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Abstract
Salient object detection (SOD) is widely used in transportation such as road damage detection, assisted driving, etc.
However, heavyweight SOD methods are difficult to apply in scenarios with low computing power due to their huge
amount of computation and parameters. The detection accuracy ofmost lightweight SODmethods is difficult tomeet
application requirements. We propose a novel lightweight scale-adaptive network to achieve a trade-off between
lightweight restriction and detection performance. We first propose the scale-adaptive feature extraction (SAFE)
module, which mainly consists of two parts: multi-scale feature interaction, which can extract features of different
scales and enhance the representation ability of the network; and dynamic selection, which can adaptively assign
different weights to features of varying scales according to their contribution through the input image. Then, based
on the SAFE module, a lightweight and adaptive backbone network is designed, and scale-adaptive network is imple-
mented in combinationwith themulti-scale feature aggregation (MFA)module. Weevaluate themodel quantitatively
and qualitatively on six public datasets and compare it with typical heavyweight and lightweight methods. With only
2.29 M parameters, it can achieve a prediction speed of 62 fps on a GTX 3090 GPU, far exceeding other models,
and real-time performance is guaranteed. The model performance reaches that of general heavyweight methods and
exceeds state-of-the-art lightweight methods.
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1. INTRODUCTION
Salient object detection (SOD) aims to detect the most distinctive objects in natural images [1]. The initial SOD
model was inspired by cognitive psychology and neuroscience, proposed by Itti 𝑒𝑡 𝑎𝑙. in 1998 [2]. Different
from traditional methods, Liu 𝑒𝑡 𝑎𝑙. formulated SOD as a binary labeling problem to separate salient objects
from the background and proposed a set of new features, including multi-scale contrast, center-surround
histogram, and color space distribution to describe local, regional, and global salient objects [3]. They also
built the first large-scale image database for the quantitative evaluation of visual attention algorithms that
many inspired researchers began to propose more SOD models. SOD can be used in many fields such as
object detection [4], person re-identification [5], and especially in transportation. As shown in Figure 1, SOD
is widely used in road damage detection [6], assisted driving [7–9], etc. In autonomous driving vision systems,
SOD can quickly allocate attention to important objects for scene analysis [10,11]. However, heavyweight SOD
methods are difficult to apply in industrial scenarios with low computing power due to their huge amount of
computation and parameters. In the field of autonomous driving or assisted driving, the onboard computer will
process all objects in the traffic scene indiscriminately. This reduces the efficiency of information processing
and prolongs the processing time of some emergencies [12]. In some special scenarios, sometimes only some
special objects need to be detected, such as vehicles in front, traffic signs, pedestrians on the roadside, etc. This
is precisely the advantage of SOD. However, there are still the following difficulties in applying SOD in the
field of intelligent transportation: (1) Since all objects that affect driving should be regarded as salient targets,
there will not be only one salient target in most driving scenes, which puts higher requirements on the model;
(2) Traffic scenes are extremely complex, and the general SOD model cannot achieve good results; (3) Traffic
scenes require a higher model processing speed, and the existing SOD model cannot meet the requirements.
How to design and implement a SODmodel that considers both real-time and detection performance remains
a critical challenge.

Traditional SOD methods mainly rely on low-level image features and heuristic priors, but the lack of guid-
ance from high-level semantic information usually leads to limited accuracy. In recent years, with the rise of
convolutional neural networks (CNNs), especially fully convolutional networks (FCNs), deep learning-based
methods have pushed SOD to a new level. However, these outstanding performances are often achieved at
the expense of high computing costs and demanding software and hardware requirements [13]. For example,
multi-scale interactive network (MINet) [14] with VGG-16 backbone contains 162.38 M parameters, and the
floating-point operations (FLOPs) reach 87.1 G. Although it demonstrates good detection performance, it can-
not be deployed in low computing power environments. Therefore, it is necessary to design a lightweight SOD
method with excellent performance to serve actual application scenarios.

Cross-stage cross-scale network (CSNet) [15], hierarchical visual perception module-incorporated lightweight
SOD network (HVPNet) [16], and stereoscopically attentive multi-scale network (SAMNet) [17] are three repre-
sentative lightweight SOD methods. CSNet is designed to be lightweight based on the dynamic weight decay
pruning method, while HVPNet and SAMNet achieve model lightweighting by improving the network struc-
ture. Compared with MINet, the parameters of CSNet, HVPNet and SAMNet are only 0.14, 1.24, and 1.33 M,
respectively. However, it is worth noting that although these models are lightweight enough, their detection
effect is poor, as shown in Figure 2, making them difficult to apply in some complex scenarios. Therefore,
realizing a SOD model that considers both lightweight and detection effect is a very challenging task. The
main difficulties this work faces are as follows: (1) The lightweight network has a simple structure and can
process a small feature domain, which cannot comprehensively represent salient objects. Simply using exist-
ing lightweight backbone networks (MobileNet [18,19] or ShuffleNet [20,21], etc.) directly for SOD tasks does not
produce ideal results, which will be demonstrated in the experiments; (2) In complex scenes, salient objects are
scale-variable. How to make the model adaptively and dynamically perceive and extract the features of salient
objects is another difficult problem we need to deal with; (3) Current mainstream lightweight SOD methods
cannot simultaneously achieve both lightweight design and high performance. Properly balancing these two

http://dx.doi.org/10.20517/ir.2024.29


Liu et al. Intell Robot 2024;4(4):503-23 I http://dx.doi.org/10.20517/ir.2024.29 Page 505

Figure 1. Application scenarios of SOD. (A) Road surface defect detection; (B) Assisted driving; (C) Strip steel surface defect detection.
SOD: Salient object detection.

aspects remains a challenge in SOD.

We design and implement an efficient and lightweight SOD model based on the above analysis. It adopts a
novel scale-adaptive feature extraction (SAFE) module for multi-scale learning. Meanwhile, it can adaptively
adjust the weight of each scale of information according to its importance to achieve dynamic perception of the
features of salient objects. The SAFE module mainly consists of multi-scale feature interaction and dynamic
selection. The multi-scale feature interaction is mainly used for feature extraction. It first uses depthwise sep-
arable convolutions with different dilation rates to extract information of various receptive fields, and divides
the input features into distinct branches. Then, feature interaction is achieved by fusing the features of different
branches to improve their representation capabilities. The dynamic selection mainly combines channel atten-
tion with multi-layer perceptron (MLP) to assign different weights to features of multiple scales to extract key
feature information. We also designed a decoder based on the multi-scale feature aggregation (MFA) module
to alleviate the information loss problem caused by excessive upsampling. Based on the SAFE and MFA mod-
ules, we implement an encoder-decoder network that is more suitable for SOD tasks, namely scale-adaptive
network (SANet). It can achieve an inference speed [frames per second (FPS)] of 62 fps on an NVIDIA GTX
3090 GPU with only 2.29 M parameters, far exceeding other models, and real-time performance is guaranteed.
Themodel performance reaches that of general heavyweight methods and exceeds many first-class lightweight
methods.

