results for assumed marginal distributions of geometric random variables of broadleaf trees. DBH: diameter at 
breast height; Dc: crown diameter; Hc: crown height; θi: random variable corresponding to considered parameter.  (A) diameter at  
breast height θDBH; (B) crown diameter θDc; (C) crown height θHc.

Figure 7. Comparison of samples generated by copula function and original data. DBH: diameter at breast height; Dc: crown diameter; 
Hc: crown height; θi: random variable corresponding to considered parameter.  (A) [θ DBH, θDc]; (B) [θ DBH, θHc]; (C) [θ Dc, θHc].

The mean values of MC, Sg, ρs, and σr are listed in Table 6. Herein, the mean and coefficients of variation for 
the above-mentioned material parameters of typical broadleaf trees (or conifers) are estimated by the data of 
all available hardwood (or softwood) species in the USDA Wood Handbook, and each species has the same 
weight in the computation.

Owing to the lack of supporting materials, the crown-to-stem weight ratio rcs is not considered as species-
dependent. The crown weight is approximately 28.0% ± 3.3% of the fresh weight of an entire tree[35]; 
therefore, rcs is approximately39% ± 6.5%. Consequently, in this study, the mean rcs value was considered as 
0.39, and the coefficient of variation was considered as 0.167.
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Table 6. Mean values of MC, Sg, ρ s, and σr of different species

Species MC (%) Sg ρs (kg/m3) σr (107 Pa)

Broadleaf 86 0.517 923.9 5.57

Conifer 105 0.401 802.2 4.34

MC: Moisture content of green trees of specific considered species; ρs: stem density; Sg: specific gravity; σr: modulus of rupture.

The regression coefficient Creg of the critical base moment for uprooting failure is also species-dependent. 
Many experimental studies have been conducted to measure the value of Creg for different species and 
various root and soil conditions[16,20,29,36-38]. In previous studies, the value of Creg varied from 67 to more than 
200. However, owing to the enormous experimental cost of measuring Creg, the data of Creg are still limited to 
an extent that makes it rather difficult to obtain a reasonable distribution of Creg for different species and the 
root and soil properties. Therefore, in this study, Creg was only considered as species-dependent. The mean 
values of Creg for general broadleaf species and conifers are identified in the following model validation 
procedure, respectively, and the standard deviation of θCreg was set to 0.2.

The conclusions regarding the random variables for the stem density, modulus of rupture, crown-to-stem 
weight ratio, and regression coefficient of the critical base moment, that is, θρs, θσr, θrcs and θCreg, respectively, 
are presented in Table 7.

Gust factor
In this study, the gust factor was calculated by the ratio of the 1-second gust to the 10-min mean wind 
speed. The fluctuating wind speed can be considered as a Gaussian stationary process. For an initial variate 
satisfying the Gaussian distribution N (μ, σ), the maximum value obtained for samples with size n satisfies 
the Gumbel distribution for large n[31]. For the gust factor Gf in Equation (5), its corresponding initial variate 
satisfies N (1, I10), where I10 denotes the coefficient of variation of the wind speed at the height of 10 m. 
Therefore, the distribution of Gf can be obtained as follows:

where FGf (y) denotes the CDF of Gf, and the following relationships hold:

As can be seen, if I10 is known, the distribution of Gf can be fully determined with sample size n. According 
to China’s specification for the design load of buildings (GB 50009-2012), for urban areas with dense 
building clusters, I10 can be taken as 0.23[39]. Then, the following empirical value of n is used in this model:
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Table 7. Random variables of material and strength properties

Random variable Distribution Mean/Standard deviation

θρs Lognormal μ = 1, σ = 0.1403 (Broadleaf)

μ = 1, σ = 0.1403 (Conifer)

θσr Lognormal μ = 1, σ = 0.2499 (Broadleaf)

μ = 1, σ = 0.2499 (Conifer)

θrcs Lognormal μ = 1, σ = 0.167

θCreg Lognormal μ = 1, σ = 0.2

ρs: Stem density; σr: modulus of rupture; rcs: crown-to-stem weight ratio; Creg: regression coefficient; θi: random variable corresponding to 
considered parameter.

For each , Eq. (23) is approximated from 10,000 time series with a 10-min period and the sampling 
frequency of 1 Hz, as determined by the corresponding Davenport Spectrum[30]. Notably, there are other 
distributions of instantaneous maximum wind speed that similarly have a double exponential form. These 
distributions also require the estimation of certain parameters when applied to the quasi-static analysis[40]. 
All of these distributions are reasonable approximations when the sample size n is large. Therefore, this 
study adopted the widely used Gumbel distribution.

