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Abstract
Owing to their distinct structural properties, low-dimensional zeolites are rising stars in the field of catalysis. 
However, shortening their size while maintaining the acidity continues to be challenging. In addition, simplified 
synthesis methods to efficiently prepare low-dimensional zeolites with more skeleton types and extended frame 
components are also of great interest. Herein, a facile strategy is developed for fabricating ultrathin nanoneedle 
(ca. 6-8 nm in diameter of each needle) ZSM-48 mesocrystals with a low Si/Al ratio (ca. 27, close to the lowest 
synthesized so far). This is achieved by adding potassium ions in a ZSM-12 synthetic system. The promoting effect 
of appropriate K+ ions was confirmed by adjusting the gel composition and tracking the crystallization process. 
Moreover, a superior conversion, reusability and regeneration performance for xylose to furfural is achieved with 
more accessible acidity and a more suitable Lewis/Brønsted acid ratio, which further expands the development of 
ZSM-48 zeolite.
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INTRODUCTION
New emerging low-dimensional zeolites, nanoscale or even < 10 nm in at least one dimension, have been 
considered as important catalysts due to their unique structure features[1-6]. The suitable design of low-
dimensional zeolites can expand the effective accessibility of active sites while maintaining their intrinsic 
activity. This facilitates meeting the needs of catalytic activity, selectivity and lifetime, especially for 
macromolecular reactions. Nanosheets (two-dimensional)[7-11], nanorods (one-dimensional)[12-15], 
nanocrystals[16,17], and even subcrystals[18] (zero-dimensional) are all excellent structures that have been 
successfully designed. However, it is still a challenge to shorten the scale of one dimension from tens of nm 
to less than 10 nm under the premise of maintaining its acid properties. Besides, although some ultrathin 
zeolites can be directly prepared with the assistance of some structure directing agents (SDAs), such as 
MFI[10,19-21], MWW[7,8,22], and FER[23], and so on. So far, low-dimensional zeolites with other frameworks are 
still hard to construct because of the complex preparation procedure of zeolites and high cost of SDAs. 
Preparing low-dimensional zeolites with more frameworks using simplified synthesis methods has attracted 
considerable attention.

ZSM-48 zeolite is a kind of high-silicon zeolite developed by Mobil Corporation in the early 1980s. It has a 
one-dimensional linear channel composed of a 10-membered ring (10MR) with a diameter of 5.3 × 5.6 Å[24]. 
This topological feature of ZSM-48 allows it to be used in various important catalytic reactions, such as 
pyrolysis of alkanes[25,26], hydroisomerization of long-chain alkanes[27,28], hydrocarbon production with 
methanol[29], the pyrolysis of low-density polyethylene (LDPE)[30] and dehydration and isomerization of 
carbohydrates[31,32]. However, at present, the conventional synthesis systems of ZSM-48 are mainly divided 
into hexamethylenediamine (HDA) and hexamethyldiammonium (HM2+). These two systems are not only 
prone to the existence of MFI[33] and EUO[34] impurities but also accompanied by the problem of a relatively 
high Si/Al ratio of final products[35]. The high Si/Al ratio of ZSM-48 (normally > 50) results in an inadequate 
acid density, thus limiting the reaction effect[26].

In order to solve the issues mentioned above, many approaches have been developed. Introducing crystal 
seed can reduce the Si/Al ratio of ZSM-48 to a certain extent[36-38]. However, zeolites with other topological 
structures sometimes need to be introduced as heterogeneous seeds, which increases the complexity of the 
synthesis process. Changing the morphology of the zeolite product to increase the external specific surface 
area, which can enhance the accessibility of acidic sites, is also a method to improve the catalytic 
performance. Constructing hollow[39], nest-like[40] or lamellar[41] structures all showed excellent results, but it 
requires a cumbersome post-treatment process[30,39] or elaborate and expensive SDA designs[35,42]. Therefore, 
it remains an urgent problem for ZSM-48 zeolite synthesis to seek a simple means that can both adjust the 
morphology of ZSM-48 to improve the accessibility of acidic sites and reduce the Si/Al ratio to increase the 
amounts of active sites.

On the other hand, adding ionic zeolite growth modifiers (ZGM), mainly alkali metal ions (such as Na+, K+, 
etc.), into the zeolite synthesis system can change the crystallization behavior of zeolite[23,43,44], making it a 
cheap and facile method to adjust the morphology of zeolite. However, this strategy of optimizing 
morphology has not been used in the ZSM-48 synthesis.