In summary, our contributions mainly include the following three points:

(1)Wepropose a novel SAFEmodule, which consists of two parts: multi-scale feature interaction, which is used
to extract features of different scales and enhance the representation of salient objects through the interaction
of cross-scale features; dynamic selection, which is data-driven and can adaptively perceive and measure the
importance of features of different scales according to the changes in the input images.

(2)We implement the SANet network, which consists of an encoder based on the SAFEmodule and a decoder
based on the MFAmodule. This is an encoder-decoder network that considers both lightweight and detection
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Figure 2. Comparison of detection effect of different methods.

performance.

(3)We quantitatively and qualitatively compare SANet with fifteen heavyweight methods and three lightweight
methods on six typical SOD datasets. At the same time, we use the traffic dataset traffic salient object detection
(TSOD) mentioned in TSOD using a feature deep interaction and guidance fusion network (TFGNet) [22]

to verify our model. SANet demonstrates excellent detection effect and efficient reasoning speed with low
parameters and model complexity.

2. RELATED WORKS
2.1. SOD
SOD is based on simulating a human visual attention mechanism, which enables machines to automatically
discover and filter important information. Since Professor Itti pioneered the research field of SOD in 1999,
countless researchers have been engaged in research in this field and produced many scientific research results.
SOD’s technical solutions have also shifted from traditional statistical methods, frequency domain conversion
methods, and machine learning methods to the currently hot field of deep learning. Traditional methods [23]

are mainly based on manually designed features. Although they are very efficient, manually designed fea-
tures inherently lack the ability of high-level representation, which limits the performance of the model. The
deep learning-basedmethods have shown incomparable advantages over traditionalmethods in characterizing
salient objects. They have quickly occupied the forefront of SOD and raised the level of SOD to a new height.
Early deep learning-based methods did not solve the problem of longitudinal transmission feature attenuation,
and the model had problems of false positives or negatives [24]. To this end, the encoder network is applied to
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SOD. Refs. [14] and [25] also designed a feature conversion module to improve the effectiveness of horizontal
feature transmission. To embed semantic information into the encoding and decoding processes, Chen 𝑒𝑡 𝑎𝑙.
and Jia 𝑒𝑡 𝑎𝑙. designed different global information enhancement modules respectively [1,26]. The Transformer
model has facilitated a further enhancement in the level of SOD. However, the early transformer-based SOD
models [27] were relatively complex and were not very suitable for high-resolution SOD tasks. Although some
lightweight transformer networks [28] have been proposed in recent years and have reduced the number of
model parameters from level B to around 80 M, this is still not affordable for edge applications. Current SOD
methods based on large models still have the problem of high model complexity.

In summary, relevant research on SOD has accumulated a lot of research results, and the detection effect has
reached the level of practical application. However, this is achieved under ideal laboratory conditions. The
complexity and real-time performance of the model cannot meet the requirements in weak computing and
high real-time scenarios.

2.2. Model lightweighting
Lightweightmodels have attracted attention in various fields due to their low computing resource requirements.
There are two main methods to build lightweight models. One is to use network pruning, model quantization,
or knowledge distillation to make complex models lightweight. Network pruning reduces the size of a neural
network by removing unnecessary connections or nodes [29]. Model quantization reduces the storage space and
computing resources required by the model by reducing the number of bits of the parameters and representing
the parameters as integers or fixed-point numbers with fewer bits [30]. The knowledge distillation method
achieves model lightweighting by transferring knowledge between large models and small models [31]. The
other approach is to consider lightweight from the network design stage, to design an efficient and lightweight
backbone network. Lightweight network design has been a research hotspot in the field of deep learning
in recent years, aiming to provide efficient neural network models for mobile devices and edge computing.
Representative methods in this category include MobileNets [18,19], EfficientNets [32,33], and ShuffleNets [20,21].
The most prominent feature of MobileNets is the use of depthwise separable convolutions instead of ordinary
convolutions to achieve model lightweighting. The characteristic of EfficientNets is that they use a compound
scaling strategy to design the network, controlling the model complexity by adjusting the model depth, the
network width, and the image resolution. ShuffleNets follow the design concept of sparse connectivity and
reduce computation and parameters by using group pointwise convolution and channel shuffle. In addition,
GhostNet [34] proposed byHuawei is also an excellent lightweight network, but the design ideas and technology
used in the model are similar to those mentioned above and will not be elaborated on here.

The research on lightweight models for SOD is still in its infancy. Currently, the more representative ones in-
clude SAMNet and CSNet proposed by Professor Cheng et al. at Nankai University, and ELWNet [35] proposed
by Professor Zhang et al. at Northeastern University. Among them, ELWNet is achieved through feature do-
main conversion, CSNet realizes model lightweighting based on the dynamic weight decay pruning method,
and SAMNet is achieved by optimizing the network structure.

Currently, despite numerous studies onmodel lightweighting, there are still three problems: (1) Pruning, quan-
tization, and knowledge distillation greatly influence model performance, making the model performance in-
sufficient to meet actual needs; (2) The lightweight backbone network has a small feature domain and cannot
cope with complex detection scenarios; (3) Research on lightweight models for SOD is still in its infancy. To
address these issues, we propose a more efficient and lightweight SOD model - SANet.

2.3. CapsNet
CNN has a dominant position in solving computer vision-related problems. However, it discards much valu-
able information in the pooling process, such as the pose and position of the target. Another disadvantage of
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Figure 3. Overall encoder-decoder architecture of the proposed SANet. E𝑖 represents the encoder at the 𝑖-th stage. D𝑖 indicates the decoder
at the 𝑖-th stage. 𝑆𝑖 and 𝑅𝑖 denote the output feature maps of the encoder and the decoder at the 𝑖-th stage, respectively. 𝑃𝑖 stands for
the predicted saliency map, and 𝑃1 is the final prediction result. 𝐺 is the ground-truth saliency map. PPM: Pyramid pooling module; MFA:
multi-scale feature aggregation.

CNN is that it lacks rotation invariance and therefore requires a large amount of training data [36]. To this end,
Hinton of Google Brain proposed the capsule network (CapsNet) that can capture structural information [37].
CapsNets designed a clever dynamic routing algorithm to capture the part-whole relationship in the image to
enhance the equivalence of the network. Based on this advantage, related research and applications based on
the CapsNet structure have been proposed one after another. Saqur et al. proposed a new algorithmCapsGAN
by showing the weakness of the CNN-based generative adversarial network (GAN) architecture in generating
3D images [38]. Cheng 𝑒𝑡 𝑎𝑙. proposed complex-valued dense CapsNet (Cv-CapsNet) and complex-valued di-
verse CapsNet (Cv-CapsNet++) for image classification [39]. Sun 𝑒𝑡 𝑎𝑙. proposed a deep tensor capsule network
that uses a new tensor capsule-based routing algorithm and the corresponding convolution operation [40].