WIND FRAGILITY AND MODEL VALIDATION
The probabilistic mechanical model was validated in the same manner using the same survey data as the 
Hazus model.

In the technical manual of Hazus-MH 2.1, the blowdown results for 1158 trees (628 conifer and 530 
deciduous trees) in eight residential subdivisions in eastern North Carolina caused by Hurricane Isabel in 
2003, and the estimated peak gust wind speed of each subdivision, are provided[19]. Trees are divided into 
conifers and deciduous trees by species, and into four classes by height, amounting to a total of eight classes. 
Because the sample size at each surveyed site is not sufficient to allow a reasonable estimation of the failure 
property if considered separately, the Hazus manual proposes a weighted average scheme to make use of 
these measured data[19]. For each tree class at all surveyed sites, the weighted average blowdown probability 
for trees, and the corresponding weighted wind speed, were calculated as indicated by the star symbol in 
Figure 8. The model will be validated if, for all tree classes, the estimated fragility curve passes through the 
corresponding weighted average point. Notably, only the estimated peak gust wind speed of each site is 
provided, while the proposed model is based on the mean wind speed. Therefore, the mean wind speed of 
each site can be further estimated using the following expression:

where Up denotes the provided peak wind speed; g denotes the peak factor, and is considered as 3.0 in 
accordance with the Hazus manual[19]; Iu denotes the turbulence intensity and was considered to be the same 
as I10 for an urban area, that is, equal to 0.23.

By employing the proposed model, the failure probability Pf at each  was calculated by Monte Carlo 
simulation with 10,000 samples. The proposed mechanistic model has fairly high efficiency, and the 
computation of one fragility curve takes no more than one second. Therefore, the proposed model can be 
easily extended to city-scale when various tree species, tree heights, and other dominant tree properties 
must be considered separately.
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Figure 8. Model validation results. H: tree height; Creg: regression coefficient; Pf: failure probability; U10: mean wind speed in 10 min at

height of 10 m. (A) Coniferous tree, H = 20 feet (6.1 m),  = 130; (B) Deciduous tree, H = 20 feet (6.1 m),  = 160; (C) Coniferous

tree, H = 35 feet (10.7 m),  = 120; (D) Deciduous tree, H = 35 feet (10.7 m),  = 180; (E) Coniferous tree, H = 50 feet (15.2 m),

 = 145; (F) Deciduous tree, H = 50 feet (15.2 m),  = 180; (G) Coniferous tree, H = 70 feet (21.3 m),  = 165; (H) Deciduous

tree , H = 70 feet (21.3 m),  = 180.
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The survey data and estimation results for eight tree classes are shown in Figure 8 Because only the height 
ranges of four tree height classes are available, and there is no information on the specific height of each 
sample tree, a representative height was selected for each height class. The tree height information of the 
validation data is initially given in feet. In Figure 8, the representative heights measured in feet and meters 
are given simultaneously. Because the survey did not provide data for the local damage of trees, this failure 
mode was not considered in the model validation. Recall that the mean values of Creg (denoted by ) still 

need to be determined. The  value used in the estimation of each tree class is noted in the corresponding 

subplot in Figure 8 All estimated  values lie within a reasonable range, which indicates the rationality of 
the proposed model.

Another phenomenon observed in the estimation is that the dominant failure mode is uprooting at the 
weighted wind speed. Actually, there is certain regularity between the dominant failure mode estimated by 
the proposed model and the wind speed. When the wind speed is low, the dominant failure mode is stem 
fracture, while the failure probability in this stage is typically too low to be heeded. When the wind speed 
increases, the trees are more likely to fail at the root.

As a further exploration, the significance of the correlation of random model parameters, that is, the 
necessity of applying the vine copula functions, was investigated. As shown in Figure 9, there is a significant 
difference between the fragility curves obtained by the proposed vine copula function and those obtained 
from independent geometric parameters with the same marginal distributions. Undoubtedly, this 
demonstrates the necessity of considering the correlation of random parameters and the advantage of 
applying the vine copula function in the proposed model. Moreover, it shows that the probability 
distributions of model parameters are very important to fragility analysis; therefore, future studies should 
pay more attention to this issue.