In this context, ZSM-48 mesocrystal with ultrathin nanoneedle morphology was prepared by adding 
potassium ions into the existing ZSM-12 growth system without redesigning a new SDA. Among the 
multistage porous ZSM-48 synthesized with template agents so far[35,40,41,45], the Si/Al ratio of this nanoneedle 
product is close to the lowest in the existing literature[46]. It also displays a highly catalytic performance and a 
relatively long lifetime for conversion of xylose to furfural reaction.
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EXPERIMENTAL
Materials
To prepare organic SDA, 1,6-dibromohexane (97%, Aladdin), methanol [analytical reagent (AR), 
Sinopharm Chemical Reagent Co., Ltd] and 1-methylpyrrolidine (98%, Aladdin) were employed. KCl (AR, 
Sinopharm Chemical Reagent Co., Ltd), NaOH (AR, Sinopharm Chemical Reagent Co., Ltd), 
Al2(SO4)3·18H2O (AR, Sinopharm Chemical Reagent Co., Ltd) and silica sol solution (40% in water, LUDOX 
HS-40) were used for preparing zeolite samples. NH4NO3 (AR, Sinopharm Chemical Reagent Co., Ltd) was 
used to treat zeolite samples. Xylose (AR, Aladdin) and the commercial ZSM-48 catalyst (Catalyst Plant of 
Nankai University) were employed in catalytic performance evaluations.

Synthesis of organic structure directing agent
The SDA was prepared as follows: 0.25 mol of 1,6-dibromohexane was added into a three-necked flask with 
150 mL of methanol, and then 0.51 mol of 1-methylpyrrolidine was dropwise added into the above solution 
under stirring. Subsequently, the obtained mixture was heated to 60 °C under reflux conditions. After 72 h, 
the SDA power was obtained by evaporation of the organic solvent followed by recrystallization with hot 
methanol. Its purity was confirmed through a 13C nuclear magnetic resonance (NMR) experiment.

Preparation and treatment of ultrathin nanoneedle ZSM-48
Nanoneedle ZSM-48 and other zeolite samples mentioned were prepared as the following molar ratio: 30 
SiO2 : 0.25 Al2O3 : 7.5 NaOH : 1.5 SDA : 1,200 H2O : 0-9 KCl (or other modifiers). In detail, 1.30 g SDA was 
added to 39.49 g deionized water and stirred until the SDA completely dissolved. Keep stirring conditions, 
then add 0.63 g NaOH, 0.3 g Al2(SO4)3·18H2O and the specified amount of modifier successively. After all 
the solid completely dissolved, 9.46 g silica sol was dripped into the mixture. After aging for 3 h under 
stirring, the obtained sol solution was transferred into a 25 mL Teflon-lined autoclave and sealed. Then, it 
was heated to 160 oC for 36-48 h under static conditions. Finally, the product was recovered by 
centrifugation, washed with deionized water and dried overnight at 80 oC. In order to remove the SDA, the 
obtained sample is calcined at 550 oC in air for 6 h. The H-type zeolite was obtained by ion exchange with 
1 M NH4NO3 at 80 oC three times, followed by calcination at 550 oC for 6 h.

Catalytic performance evaluations
The conversion of xylose to furfural reactions was conducted in a 25 mL autoclave at 170 oC under rotation. 
For a typical run, 0.08 g xylose was added into 4.0 g deionized water. After stirring for 5 min, 0.48 g zeolite 
catalyst was added into the above mixture. Subsequently, the mixture was sealed and reacted at 170 oC for 
6 h. After cooling to room temperature, the supernatant was separated by centrifugation, and the product 
was analyzed by high-performance liquid chromatography (HPLC) with a Shodex SC1011 capillary column 
and a refractive index (RI) detector.

In the reuse test of the catalyst, the reaction mixture is centrifuged for 5 min at 1,000 rpm to collect the 
underlying solid catalyst. After drying at 80 oC, the catalyst was added to the xylose solution again for the 
next cycle reaction. In the catalyst regeneration test, a Muffle furnace was used to calcinate the waste catalyst 
in an air atmosphere at 550 oC for 6 h. After cooling to room temperature, the calcined catalyst is used again 
for the reaction.