Due to the unique advantages of CapsNet, it has also been successfully applied to the task of SOD. For ex-
ample, Liu 𝑒𝑡 𝑎𝑙. optimized deep unsupervised SOD by using the part-whole relationship characteristics of
CapsNet [41]. Zhang 𝑒𝑡 𝑎𝑙. used the attention mechanism to interact with CNN and CapsNet features to better
detect salient objects [42]. Liu 𝑒𝑡 𝑎𝑙. integrated the advantages of CNN and CapsNet, extracted different seman-
tic information respectively, and interactedwith each other to generate better saliency predictionmaps [43]. The
design of the SAFE module in this paper also contains some ideas for CapsNet.

3. THE PROPOSED METHOD
In this section, the proposed SOD framework is presented. Section 3.1 describes the overall network structure.
Section 3.2 introduces the SAFEmodule, which can adaptively extract and filter features according to the scale
differences of salient objects. Section 3.3 explains the decoder design based on the MFA module.

3.1. Overall network architecture
As shown in Figure 3, the overall network structure of SANet comprises a bottom-up encoder, a top-down
decoder, and a lateral connection between them. The encoder is built with SAFE modules as units and is
divided into five stages. In these five stages, we downsample the input using dilated DSConv3×3 with a stride
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Table 1. Backbone settings of the proposed SANet

Stage Resolution Module #C Stride #P

E1 336×336
DSConv3×3 32 2 -

SAFE×1 32 1 3 (1,2,4)

E2 168×168
DSConv3×3 64 2 -

SAFE×1 64 1 3 (1,2,4)

E3 84×84
DSConv3×3 96 2 -

SAFE×3 96 1 3 (1,2,4)

E4 42×42
DSConv3×3 96 2 -

SAFE×6 96 1 3 (1,2,4)

E5 21×21
DSConv3×3 128 2 -

SAFE×3 128 1 2 (1,2)

“#C” represents the number of channels. “#P” indi-cates the
number of branches of the SAFE module at each stage and
the corresponding dilation rate. SAFE: Scale-adaptive feature
extraction.

of 2 and adjust the number of channels. Then, we use the proposed SAFE module for scale-adaptive learning.
Since the resolution of the feature map is high in the first two stages (E1 and E2), only a single SAFE module is
used to process the featuremap to reduce the computational burden. In the third to fifth stages (E3, E4, and E5),
we stack multiple SAFE modules to increase the receptive field and enhance the deep network representation
capability. The default parameter settings of the SANet backbone network are shown in Table 1. We pass the
output of the last encoder stage (E5) through a pyramid pooling module (PPM) [44] to further improve the
network’s learning of global features. Different from the classic encoder-decoder network structure, this paper
inputs the output features of PPM into the decoders of each stage for feature fusion, so as to make full use of
the semantic information in the deep layer of the network.

3.2. SAFE module
The multi-scale information of images is important for SOD, and salient objects in natural scenes are scale-
variable. To adaptively extract information from different scales of images and accurately characterize salient
objects, we propose the SAFE module, which is mainly divided into two parts: multi-scale feature interaction
and dynamic selection.

Multi-scale Feature Interaction: In this part, as shown in Figure 4, we first use multiple depthwise separable
convolutions with different dilation rates to process the input feature map and divide the input features into
various branches. Since each branch has distinct sensitivities to information of different scales, to improve the
representation capabilities of different branches, we perform cross-scale feature interaction.

Specifically, let 𝑋 ∈ R𝐶×𝐻×𝑊 be the input feature map whose number of channels, height, and width are 𝐶, 𝐻,
and𝑊 , respectively. So, we will get the feature map 𝑋𝑖 of each branch, namely,

𝑋𝑖 = $𝑖 (𝑋), 𝑖 = 1, 2, ..., 𝑁, (1)

where $𝑖 denotes depthwise separable conv3×3 (DSConv3×3 for short) with different dilation rates at branch
𝑖, and 𝑁 is the number of branches. Next, except for 𝑋𝑁 , each feature map 𝑋𝑖−1 is first processed by the 3×3
average pooling operation, and then added to 𝑋𝑖 to obtain 𝑋′

𝑖 , so 𝑋′
𝑖 can be expressed as follows:

𝑋′
𝑖 =

{
𝑋𝑖 + 𝐴𝑃 (𝑋𝑖−1) , 𝑖 = 2
𝑋𝑖 + 𝐴𝑃

(
𝑋′
𝑖−1

)
, 𝑖 = 3, ..., 𝑁,

(2)

where 𝐴𝑃 denotes 3×3 average pooling operation. In this way, each feature map 𝑋′
𝑖 can receive the feature

information of all its previous feature maps
{
𝑋 𝑗 , 𝑗 ⩽ 𝑖

}
, which realizes feature embedding and improves the

representation ability of the intra-layer branches.
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Figure 4. Illustration of the proposed SAFE module. SAFE: Scale-adaptive feature extraction.

Dynamic selection: Features of different scales have varying representation capabilities for salient objects. To
measure this difference, we perform dynamic selection after completing the multi-scale feature interaction.
We use an element-wise summation to integrate the feature maps output by different branches, namely,

𝑋′ = 𝑋1 +
𝑁∑
𝑖=2

𝑋′
𝑖 . (3)

Here we use element-wise summation instead of concatenation because the concatenation operation will
greatly increase the number of channels, resulting in heavier computational complexity and more network
parameters. Next, we process 𝑋′ with a 3 × 3 convolution and then perform the dynamic measurement mod-
ule (DMM) operation. DMM consists of a global average pooling (GAP) operation and an MLP. We gather
the global contextual information with channelwise statistics by using GAP. This process embeds the input 𝑋′

to a learnable latent vector 𝑍 ∈ R𝐶×1×1 by performing GAP on 𝑋′ over the spatial dimension. Thus, the 𝑐-th
component of 𝑍 can be given as follows:

𝑍𝑐 =
1

𝐻 ×𝑊

𝐻∑
𝑖=1

𝑊∑
𝑗=1

𝑋′(𝑐, 𝑖, 𝑗), 𝑐 = 0, 1, ..., 𝐶 − 1. (4)

where 𝐻 stands for height, which represents the number of pixels of 𝑋′ in the vertical direction, and𝑊 stands
for width, which represents the number of pixels of 𝑋′ in the horizontal direction. Because each element
in 𝑍 indicates the importance of the corresponding feature slice of 𝑋′, 𝑍 can be used as the channel-wise
attention of all branches. Next, we shall perform an additional embedding regarding 𝑍 via a MLP consisting
of two fully-connected layers, a non-linearity ReLU, and a softmax operation. After the MLP, a vector of size
(𝑁 × 𝐶) × 1 × 1 will be output, and then we will split it into 𝑁 parts corresponding to 𝑁 different branches
through the split operation, and the 𝑖-th part is 𝜔𝑖 ∈ R𝐶×1×1. Since MLP is learnable, different attention
weights can be dynamically assigned to each scale feature. The dynamic attention weight 𝜔𝑖 of the 𝑖-th branch
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Figure 5. Illustration of the proposed MFA module. MFA: Multi-scale feature aggregation; DDS: dilated DSConv3×3 operation; c⃝: a
concatenation operation.