CONCLUDING REMARKS
This paper proposes a wind risk assessment model for trees in urban streets. Specifically, based on a 
mechanistic tree model with elaborated considerations of the model parameter uncertainties, a probabilistic 
model for calculating the fragility of urban street trees was established. By using a sufficient amount of 
available data, the joint probability distributions of the fundamental geometric parameters of trees were 
obtained based on the vine copula theory. Moreover, the wind fragility curves of typical broadleaf trees and 
conifers were obtained. The comparison of the results obtained by the proposed model to survey data 
confirmed the validity of the proposed model.

The significance of accurate probability modeling in risk assessment was emphasized. In addition to the 
marginal probability distribution of each parameter, the correlation and dependence of parameters are also 
important. Copula functions provide a feasible approach toward accurately constructing the joint 
distributions of random parameters using parametric and explicit expressions.

The proposed mechanistic model is fairly efficient and is expected to be applied to wind risk assessment at 
the city scale. However, owing to the lack of data, there are still many deficiencies in the parameter 
quantification and model validation of the current model. Issues to be further improved include the 
following: (1) accurate modeling of the distribution of material and strength parameters with the support of 
more experimental data; (2) considering the influence of root characteristics and root-soil interaction; and 
(3) comprehensive validation of proposed model with the support of additional survey data and refined 
numerical analysis.
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Figure 9. Comparison of fragility curves of typical deciduous tree. Pf: failure probability; U10: mean wind speed in 10 min at height of
10 m.

DECLARATIONS
Authors’ contributions
Performed data gathering and analysis work: Luo Y
Designed the research work and provided guidance: Ai X

Availability of data and materials 
Not applicable.

Financial support and sponsorship
None.

Conflicts of interest
Both authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
© The Author(s) 2022.

REFERENCES
Kabir E, Guikema S, Kane B. Statistical modeling of tree failures during storms. Reliab Eng Syst Saf 2018;177:68-79.  DOI1.     
Hart E, Sim K, Kamimura K, Meredieu C, Guyon D, Gardiner B. Use of machine learning techniques to model wind damage to 
forests. Agric For Meteorol 2019;265:16-29.  DOI

2.     

Kamimura K, Gardiner B, Dupont S, Guyon D, Meredieu C. Mechanistic and statistical approaches to predicting wind damage to 
individual maritime pine (Pinus pinaster) trees in forests. Can J For Res 2015;46:88-100.  DOI

3.     

Gardiner B. Wind damage to forests and trees: a review with an emphasis on planted and managed forests. J For Res 2021;26:248-66.  4.     

https://dx.doi.org/10.1016/j.ress.2018.04.026
https://dx.doi.org/10.1016/j.agrformet.2018.10.022
https://dx.doi.org/10.1139/cjfr-2015-0237


Page 17 of Luo et al. Dis Prev Res 2022;1:7 https://dx.doi.org/10.20517/dpr.2022.05 18

DOI
James KR, Haritos N, Ades PK. Mechanical stability of trees under dynamic loads. Am J Bot 2006;93:1522-30.  DOI  PubMed5.     
Morgan J, Cannell MGR. Structural analysis of tree trunks and branches: tapered cantilever beams subject to large deflections under 
complex loading. Tree Physiol 1987;3:365-74.  DOI  PubMed

6.     

Baker CJ. The development of a theoretical model for the windthrow of plants. J Theor Biol 1995;175:355-72.  DOI7.     
Sellier D, Fourcaud T, Lac P. A finite element model for investigating effects of aerial architecture on tree oscillations. Tree Physiol 
2006;26:799-806.  DOI  PubMed

8.     

Moore JR, Maguire DA. Simulating the dynamic behavior of Douglas-fir trees under applied loads by the finite element method. Tree 
Physiol 2008;28:75-83.  DOI  PubMed

9.     

Ciftci C, Arwade SR, Kane B, Brena SF. Analysis of the probability of failure for open-grown trees during wind storms. Probabilist 
Eng Mech 2014;37:41-50.  DOI

10.     

Ciftci C, Brena SF, Kane B, Arwade SR. The effect of crown architecture on dynamic amplification factor of an open-grown sugar 
maple (Acer saccharum L.). Trees Struct Funct 2013;27:1175-89.  DOI

11.     

Ai X, Cheng Y, Peng Y. Nonlinear dynamics and failure wind velocity analysis of urban trees. Wind Struct An Int J 2016;22:89-106.  
DOI

12.     

Peng Y, Wang Z, Ai X. Wind-induced fragility assessment of urban trees with structural uncertainties. Wind Struct An Int J 
2018;26:45-56.  DOI

13.     