Characterization methods
The framework of the obtained product was confirmed by an X-ray diffraction (XRD) experiment on a 
Bruker D2 instrument with Cu Kα radiation.
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Scanning (SEM) and transmission electron microscope (TEM) experiments were performed on a Hitachi 
S-4800 equipment and FEI Tecnai G2 F20 S-Twin instrument, respectively.

The 13C, 28Si and 27Al magic angle spinning NMR spectra (MAS NMR) of the zeolite samples before 
calcination were collected on a Bruker AV500 spectrometer.

The framework vibration of nanoneedle zeolite is obtained by Fourier transform infrared (FT-IR) 
spectroscopy on a PerkinElmer spectrometer.

After the sample was activated at 300 oC under vacuum for 7 h, a Nitrogen adsorption experiment was 
conducted on an autosorb iQ2 at 77 K.

The thermogravimetric analysis (TGA) curve was collected on a SDT Q600 thermal analysis instrument. 
The analysis was carried out in an air atmosphere with a flow rate of 100 mL/min; the temperature was 
raised to 900 oC at a heating rate of 10 oC/min.

FT-IR spectra of adsorbed pyridine (Py-IR) were attained using a Bruker Invenio S. The sample needs to be 
pre-dehydrated at 450 oC in vacuum for 2 h, exposed to pyridine vapor, then pumped to remove the 
physical adsorption of pyridine, and measured at 150 and 450 oC.

NH3-temperature programmed desorption (TPD) experiment was conducted on a Micromeritics 
AutoChem II 2920 instrument. In a typical run, a 100 mg sample was weighed and placed in the reaction 
tube. The sample was then heated at 10 oC/min from room temperature to 550 oC for drying pre-treatment. 
He flow (50 mL/min) was purged for 1 h, cooled to 100 oC, and 10% NH3/He mixture (50 mL/min) was 
injected for 1 h to saturation. Switching He flow (50 mL/min) to purge for 1 h to remove the weak physical 
adsorption of NH3 on the surface, followed by desorption at a warming rate of 10 oC/min at 650 oC in He 
atmosphere. Thermal conductivity detector (TCD) was used to detect the removed gas.

RESULTS AND DISCUSSION
Morphology and characteristics of the nanoneedle product
Firstly, all the samples obtained after adjusting the synthesis conditions are shown in Table 1. KCl/0.2/48 is 
considered typical among all the samples. SEM images exhibit that the KCl/0.2/48 products are aggregated 
particles with a size of less than 1 μm, and almost no impurity or amorphous substance can be observed 
[Supplementary Figure 1A and B].

Moreover, the rough surface of the aggregated particles is observed from a high-resolution SEM (HRSEM) 
image [Figure 1A], and the particles are composed of several very thin nanoneedles. A TEM is further 
employed to examine the morphology and inner structure of KCl/0.2/48. It is clear that the tail ends of the 
particles are nanoneedles [Figure 1B and Supplementary Figure 1C], especially the width of each 
nanoneedle is shortened to only ca. 6-8 nm (Figure 1B inset). Furthermore, the obvious lattice fringes can be 
identified from a high-resolution TEM (HRTEM) image [Figure 1C], implying the crystalline features of the 
as-synthesized zeolite products. In addition, after slicing KCl/0.2/48, the TEM images show that the inner of 
the particles also consists of some thin nanoneedles. The ordered lattice fringes and evident mesopores can 
be discerned from its HRTEM image [Supplementary Figure 2]. The framework of the obtained product is 
confirmed by XRD, which shows typical diffraction peaks of ZSM-48 zeolite. However, the peaks were 
relatively weakened and widened [Figure 1D] than normal commercial ZSM-48 [Supplementary Figure 3A]. 
It may be because the ultrathin morphology of KCl/0.2/48 is much thinner than commercial ZSM-48 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/cs3073-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/cs3073-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/cs3073-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/cs3073-SupplementaryMaterials.pdf
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Table 1. All samples obtained by adjusting synthesis conditions