is calculated as follows:

𝜔𝑖 = Split (𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐹𝐶 (𝑅𝑒𝐿𝑈 (𝐹𝐶 (𝑍))))) , 𝑖 = 1, 2, ..., 𝑁 (5)

where 𝜔𝑖 ∈ R𝐶×1×1. After that, we use channel-wise multiplication to combine 𝜔𝑖 with the corresponding
branch features and integrate the multiplied results by element-wise summation to obtain the feature map 𝑋̃ :

𝑋̃ = 𝜔1 × 𝑋1 +
𝑁∑
𝑖=2

(
𝜔𝑖 × 𝑋′

𝑖

)
. (6)

After 𝑋̃ undergoes a Conv1×1, it is added to the original input feature map 𝑋 through a residual connection
to obtain the final output 𝑌 , namely,

𝑌 = 𝜅
(
𝑋̃
)
+ 𝑋, (7)

where 𝜅 denotes a Conv1×1 operation.

As shown in Figure 3, the SAFE module is the basic unit that forms the backbone network of SANet. The
number of branches N mentioned above is set as a hyperparameter. In the subsequent ablation experiments,
we prove that the higher the resolution of the input feature map, the more branches are needed, so we will set
different numbers of branches at multiple stages of the network.

3.3. MFA-based decoder
This paper first uses the backbone network composed of SAFEmodules to extract image features, and then we
design the decoder. As shown in Figure 3, the decoder consists of two parts: feature fusion and MFAmodules.

The feature fusionmodule fuses features from three directions and uses a depthwise separable 𝑘×𝑘 dilated con-
volution to integrate the fused results. After feature fusion, it is not enough to simply use a layer of convolution
for processing. In particular, the output features of the PPM module will go through a relatively large scale
span (maximum span of 16 times) during the upsampling process, and it is necessary to establish connections
across scales reasonably. Therefore, we designed a MFA module to process further the fused features.

As shown in Figure 5, we use the output feature map of the feature fusion module as the input of the MFA
module and split it into four parts by channel, represented by 𝐹𝑖 , where 𝑖 ∈ {1, 2, 3, 4}. Then, information

http://dx.doi.org/10.20517/ir.2024.29


Page 512 Liu et al. Intell Robot 2024;4(4):503-23 I http://dx.doi.org/10.20517/ir.2024.29

on different scales is extracted through a depth-separable convolution with a dilation rate of 𝑟′𝑖 , forming four
different branches and obtaining feature maps 𝐹′

𝑖 , where 𝑟
′
𝑖 ∈ {1, 2, 3, 4}. So, 𝐹′

𝑖 can be expressed as follows:

𝐹′
𝑖 = $𝑖 (𝐹𝑖) , 𝑖 = 1, 2, 3, 4, (8)

where $𝑖 represents DSConv3×3 with different dilation rates at branch 𝑖. To achieve cross-scale feature aggre-
gation, we use residual connections between different branches and get 𝐹′′

𝑖 by element-wise summation:

𝐹′′
𝑖 =

{
𝐹′
𝑖 + 𝐹′

𝑖−1, 𝑖 = 2
𝐹′
𝑖 + 𝐹′′

𝑖−1, 𝑖 = 3, 4.
(9)

Then, each branch’s results are merged as output through a concatenation operation, namely,

𝐹̃ = 𝜅
(
𝐶𝑜𝑛𝑐𝑎𝑡

(
𝐹′

1, 𝐹
′′
2 , 𝐹

′′
3 , 𝐹

′′
4
) )
. (10)

Let 𝑅𝑖 represent the feature maps output by the decoder at each stage, and 𝑆𝑖 represent the feature maps output
by the encoder at each stage, where 𝑖 ∈ {1, 2, 3, 4, 5}. So,

𝑅5 = MFA
(
𝜁 𝑘×𝑘5 (𝑈𝑝 (𝜅 (PPM (𝑆5))) + 𝑆5)

)
, (11)

where MFA represents MFAmodule, 𝜁 𝑘×𝑘5 means DSConv𝑘×𝑘 at the fifth stage, and𝑈𝑝 indicates upsampling
operation. In summary, we have

𝑅𝑖 = MFA
(
𝜁 𝑘×𝑘𝑖 (𝑈𝑝 (𝜅 (PPM (𝑆5))) +𝑈𝑝 (𝜅 (𝑅𝑖+1)) + 𝑆𝑖)

)
, 𝑖 = 1, 2, 3, 4. (12)

where 𝜁 𝑘×𝑘𝑖 represents DSConv𝑘×𝑘 at the 𝑖-th stage.

3.4. Saliency reasoning
We use deep supervision to improve the transparency of the hidden layer learning process. As shown in
Figure 3, for the fusion features at different stages, we use a Conv1×1 and sigmoid activation function to
generate multiple predictions, namely 𝑃𝑖 , where 𝑖 ∈ {1, 2, 3, 4, 5}. We adopt the standard binary cross-entropy
loss for training, which is defined as follows:

𝐿𝑇𝑜𝑡𝑎𝑙 = 𝐿𝐵𝐶𝐸 (𝑃1, 𝐺) + 𝜆
5∑
𝑖=2

𝐿𝐵𝐶𝐸 (𝑃𝑖 , 𝐺), (13)

where 𝐿𝐵𝐶𝐸 is the standard binary cross-entropy loss function, and 𝐺 denotes the ground-truth saliency map.
𝜆 denotes the weighting scalar for loss balance, which is set to 0.4.

4. RESULTS
4.1. Experimental setup
4.1.1 Implementation details
This paper uses the PyTorch library to implement the proposed method. Our model is pre-trained on the
ImageNet dataset. The training set of the DUTS [45] dataset (DUTS-TR) is used for model training. In addition,
we also validate our proposed method on the traffic dataset TSOD, using its first 2,000 images for training and
the rest for testing. All experiments are performed using the Adam optimizer, with parameters 𝛽1 = 0.9,
𝛽2 = 0.999, weight decay of 10−4, and batch size of 20. We use poly learning rate scheduler so that the learning
rate for the 𝑛-th epoch is 𝑖𝑛𝑖𝑡_𝑙𝑟 ×

(
1 − 𝑛

#𝑒𝑝𝑜𝑐ℎ𝑠

) 𝑝𝑜𝑤𝑒𝑟
, where 𝑖𝑛𝑖𝑡_𝑙𝑟 = 5 × 10−4 and 𝑝𝑜𝑤𝑒𝑟 = 0.9. We trained

the proposedmodel for 300 epochs, i.e., #𝑒𝑝𝑜𝑐ℎ𝑠 = 300. All experiments are run on a server with an NVIDIA
GTX3090 GPU and an AMD RyzenThreadripper 3960X (2.2GHz) CPU.
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4.1.2 Datasets
We validate our proposed method on six common datasets, including DUTS, DUT-OMRON [46], ECSSD [47],
PASCAL-S [48], HKU-IS [49], and SOD [50]. In addition, we also verified the advantages of our method over
other SOD methods in the traffic field in the traffic dataset TSOD.