Moravčík L, Vincúr R, Rózová Z. Analysis of the static behavior of a single tree on a finite element model. Plants 2021;10:1284.  DOI  
PubMed  PMC

14.     

Peltola H, Kellomäki S, Väisänen H, Ikonen VP. A mechanistic model for assessing the risk of wind and snow damage to single trees 
and stands of Scots pine, Norway spruce, and birch. Can J For Res 1999;29:647-61.  DOI

15.     

Gardiner B, Peltola H, Kellomäki S. Comparison of two models for predicting the critical wind speeds required to damage coniferous 
trees. Ecol Modell 2000;129:1-23.  DOI

16.     

Ancelin P, Courbaud B, Fourcaud T. Development of an individual tree-based mechanical model to predict wind damage within forest 
stands. For Ecol Manag 2004;203:101-21.  DOI

17.     

Gardiner B, Byrne K, Hale S, et al. A review of mechanistic modelling of wind damage risk to forests. Forestry 2008;81:447-63.  DOI18.     
Federal Emergency Management Agency (FEMA). Multi-hazard Loss Estimation Methodology Hurricane Model Hazus®-MH 2.1 
Technical Manual. 2012. Available from: https://www.fema.gov/sites/default/files/2020-09/fema_hazus_hurricane-model_technical-
manual_2.1.pdf [Last accessed on 30 Nov 2022].

19.     

Achim A, Ruel JC, Gardiner BA, Laflamme G, Meunier S. Modelling the vulnerability of balsam fir forests to wind damage. For Ecol 
Manag 2005;204:37-52.  DOI

20.     

Jim CY, Liu HHT. Storm damage on urban trees in Guangzhou, China. Landsc Urban Plan 1997;38:45-59.  DOI21.     
Haaften MA, Meuwissen MPM, Gardebroek C, Kopinga J. Trends in financial damage related to urban tree failure in the Netherlands. 
Urban For Urban Green 2016;15:15-21.  DOI

22.     

Gardiner B, Berry P, Moulia B. Review: wind impacts on plant growth, mechanics and damage. Plant Sci 2016;245:94-118.  DOI  
PubMed

23.     

Gu D, Zhao P, Chen W, Huang Y, Lu X. Near real-time prediction of wind-induced tree damage at a city scale: simulation framework 
and case study for Tsinghua University campus. Int J Disaster Risk Reduct 2021:53.  DOI

24.     

Max T, Burkhart H. Segmented polynomial regression applied to taper equations. For Sci 1976;22:283-9. Available from: 
https://academic.oup.com/forestscience/article-abstract/22/3/283/4675818 [last accessed on 17 Nov 2022]

25.     

Rautiainen M, Mõttus M, Stenberg P, Ervasti S. Crown envelope shape measurements and models. Silva Fenn 2008;42:19-33.  DOI26.     
McPherson EG, van Doorn N, Peper PJ. Urban tree database and allometric equations. USDA Forest Service 2016.  DOI27.     
Simiu E, Yeo DH. Wind effects on structures: modern structural design for wind. 4th ed. Hoboken: John Wiley & Sons. 2019.28.     
Hou G, Chen S. Probabilistic modeling of disrupted infrastructures due to fallen trees subjected to extreme winds in urban community. 
Nat Hazards 2020;102:1323-50.  DOI

29.     

Davenport AG. The spectrum of horizontal gustiness near the ground in high winds. Quart J Roy Meteorol Soc 1961;87:194-211.  DOI30.     
Ang AH-S, Tang WH. Probability concepts in engineering: emphasis on applications to civil and environmental engineering. 2nd ed. 
Hoboken: John Wiley & Sons. 2007.

31.     

Genest C, Favre AC. Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 
2007;12:347-68.  DOI

32.     

Tao J, Chen J, Ren X. Copula-based quantification of probabilistic dependence configurations of material parameters in damage 
constitutive modeling of concrete. J Struct Eng 2020;146:04020194.  DOI

33.     

Ross RJ. Wood handbook: wood as an engineering material. 2010.  DOI34.     
Sader SA. Forest biomass, canopy structure, and species composition relationships with multipolarization L-band synthetic aperture 
radar data.  Photogramm Eng Remote Sensing  1987;53:193-202. Available from: http:/ /www.asprs.org/wp-
content/uploads/pers/1987journal/feb/1987_feb_193-202.pdf [last accessed on 17 Nov 2022]

35.     