Modifier Modifier/Si Crystallization time (h) Sample name Structure

KCl 0 48 KCl/0/48 ZSM-12

KCl 0.1 48 KCl/0.1/48 ZSM-12

KCl 0.2 48 KCl/0.2/48 ZSM-48

KCl 0.3 48 KCl/0.3/48 ZSM-48 + quartz

NaCl 0.2 48 NaCl/0.2/48 ZSM-12

LiCl 0.2 48 LiCl/0.2/48 ZSM-12 + impurity

KNO3 0.2 48 KNO3/0.2/48 ZSM-48

KCl 0.2 6 KCl/0.2/6 Amorphous

KCl 0.2 18 KCl/0.2/18 Amorphous

KCl 0.2 36 KCl/0.2/36 ZSM-48 + amorphous

KCl 0.2 40 KCl/0.2/40 ZSM-48 + amorphous

KCl 0.2 44 KCl/0.2/44 ZSM-48 + amorphous

KCl 0.2 46 KCl/0.2/46 ZSM-48 + amorphous

/ / / Commercial ZSM-48 ZSM-48

Figure 1. (A) SEM image; (B and C) TEM image, inset: the needle diameter distribution; (D) XRD pattern image; (E) N2 adsorption 
isotherm of KCl/0.2/48 sample; and (F) pore size distribution in mesoporous segment. SEM: Scanning electron microscope; TEM: 
transmission electron microscope; XRD: X-ray diffraction.

[Supplementary Figure 3B]. FT-IR spectra analysis is further conducted to investigate the framework 
structure of KCl/0.2/48. Four absorption bands can be unambiguously observed at 1,214, 1,060, 785 and 
545 cm-1 in the FT-IR spectrum [Supplementary Figure 4]. In detail, the absorption at 1,214 cm-1 is related to 
the external asymmetric stretching vibration[47,48], and the strongest absorption band at 1,060 cm-1 is ascribed 
to the internal asymmetric stretching vibration. The absorption at 785 cm-1 can be attributed to the external 
symmetric stretching vibration, and the double five-member rings result in the absorption at 545 cm-1. 
These results demonstrate the complete ZSM-48 zeolite framework of KCl/0.2/48.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/cs3073-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/cs3073-SupplementaryMaterials.pdf


Page 6 of Yan et al. Chem Synth 2024;4:38 https://dx.doi.org/10.20517/cs.2023.7314

Figure 2. MAS NMR spectrum of (A) Si, (B) Al and (C) C element of KCl/0.2/48, the red bar chart is the standard 13C NMR spectrum 
of the SDA; (D) The thermogravimetric analysis of KCl/0.2/48. MAS: Magic angle spinning; NMR: nuclear magnetic resonance; SDA: 
structure directing agent.

The textural property of KCl/0.2/48 is characterized by N2 adsorption-desorption experiment. An obvious 
hysteresis loop at the middle relative pressure can be observed from the isotherm with the steep climb at the 
high relative pressure [Figure 1E], which implies the existence of mesopores, even macropores, consistent 
with the observation of SEM/TEM images. Moreover, the external specific surface areas are about 130 m2/g, 
which can be ascribed to the very thin width of the nanoneedle. As shown in the pore size distribution of 
KCl/0.2/48 [Figure 1F], there are mesoporous pores between nanoneedles at about 4 nm and intercrystalline 
mesoporous accumulation above 10 nm. Ar adsorption-desorption experiment was also used to test the 
microporosity of the sample. It showed similar adsorption isotherm and mesoporous distribution, and the 
micropore distribution is close to that of ZSM-48 [Supplementary Figure 5].

MAS NMR is used to study the chemical environment of the components in KCl/0.2/48. Two resonances at 
chemical shifts of ca. -100 and -113 ppm can be detected in the 29Si MAS NMR spectrum, corresponding to 
the Q3 [Si(OSi)3OH or Si(OSi)3(OAl)] and Q4 [Si(OSi)4], respectively [Figure 2A]. Only a signal at a chemical 
shift of ca. 55 ppm in the 27Al MAS NMR spectrum suggests that all Al atoms are located in the zeolite 
framework as the tetra-coordinated form [Figure 2B]. In addition, the 13C MAS NMR spectrum shows that 
the SDA is intact in the final product without decomposition during the hydrothermal treatment 
[Figure 2C]. And ca. 10.4 wt% weight loss could be detected from 200 to 750 oC in the TGA result, which 
corresponds to the decomposition of the template during calcination [Figure 2D]. According to the 
inductively coupled plasma (ICP) emission spectrometer analysis, the Si/Al ratio for KCl/0.2/48 is only ca. 
27, which is comparable to the lowest value (ca. 23) reported among direct synthesis. Accordingly, it can be 
deduced that there is around 1 SDA molecule in each ZSM-48 zeolite unit cell.