The DUTS dataset comprises two subsets: the training set, DUTS-TR, and the test set, DUTS-TE. DUTS-
TR is used for SANet training, while DUTS-TE is reserved for testing. DUTS-TR includes 10,553 images
from ImageNet, each annotated at the pixel level. The test set contains 5,019 images selected from ImageNet
and SUN and their pixel-level labels. DUT-OMRON features 5,168 images depicting complex scenes with rich
contents, accompanied by pixel-level labels. ECSSD consists of 1,000 images, with pixel-level labels, presenting
a high level of interference in both the foreground and background of the images, making it a challenging
dataset. PASCAL-S includes 850 images and their pixel-level labels, showcasing relatively complex scenes.
HKU-IS contains 4,447 images and their pixel-level labels, and almost all images have multiple salient objects.
SOD contains 300 images and their pixel-level labels, where the color contrast between salient objects and the
background is low. TSOD consists of 2,316 images of traffic scenes with relatively complex content, along with
their pixel-level labels.

4.1.3 Evaluation criteria
This paper evaluates the effectiveness of the proposed model using the maximum F-measure (maxF), average
F-measure (avgF), mean absolute error (MAE), and S-measure (S). Additionally, the efficiency of the model is
assessed through the number of model parameters (#Param), the number of FLOPs, and the FPS.

F-measure is an evaluation method that comprehensively considers precision and recall, which is defined as
follows:

𝐹𝛽 =

(
1 + 𝛽2) × 𝑃 × 𝑅

𝛽2 × 𝑃 + 𝑅
, (14)

where 𝑃 and 𝑅 represent precision and recall, respectively. We set 𝛽2 = 0.3 to emphasize the importance of
precision.

MAE aims to measure the difference between the predicted image 𝑃 and the ground truth 𝐺, which is calcu-
lated as follows:

MAE (𝑃, 𝐺) = 1
𝐻 ×𝑊

𝐻∑
𝑖=1

𝑊∑
𝑗=1

��𝑃𝑖 𝑗 − 𝐺𝑖 𝑗

��, (15)

where 𝐻 and𝑊 represent the height and width of the saliency map, respectively, and 𝑃𝑖 𝑗 and𝐺𝑖 𝑗 represent the
pixel values of the 𝑖-th row and 𝑗-th column of 𝑃 and 𝐺.

𝑆 is used to evaluate the structural similarity between the predicted saliency map and the ground truth and is
calculated by:

𝑆 = 𝛼 × 𝑆0 + (1 − 𝛼) × 𝑆𝑟 , (16)

where 𝑆0 represents the target structure similarity, 𝑆𝑟 represents the regional structure similarity, and 𝛼 is set
to 0.5.

In this paper, #Param is measured in million (M) and FLOPs is measured in giga (G). FLOPs are used to
measure the computational effort of the model. FPS indicates the number of images that the model can infer
per second when using an NVIDIA GTX3090 GPU. For all SODmethods, we use 336×336 input and the same
hardware and training strategy.
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Table 2. Comparison with existing methods in terms of #Param, FLOPs, FPS, maxF, avgF, MAE, and S in general scenarios

Methods
#Param FLOPs

FPS
DUTS-TE DUT-OMRON ECSSD

(M) (G) maxF↑ avgF↑ MAE↓ S↑ maxF↑ avgF↑ MAE↓ S↑ maxF↑ avgF↑ MAE↓ S↑

Heavyweight method (#Param > 10M)

CPD [51] 47.85 59.5 42 0.861 0.805 0.043 0.866 0.794 0.747 0.056 0.818 0.930 0.917 0.037 0.905
U2Net [52] 44.02 58.8 45 0.873 0.792 0.045 0.874 0.823 0.761 0.055 0.847 0.951 0.892 0.033 0.928
UCF [53] 29.47 61.4 12 0.772 0.631 0.112 0.782 0.730 0.621 0.120 0.760 0.901 0.844 0.069 0.883

Amulet [25] 33.15 45.3 10 0.778 0.678 0.085 0.804 0.743 0.647 0.098 0.781 0.913 0.868 0.059 0.894
DSS [54] 62.23 114.6 7 0.825 0.720 0.056 0.826 0.781 0.656 0.066 0.790 0.921 0.842 0.056 0.879

PiCANet [13] 32.85 19.7 5 0.851 0.759 0.051 0.869 0.794 0.717 0.065 0.832 0.931 0.886 0.046 0.917
BASNet [55] 87.06 127.3 36 0.859 0.791 0.048 0.866 0.805 0.756 0.057 0.836 0.938 0.880 0.037 0.916
PoolNet [56] 53.63 123.4 39 0.866 0.819 0.043 0.875 0.791 0.752 0.057 0.829 0.934 0.919 0.048 0.909
MINet [14] 162.38 87.1 43 0.877 0.823 0.039 0.875 0.794 0.741 0.057 0.822 0.943 0.922 0.036 0.919
VST [57] 44.48 23.2 40 0.877 0.818 0.037 0.896 0.800 0.756 0.058 0.850 0.944 0.920 0.033 0.932

PFSNet [58] 31.18 37.6 44 0.898 0.846 0.036 0.890 0.823 0.774 0.055 0.852 0.952 0.932 0.031 0.927
ICON [59] 33.09 20.9 57 0.892 0.838 0.037 0.888 0.825 0.772 0.057 0.844 0.950 0.928 0.032 0.929
MENet [60] - - 45 0.912 0.893 0.028 0.905 0.834 0.818 0.045 0.850 0.955 0.942 0.031 0.928
TSERNet [61] 189.64 203.6 35 0.861 0.798 0.046 0.864 0.818 0.768 0.056 0.837 0.945 0.922 0.031 0.930
A3Net [62] 17.00 34.1 46 0.843 0.769 0.052 0.863 0.801 0.739 0.062 0.831 0.937 0.913 0.045 0.912

Avg-heavy 62.00 72.6 34 0.856 0.785 0.051 0.863 0.797 0.735 0.064 0.825 0.936 0.902 0.042 0.914

Lightweight method (#Param <= 10M)

HVPNet [16] 1.24 1.1 55 0.839 0.749 0.058 0.849 0.799 0.721 0.065 0.831 0.925 0.889 0.052 0.904
SAMNet [17] 1.33 0.5 37 0.835 0.745 0.058 0.849 0.797 0.717 0.065 0.830 0.925 0.891 0.050 0.907
CSNet [15] 0.14 1.5 48 0.819 0.687 0.074 - 0.792 0.675 0.081 - 0.916 0.844 0.065 -

Ours 2.29 1.5 62 0.845 0.773 0.054 0.866 0.804 0.742 0.061 0.833 0.934 0.907 0.047 0.913