Nicoll BC, Gardiner BA, Rayner B, Peace AJ. Anchorage of coniferous trees in relation to species, soil type, and rooting depth. Can J 
For Res 2006;36:1871-83.  DOI

36.     

Nicoll BC, Gardiner BA, Peace AJ. Improvements in anchorage provided by the acclimation of forest trees to wind stress. Forestry 37.     

https://dx.doi.org/10.1080/13416979.2021.1940665
https://dx.doi.org/10.3732/ajb.93.10.1522
http://www.ncbi.nlm.nih.gov/pubmed/21642099
https://dx.doi.org/10.1093/treephys/3.4.365
http://www.ncbi.nlm.nih.gov/pubmed/14975920
https://dx.doi.org/10.1006/jtbi.1995.0147
https://dx.doi.org/10.1093/treephys/26.6.799
http://www.ncbi.nlm.nih.gov/pubmed/16510396
https://dx.doi.org/10.1093/treephys/28.1.75
http://www.ncbi.nlm.nih.gov/pubmed/17938116
https://dx.doi.org/10.1016/j.probengmech.2014.04.002
https://dx.doi.org/10.1007/s00468-013-0867-z
https://dx.doi.org/10.12989/was.2016.22.1.089
https://dx.doi.org/10.12989/was.2018.26.1.045
https://dx.doi.org/10.3390/plants10071284
http://www.ncbi.nlm.nih.gov/pubmed/34202797
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309158
https://dx.doi.org/10.1139/x99-029
https://dx.doi.org/10.1016/s0304-3800(00)00220-9
https://dx.doi.org/10.1016/j.foreco.2004.07.067
https://dx.doi.org/10.1093/forestry/cpn022
https://www.fema.gov/sites/default/files/2020-09/fema_hazus_hurricane-model_technical-manual_2.1.pdf
https://www.fema.gov/sites/default/files/2020-09/fema_hazus_hurricane-model_technical-manual_2.1.pdf
https://dx.doi.org/10.1016/j.foreco.2004.07.072
https://dx.doi.org/10.1016/s0169-2046(97)00018-2
https://dx.doi.org/10.1016/j.ufug.2015.11.002
https://dx.doi.org/10.1016/j.plantsci.2016.01.006
http://www.ncbi.nlm.nih.gov/pubmed/26940495
https://dx.doi.org/10.1016/j.ijdrr.2020.102003
https://academic.oup.com/forestscience/article-abstract/22/3/283/4675818
https://dx.doi.org/10.14214/sf.261
https://dx.doi.org/10.2737/PSW-GTR-253
https://dx.doi.org/10.1007/s11069-020-03969-y
https://dx.doi.org/10.1002/qj.49708837618
https://dx.doi.org/10.1061/(asce)1084-0699(2007)12:4(347)
https://dx.doi.org/10.1061/(asce)st.1943-541x.0002729
https://dx.doi.org/10.2737/FPL-GTR-190
http://www.asprs.org/wp-content/uploads/pers/1987journal/feb/1987_feb_193-202.pdf
http://www.asprs.org/wp-content/uploads/pers/1987journal/feb/1987_feb_193-202.pdf
https://dx.doi.org/10.1139/x06-072


Page 18 of Luo et al. Dis Prev Res 2022;1:7 https://dx.doi.org/10.20517/dpr.2022.0518

2008;81:389-98.  DOI
Locatelli T, Tarantola S, Gardiner B, Patenaude G. Variance-based sensitivity analysis of a wind risk model - Model behaviour and 
lessons for forest modelling. Environ Model Softw 2017;87:84-109.  DOI

38.     

MHUDPRC (Ministry of Housing and Urban-Rural Development of the People’s Republic of China). Load code for the design of
building  structures. GB 50009-2012.  Beijing: MHUDPRC; 2012. ( in Chinese ) . Available from: https://www.mohurd.gov.cn/gongkai/
fdzdgknr/tzgg/201207/20120723_210754.html [last accessed on 17 Nov 2022].

39.     

Davenport AG. Note on the distribution of the largest value of a random function with application to gust loading. Proc Inst Civ Eng 
1964;28:187-96.  DOI

40.     

https://dx.doi.org/10.1093/forestry/cpn021
https://dx.doi.org/10.1016/j.envsoft.2016.10.010
https://www.mohurd.gov.cn/gongkai/fdzdgknr/tzgg/201207/20120723_210754.html
https://dx.doi.org/10.1680/iicep.1964.10112