Crystallization mechanism involving potassium ion
The decisive role of potassium ions
Generally, such a zeolite with extremely thin nanoneedles is difficult to synthesize, which means that 
complex bifunctional SDAs should be utilized for the preparation. However, it is hard to employ these 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/cs3073-SupplementaryMaterials.pdf
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Figure 3. (A and B) XRD pattern of samples with different KCl contents; (C) the K/Si in the solid zeolite products calculated by ICP and 
compared with that in the initial synthetic gel, inset: diagram of correlation between product and KCl quantities. XRD: X-ray diffraction; 
ICP: inductively coupled plasma.

SDAs widely due to the complicated procedure for template synthesis and related high cost. Herein, we use 
a simple diquaternary ammonium salt as SDA combined with K+ to facilely obtain the nanoneedle ZSM-48 
mesocrystal. The high-angle annular dark field scanning transmission electron microscopy (HADDAF-
STEM) images indicate that Si, Al, O and K elements are uniformly distributed in KCl/0.2/48 particles 
[Supplementary Figure 6]. It should be noted that KCl may play an important role in preparing nanoneedle 
KCl/0.2/48. If no KCl is added during the synthesis, sample KCl/0/48, an aggregated ZSM-12 zeolite with a 
constituting nanoparticle size of more than 30 nm, is obtained [Supplementary Figure 7A and B]. It exhibits 
higher peak intensities [Supplementary Figure 7C] than nanoneedle ZSM-48 zeolite in the XRD pattern due 
to the larger nanoparticle size. The larger nanoparticle size also corresponds to the higher adsorbed volumes 
of micropores in its N2 adsorption-desorption isotherm [Supplementary Figure 7D]. This result agrees with 
our previous work[49].

Moreover, we adjusted the ratio of KCl and Si to obtain sample KCl/0-0.3/48 [Figure 3A]. If KCl/SiO2 is 
tailored to 0.1, the intensities of peaks in XRD of KCl/0.1/48 are slightly weaker, but only the ZSM-12 zeolite 
framework can be obtained. However, the SEM images show both the nanoneedle ZSM-48 zeolite and 
ZSM-12 products in KCl/0.1/48, which were aggregated by relatively larger nanoparticles, may be generated 
[Supplementary Figure 8] in this situation. When KCl/SiO2 = 0.2, the KCl/0.2/48 product of pure phase 
nanoneedle ZSM-48 can be obtained. This can be judged from the change in the relative distance between 
the two XRD characteristic peaks [Figure 3B]. If the amount of KCl is increased (KCl/SiO2 = 0.3), some 
impurities of quartz gradually appear in KCl/0.3/48 product.

We also calculate the K/Si in the solid zeolite products by ICP and compare it with that in the initial 
synthetic gel. Dividing the K/Si of the final zeolite products by the K/Si of the initial synthetic gel, it is 
surprising to find that the nanoneedle sample (KCl/0.2/48) reaches the lowest ratio among all samples 
[Figure 3C and Table 2]. It is also found that after adding KCl, no matter whether the topological structure 
of the product is ZSM-12 (MTW) or ZSM-48 (*MRE), the Si/Al ratio is reduced. However, after adding 
potassium, the Si/Al reduction ratio for ZSM-12 is slightly greater than that of ZSM-48, which may be 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/cs3073-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/cs3073-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/cs3073-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/cs3073-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/cs3073-SupplementaryMaterials.pdf
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Table 2. The Si/Al ratio and K content of different samples

K/Si for synthesis Si/Ala Final zeolite/synthesis K/Sia

0 27.47 / /

0.1 23.99 0.055 0.005

0.2 27.01 0.030 0.006

0.3 21.67 0.067 0.020

aCalculated by ICP. ICP: Inductively coupled plasma.

Figure 4. The SEM images of products synthesized by adding (A) NaCl, (B) LiCl and (C) KNO3, inset: XRD pattern of products; (D) N2 
adsorption isotherm; and (E and F) TEM images of KNO3/0.2/48. SEM: Scanning electron microscope; XRD: X-ray diffraction; TEM: 
transmission electron microscope.

related to the difficulty of synthesizing low-silicon ZSM-48 zeolite.