Methods
#Param FLOPs

FPS
DUTS-TE DUT-OMRON ECSSD

(M) (G) maxF↑ avgF↑ MAE↓ S↑ maxF↑ avgF↑ MAE↓ S↑ maxF↑ avgF↑ MAE↓ S↑

Heavyweight method (#Param > 10M)

CPD [51] 47.85 59.5 42 0.866 0.820 0.071 0.847 0.924 0.891 0.034 0.904 0.848 0.740 0.113 0.765
U2Net [52] 44.02 58.8 45 0.859 0.770 0.074 0.845 0.935 0.896 0.031 0.916 0.861 0.769 0.106 0.789
UCF [53] 29.47 61.4 12 0.757 0.726 0.116 0.806 0.888 0.823 0.062 0.875 0.805 0.737 0.148 0.763

Amulet [25] 33.15 45.3 10 0.806 0.757 0.100 0.818 0.897 0.841 0.051 0.886 0.795 0.741 0.144 0.755
DSS [54] 62.23 114.6 7 0.831 0.740 0.101 0.820 0.916 0.844 0.041 0.881 0.846 0.747 0.122 0.746

PiCANet [13] 32.85 19.7 5 0.880 0.792 0.076 0.854 0.921 0.870 0.043 0.904 0.855 0.785 0.103 0.793
BASNet [55] 87.06 127.3 36 0.854 0.771 0.076 0.838 0.928 0.896 0.032 0.909 0.849 0.744 0.112 0.772
PoolNet [56] 53.63 123.4 39 0.855 0.826 0.065 0.867 0.925 0.903 0.037 0.908 0.863 0.758 0.111 0.781
MINet [14] 162.38 87.1 43 0.882 0.843 0.065 0.855 0.932 0.906 0.030 0.914 - - - -
VST [57] 44.48 23.2 40 0.850 0.829 0.061 0.873 0.937 0.900 0.029 0.928 0.866 0.833 0.065 0.854

PFSNet [58] 31.18 37.6 44 0.881 0.837 0.063 0.876 0.943 0.919 0.026 0.933 - - - -
ICON [59] 33.09 20.9 57 0.876 0.833 0.064 0.861 0.940 0.910 0.029 0.920 0.879 0.804 0.084 0.824
MENet [60] - - 45 0.890 0.870 0.054 0.872 0.948 0.932 0.023 0.927 0.878 0.868 0.087 0.809
TSERNet [61] 189.64 203.6 35 0.857 0.782 0.062 0.840 0.930 0.904 0.036 0.910 0.850 0.746 0.109 0.775
A3Net [62] 17.00 34.1 46 0.844 0.791 0.089 0.831 0.920 0.881 0.042 0.903 0.843 0.787 0.120 0.765

Avg-heavy 62.00 72.6 34 0.853 0.799 0.076 0.847 0.926 0.888 0.036 0.908 0.849 0.774 0.110 0.784

Lightweight method (#Param <= 10M)

HVPNet [16] 1.24 1.1 55 0.826 0.784 0.089 0.830 0.915 0.872 0.045 0.899 0.826 0.779 0.122 0.765
SAMNet [17] 1.33 0.5 37 0.812 0.778 0.092 0.826 0.915 0.871 0.045 0.898 0.833 0.780 0.124 0.762
CSNet [15] 0.14 1.5 48 0.835 0.723 0.103 - 0.899 0.840 0.059 - 0.825 0.724 0.137 -

Ours 2.29 1.5 62 0.847 0.801 0.084 0.833 0.919 0.889 0.044 0.901 0.845 0.796 0.117 0.767

The larger the mF and S, the better, the smaller the MAE, the better, and Avg-heavy represents the average of each metric of
all heavyweight methods. The best lightweight methods are in bold, and the underline indicates the metrics where SANet is better than
Avg-heavy. FLOPs: Floating-point operations; FPS: frames per second; MAE: mean absolute error.

4.2. Performance analysis
In this section, we compare SANet with eighteen typical SODmethods, including fifteen heavyweightmethods
and three lightweight state-of-the-art methods. This paper uses the same method to evaluate the detection
results of related models.

4.2.1 Comparison with heavyweight SOD methods in general scenarios
Table 2 shows the evaluation results of SANet and existing state-of-the-art SOD methods in terms of #Param,
FLOPs, FPS, maxF, avgF, MAE, and S. From Table 2, we can see that SANet can achieve the performance of
general heavyweight methods in the four evaluation metrics of maxF, avgF, MAE, and S. Especially in the
challenging DUT-OMRON dataset, the four performance metrics all exceed the average level of heavyweight
methods, with maxF, avgF, and S increase by 0.88%, 0.95%, and 0.97%, respectively, and MAE reduced by
4.92%. In terms of efficiency metrics, SANet has reduced parameters by 96.31%, reduced FLOPs by 97.93%,
and increased FPS by 82.35% compared to the average level of heavyweight methods.
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Figure 6. Illustration of the trade-off between performance and efficiency. The avgF is the average of the results on the six datasets. (A)
avgF 𝑣𝑠. #Param; (B) avgF 𝑣𝑠. FLOPs; (C) avgF 𝑣𝑠. FPS. FLOPs: Floating-point operations; FPS: frames per second.

Compared with integrity cognition network (ICON), SANet reduces parameters and FLOPs by 93.08% and
92.82%, respectively, and increases the FPS by 8.77%, while the average values of maxF and avgF on the six
datasets only decrease by 3.13% and 3.54%, respectively.

4.2.2 Comparison with lightweight SOD methods in general scenarios
Table 2 also shows the quantitative comparison results of SANet and other state-of-the-art lightweight SOD
models, including HVPNet, SAMnet, and CSNet. Compared with SAMNet, the maxF of the proposed model
on the six datasets is improved by 1.20%, 0.88%, 0.97%, 4.31%, 0.44%, and 1.44%, respectively, and the avgF is
improved by 3.76%, 3.49%, 1.80%, 2.96%, 2.22%, and 2.05%, respectively, and the FPS is improved by 67.57%. As
we can see, although SANet does not reach the optimal level regarding #param and FLOPs, SANet far exceeds
the above lightweightmodels in terms ofmaxF, avgF,MAE, and S. It should be emphasized that SANet achieves
a FPS far exceeding that of other models.

4.2.3 Comprehensive comparison in general scenarios
Figure 6 shows the comprehensive comparison results of this paper and other methods in terms of model per-
formance and efficiency. In the sub-figures of Figure 6A and B, SANet lies at the top-left corner. In Figure 6C,
it lies at the top-right corner. This shows that SANet achieves higher accuracy with fewer parameters and
FLOPs and faster speed. Therefore, it achieves a good trade-off between performance and efficiency.