To further demonstrate the important role of potassium ions, the KCl is replaced by NaCl or LiCl. Only 
ZSM-12 zeolite with aggregated nanoparticles is collected [Figure 4A and B] in NaCl/0.2/48 and LiCl/0.2/48. 
These results imply that K+ ions are critical for fabricating nanoneedle ZSM-48 zeolite. To further exclude 
the effects of anions, the KCl is replaced by KNO3 in the synthesis system. The XRD pattern of KNO3/0.2/48 
shows that ZSM-48 zeolite is obtained with relatively lower crystallinity, and SEM images indicate that the 
as-prepared sample displays the nanoneedle assembled morphology [Figure 4C]. The texture information is 
also similar to KCl/0.2/48 [Figure 4D]. As evidently discerned in its TEM images, the width of each 
nanoneedle is less than 8 nm [Figure 4E and F].
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Figure 5. (A) XRD patterns; (B) FT-IR spectrums; (C) TEM images; and (D) N2 adsorption isotherms of nanoneedle ZSM-48 zeolite at 
different crystallization times. XRD: X-ray diffraction; FT-IR: Fourier transform infrared; TEM: transmission electron microscope.

Time-resolved investigation on ZSM-48 crystallization
It has been proven that K+ promotes the formation of nanoneedle ZSM-48 zeolite. Then, we further monitor 
the crystallization process of a typical sample to clear the exact effect of K+. Sample KCl/0.2/X is obtained by 
interrupting crystallization at X hour. At about 36 h, the weak XRD characteristic diffraction peaks of ZSM-
48 appear [Figure 5A], and the five-membered bands of FT-IR [Figure 5B] also indicate that the skeleton 
structure of zeolite begins to form. After 44 h, the XRD peak intensity of the product has not changed 
significantly, indicating the final crystallinity of the product has been reached.

With the extension of crystallization time from 36 to 44 h, TEM images show that the nanoneedle zeolite 
particles obviously increased with the continuous consumption of amorphous nanoparticles around 
[Figure 5C]. In particular, a large number of hollows are found in these amorphous nanoparticles 
[Supplementary Figure 9], which differs from the dense amorphous nanoparticles usually observed during 
the crystallization of zeolites. It is possible that K+ has a destructive effect on these precursors to produce the 
smaller precursor nanoparticles[50]. Consequently, these smaller nanoparticles form thinner nanoneedles 
during the aggregation process. As a result, the width of the nanoneedle in the final product is only 6-8 nm. 
Besides, the N2 adsorption isotherms [Figure 5D] show that the adsorption amount at low relative pressure 
gradually increases for crystallizing 36 to 46 h, indicating the increase in the volume of micropores and 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202407/cs3073-SupplementaryMaterials.pdf
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Figure 6. Py-IR spectrum at (A) 150 oC and (B) 450 oC; (C) NH3-TPD of different catalysts. Py-IR: FT-IR spectra of adsorbed pyridine; 
TPD: temperature programmed desorption.

crystallinity for the intermediate products [Supplementary Table 1]. Interestingly, big hysteresis loops 
always exist in high-pressure regions but with a slight movement to the low-pressure direction. This 
suggests a process of further thinning of the nanoneedles, which are assembled from smaller pre-formed 
nanoparticle precursors.

Catalytic effect of xylose dehydration reaction
Because of its adjustable acidity, zeolite is widely used in synthesizing high value-added chemicals from 
biomass, which is of great significance for green chemistry and sustainable development. Therefore, the 
catalytic performance of nanoneedle KCl/0.2/48 is evaluated through xylose to furfural reaction, with 
commercial ZSM-48 and KCl/0/48 as benchmarks. The effect of this reaction is closely related to the acid 
properties of the catalysts, so we have characterized the acidity of all three catalysts.

Firstly, the results of Py-IR at 150 oC [Figure 6A] and 450 oC [Figure 6B] indicate that KCl/0.2/48 has both 
Lewis acid and Brønsted acid sites. Moreover, the two ZSM-48 samples have a higher L/B ratio than KCl/0/
48 (ZSM-12) at both 150 and 450 oC, which may be related to the topological structure [Table 3]. The acid 
amount and strength of catalysts are measured by the NH3-TPD experiment [Figure 6C]. Two distinctive 
desorption peaks at about 160 and 355 oC can be attributed to the weak and strong acid sites, respectively. 
Due to their lower Si/Al ratio, KCl/0.2/48 (0.299 mmol·g-1) and KCl/0/48 (0.321 mmol·g-1) have a higher 
total acid content than commercial ZSM-48 (0.246 mmol·g-1) [Table 3]. Moreover, the amounts of weak acid 
sites are larger for KCl/0.2/48 (0.209 mmol·g-1) than commercial ZSM-48 (0.184 mmol·g-1) and KCl/0/48 
(0.174 mmol·g-1).