4.2.4 Qualitative comparison in general scenarios
For practical application scenarios of SOD, good visual qualitative effects are sometimes more important than
quantitative performance. In Figure 7, we provide visual SOD results in five typical scenarios to evaluate
the model effect. It can be seen that in the simple scene [Figure 7A], the visual detection results of SANet
are comparable to those of heavyweight methods, and the depiction of salient target details is more accurate
than other lightweight models. In the small target scene [Figure 7B], heavyweight methods, boundary-aware
SOD network (BASNet), PoolNet, and visual saliency transformer (VST), can accurately identify salient tar-
gets, while cascaded partial decoder (CPD), SOD using short connections (DSS), ICON, andMENet have false
positives and false negatives. Our model can segment small targets, and the boundaries are clearer than other
lightweight methods, without false positives and false negatives. This is also due to the SAFE module, which
enables our model to adaptively capture salient objects of any size. In the low-contrast scene [Figure 7C],
DSS and PoolNet have false positives, while other heavyweight methods can accurately identify salient objects.
Among lightweight methods, CSNet has false positives, whereas SANet, SAMNet, and HVPNet do not. How-
ever, compared with SANet, SAMNet and HVPNet do not accurately depict the details of salient objects. In
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Figure 7. Visual comparisonwithmainstream SODmethods in general scenarios. (A) Simple scene; (B) small target scene; (C) low contrast
scene; (D) confusing scene; (E) complex scene; (F) complex scene. SOD: Salient object detection.

Table 3. The Comparison of maxF, avgF, MAE, and S in traffic scenarios

Methods
TSOD

maxF↑ avgF↑ MAE↓ S↑

SAMNet 0.333 0.126 0.058 0.590

CSNet 0.233 0.055 0.062 0.535

Ours 0.650 0.347 0.036 0.700

MAE: Mean absolute error; TSOD:
traffic salient object detection.

the confusing scene [Figure 7D], SANet can still accurately identify the target object, while other methods ex-
cept ICON have false positives. In the complex scene [Figure 7E and F], other lightweight methods including
some heavyweight methods have false positives and negatives, while our method has demonstrated excellent
performance in the complex scene regardless of whether there is one or multiple salient targets.

4.2.5 Comparison in traffic scenarios
We use three models in TSOD for comparative experiments, and they perform well in general scenarios. These
models are trained on the TSOD dataset; the final test results are shown in Table 3 and Figure 8. From Table 3,
we can see that our method is better than the comparison methods in terms of maxF, avgF, MAE, and S. As
shown in Figure 8, we qualitatively compare our method with two other excellent lightweight SODmethods in
seven different scenarios. Figure 8A is a simple scene. It can be seen that SANet can easily identify the salient
target and depict its outline clearly. In contrast, the performance of the other two methods is unsatisfactory.
Figure 8B and C are small target scenes during the day. It can be seen that SANet still performs well for such
ultra-small targets, thanks to the fact that our proposed SAFE module is sensitive to objects of various scales.
Figure 8D is a multi-target scene. It can be seen that SANet does not mistakenly regard the large truck next to
it as a salient target, but accurately identifies the relatively small correct salient target in the distance. Figure 8E
is a multi-target scene with a complex background. SANet can also identify the unique salient target, while
SAMNet does not identify any salient objects, and CSNet includes other targets. Figure 8F is a night scene with
low contrast and interference from vehicle lights. SANet can accurately identify road signs, while the other
two methods do not identify any salient objects. Figure 8G is a small target scene at night. Although SANet
did not accurately identify the outline of the small target, it still correctly identified the road sign. In general,
compared with the other two excellent lightweight SOD methods, SANet can obtain better results in general
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Figure 8. Visual comparison of different methods in traffic scenarios. (A) Simple scene during daytime; (B) small target scene during
daytime; (C) small target scene during daytime; (D) multi-target scene; (E) multi-target and complex background scene; (F) low contrast
scene at night; (G) small target scene at night.

scenes and various challenging scenes, which also proves the effectiveness of our proposed innovations.

4.3. Failure cases
Although our proposed method achieves excellent performance in multiple scenarios, it does encounter some
failure cases. As shown in Figure 9, we provide failure cases in different scenarios and conduct an in-depth
analysis. From Figure 9A, we can see that SANet did not identify any significant targets, showing that SANet’s
recognition ability for ultra-small targets is still limited. In Figure 9B, due to the low overall contrast between
the vehicle and the background, SANet did not identify the vehicle as a significant target, but mistakenly iden-
tified the roadside sign. Figure 9C and D are multi-target scenes. SANet both mistakenly identified multiple
targets and the sizes of the acquired targets were somewhat different. This is because SANet has a strong ability
to distinguish objects of different scales. We will improve it in future experiments. Figure 9E is a multi-target
scene with a complex background. It can be seen that SANet still mistakenly identified multiple targets, and
the recognition accuracy is not high when two vehicles overlap. Figure 9F is a small target scene at night. It
can be seen that the headlights will have a certain impact on the detection results. Figure 9G is a scene with
strong light interference at night. In this scene, the noise interference is strong, which has a certain impact
on the detection results. We attribute these failure cases to the following factors: (1) The number of images
in the training set is limited and cannot cover all traffic scenarios; (2) The actual traffic scenarios are complex
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Figure 9. Failure cases of SANet. (A) Small target scene during daytime; (B) low contrast scene during daytime; (C) multi-target scene; (D)
multi-target scene; (E) multi-target and complex background scene; (F) small target scene at night; (G) strong light interference scene at
night.

and diverse, which poses a huge challenge to the performance of the model; (3) The representation ability of
lightweight networks is limited, and the network’s processing capabilities for overly complex traffic scenarios
are still insufficient.

The model we proposed currently performs poorly in traffic detection, especially in small object scenes and
complex background scenes. To address this issue, we propose several possible solutions in the future: (1)
The training set of the traffic scene SOD dataset TSOD used in this study has only 2,000 images, which is less
than one-fifth of DUTS-TR. In the future, we can improve it by increasing the number of training set images;
(2) Currently, computing power is developing rapidly, and the computing power of onboard computing is far
superior to that of the past. We may be able to improve the model’s representation capabilities for small target
scenes and complex scenes by appropriately increasing the number of model parameters and model depth; (3)
Use knowledge distillation to use large-scale networks or pre-trained models as teacher models to guide the
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Table 4. Ablation study on the proposed SANet components

Ver. Methods
DUTS-TE DUT-OMRON ECSSD PASCAL-S HKU-IS SOD

maxF↑ MAE↓ maxF↑ MAE↓ maxF↑ MAE↓ maxF↑ MAE↓ maxF↑ MAE↓ maxF↑ MAE↓

0 Basic 0.819 0.068 0.779 0.076 0.911 0.069 0.825 0.112 0.898 0.056 0.821 0.133

1 Basic+MI 0.828 0.063 0.790 0.067 0.920 0.060 0.832 0.094 0.910 0.048 0.833 0.125

2 Basic+MI+DS 0.830 0.060 0.792 0.065 0.922 0.058 0.834 0.093 0.912 0.047 0.836 0.124

3 Basic+MI+DS+MF 0.834 0.059 0.794 0.064 0.924 0.055 0.836 0.088 0.913 0.048 0.842 0.121

4 Basic+MI+DS+MF+PR 0.845 0.054 0.804 0.061 0.934 0.047 0.847 0.084 0.919 0.044 0.845 0.117

We use the vanilla single branch module as the base model (Ver.0). Here, “MI”, “DS”, “MF”, and “PR” refer to the
multi-scale feature interaction, dynamic selection, MFA module, and ImageNet pre-training, respectively.

learning of lightweight networks.