Once the nanoneedle KCl/0.2/48 is employed as the catalyst in the xylose conversion reaction [Figure 7A], 
the conversion of xylose greatly increases to around 95.8% [Figure 7B]. The selectivity of furfural is about 
38.9% on KCl/0.2/48, while that on commercial ZSM-48 is only 13.7%. Consequently, the yield of furfural 
on KCl/0.2/48 (37.2%) is evidently higher than commercial ZSM-48 zeolite, which shows very low 
conversion (44.4%) and yield (6.1%) in this reaction. Obviously, the nanoneedle KCl/0.2/48 exhibits 
superiority for the conversion of xylose to furfural. This superiority is attributed not only to its more active 
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Table 3. Acidic properties of different catalysts

Samples Max.temp. (°C) Weak acid (mmol·g-1) Max.temp. (°C) Strong acid (mmol·g-1) Total acid (mmol·g-1) L/Ba

Commercial 
ZSM-48

138.8 0.184 335.4 0.062 0.246 0.27

KCl/0.2/48 154.0 0.209 353.5 0.090 0.299 0.24

KCl/0/48 160.6 0.174 364.4 0.147 0.321 0.10

aCalculated by the Py-IR result of 450 °C. Py-IR: FT-IR spectra of adsorbed pyridine.

Figure 7. (A) The reaction path; (B) conversion and furfural yield; and (C) reuse and regeneration test of xylose to furfural reaction on 
three catalysts.

sites[51] but also to its larger external specific surface area [Supplementary Table 2], which is more conducive 
to the reaction on the outer surface. We also compare the KCl/0.2/48 sample with the KCl/0/48 sample 
aggregated by larger rods (ca. 40 nm in diameter) and find that the morphology of ultrathin nanoneedle 
KCl/0.2/48 (ca. 6-8 nm) still has an advantage in the reaction, although KCl/0/48 (ZSM-12) has a larger 12-
membered ring channel. This may be due to not only its larger external specific surface area but also its 
higher L/B ratio[52,53]. Other research has shown that more Lewis acid sites will catalyze the isomerization of 
xylose to xylulose [Figure 7A]. The activation energy of xylulose dehydration at the Brønsted acid site 
(23.1 kcal/mol) is lower than that of xylulose dehydration (32 kcal/mol). Consequently, xylulose dehydrated 
faster than xylose itself at the Brønsted acid site[54]. Our experimental results are also consistent with this 
phenomenon.

The reusability and regeneration of the catalyst were also tested. After the reaction, the spent catalyst is 
centrifuged from the reaction liquid and added to the reaction system again. Because cokes covered the 
acidic sites, the catalytic effect of the three catalysts decreased to different degrees [Figure 7C]. However, 
KCl/0.2/48 samples showed the slowest rate of inactivation and still had a furfural yield larger than 10% after 
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three cycles. In comparison, the commercial ZSM-48 and KCl/0/48 samples were reduced to less than 10% 
furfural yield after just one cycle. Moreover, KCl/0.2/48 also showed the best catalytic effect among the three 
catalysts after the catalyst was regenerated by removing coke through calcination. This exhibits that the 
nanoneedle morphology of KCl/0.2/48 has an advantage for diffusion, which may delay the coke formation, 
so that the catalyst has a longer lifetime.

CONCLUSIONS
A nanoneedle ZSM-48 mesocrystal is harvested, and the width of each nanoneedle is about 6-8 nm. 
Meanwhile, by systematically studying morphology evolution, topological structure change, Si/Al 
composition, and crystallization process details, the promoting effect of K+ has been confirmed. 
Furthermore, such an ultrathin ZSM-48 zeolite possesses a lower Si/Al ratio, larger external specific surface 
area, and more acid sites than commercial ZSM-48. It exhibits excellent catalytic performance and a long 
lifetime for the conversion of xylose because of more accessible acidity and a more suitable Lewis/Brønsted 
acid ratio. This work opens a facile and efficient avenue to fabricate low-dimensional zeolite catalysts with 
various frameworks, promoting the development of these materials and exhibiting great potential for 
improving their catalytic performance.
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