4.4. Ablation study
In this section, we conduct an ablation study on the proposed module components, the backbone network’s
effectiveness, and the SAFE module’s configuration to demonstrate our proposed model’s effectiveness. The
relevant experimental settings are consistent with those outlined in Section 4.1.

4.5. Proposed module components
Table 4 shows the results of the ablation study of the model components in this paper. As the number of
model components increases, the model performance improves progressively. Compared with Ver.0, the av-
erage values of maxF on six datasets of Ver.3 increased by 0.015 and MAE decreased by 0.014. There is no
ImageNet pre-training between Ver.0 and Ver.3, and the difference in their experimental results also shows
that the proposed model is effective.

4.6. The effectiveness of the backbone network
In addition to existing SOD methods, we also compared several widely used lightweight backbone networks,
including MobileNet, MobileNetV2, ShuffleNetV2, and EfficientNet. To use these lightweight backbone net-
works for SOD tasks, we add the same decoder as SANet to these networks for ablation study.

In Table 5, we can see that directly applying the existing lightweight backbone network to the SOD task does
not produce satisfactory results regarding accuracy. Taking EfficientNet as an example, we take the average
values of maxF, avgF, and MAE of six data sets. The results showed that compared to EfficientNet, SANet
achieved a 13.20% improvement in maxF, an 11.14% improvement in avgF, and a 44.72% reduction in MAE.
This further verifies the correctness and rationality of our redesign of the backbone network structure for SOD.

4.7. Configuration of the SAFE module
Table 6 presents the ablation study results of the SAFEmodule with varying branch numbers and dilation rates.
Increasing the number of branches in the E1-E4 stages improves some metrics, but also significantly increases
computational complexity, which contradicts our goal of maintaining a lightweight model. The default settings
of the SAFE module are selected after weighing the trade-off between model accuracy and complexity.

5. CONCLUSION
This paper reviews existing research on SOD and analyzes the challenges in current approaches. Heavyweight
SOD models face difficulties in scenarios with low computing power and high real-time requirements due to
issues such as large model size and poor real-time performance. In contrast, lightweight SOD models have
poor detection performance and struggle to handle complex scenarios. To address these problems, we pro-
pose SANet, a scale-adaptive lightweight SOD model that achieves a trade-off between lightweight design
and detection effectiveness. We first implement the SAFE module, a component unit of the backbone net-
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Table 5. Ablation study on different backbone networks

Backbone
#Param FLOPs

FPS
DUTS-TE DUT-OMRON ECSSD

(M) (G) maxF↑ avgF↑ MAE↓ S↑ maxF↑ avgF↑ MAE↓ S↑ maxF↑ avgF↑ MAE↓ S↑

MobileNet [18] 4.27 2.2 36 0.804 0.712 0.067 0.825 0.753 0.678 0.073 0.805 0.906 0.869 0.064 0.884

MobileNetV2 [19] 2.37 0.8 47 0.798 0.708 0.066 0.823 0.758 0.675 0.075 0.806 0.905 0.865 0.066 0.885

ShuffleNetV2 [21] 1.60 0.6 33 0.743 0.698 0.071 0.816 0.720 0.666 0.076 0.797 0.870 0.861 0.069 0.878

EfficientNet [32] 8.64 2.6 44 0.723 0.687 0.112 0.748 0.696 0.656 0.105 0.778 0.848 0.826 0.104 0.783

Ours 2.29 1.5 62 0.845 0.773 0.054 0.866 0.804 0.742 0.061 0.833 0.934 0.907 0.047 0.913

Backbone
#Param FLOPs

FPS
PASCAL-S HKU-IS SOD

(M) (G) maxF↑ avgF↑ MAE↓ S↑ maxF↑ avgF↑ MAE↓ S↑ maxF↑ avgF↑ MAE↓ S↑

MobileNet [18] 4.27 2.2 36 0.821 0.751 0.099 0.801 0.895 0.855 0.052 0.884 0.809 0.744 0.135 0.737

MobileNetV2 [19] 2.37 0.8 47 0.806 0.747 0.102 0.798 0.89 0.854 0.056 0.879 0.801 0.746 0.138 0.742

ShuffleNetV2 [21] 1.60 0.6 33 0.781 0.742 0.107 0.794 0.853 0.848 0.059 0.871 0.779 0.734 0.147 0.715

EfficientNet [32] 8.64 2.6 44 0.755 0.736 0.132 0.754 0.844 0.807 0.114 0.762 0.722 0.706 0.168 0.689

Ours 2.29 1.5 62 0.847 0.801 0.084 0.833 0.919 0.889 0.044 0.901 0.845 0.796 0.117 0.767

The best methods are in bold. FLOPs: Floating-point operations; FPS: frames per second; MAE: mean absolute error.

Table 6. Ablation study on the SAFE module configuration

Stage #B #D
DUTS-TE DUT-OMRON ECSSD PASCAL-S HKU-IS SOD

maxF↑ avgF↑ MAE↓ maxF↑ avgF↑ MAE↓ maxF↑ avgF↑ MAE↓ maxF↑ avgF↑ MAE↓ maxF↑ avgF↑ MAE↓ maxF↑ avgF↑ MAE↓

Default configuration 0.834 0.765 0.059 0.794 0.734 0.064 0.924 0.896 0.055 0.836 0.793 0.088 0.913 0.881 0.048 0.842 0.786 0.121

E1-E4 2 1,2 0.830 0.762 0.061 0.788 0.730 0.068 0.920 0.893 0.057 0.831 0.787 0.091 0.908 0.874 0.052 0.837 0.756 0.130

E1-E4 4 1,2,3,4 0.833 0.765 0.060 0.792 0.733 0.065 0.921 0.894 0.057 0.835 0.792 0.089 0.911 0.880 0.050 0.842 0.787 0.120

E1-E4 4 1,2,4,8 0.836 0.766 0.056 0.792 0.735 0.063 0.923 0.895 0.056 0.837 0.795 0.086 0.914 0.883 0.045 0.843 0.786 0.121

E5 3 1,2,4 0.831 0.762 0.062 0.787 0.728 0.069 0.918 0.892 0.060 0.832 0.789 0.088 0.907 0.872 0.055 0.834 0.753 0.132

“Default configuration” refers to the parameter settings in Table 1. “#B” represents the number of branches. “#D” represents the dilation rates. The number
of branches and dilation rates in the unmentioned stages are set according to the default configuration. The best methods are in bold. SAFE: Scale-adaptive
feature extraction; SOD: salient object detection; MAE: mean absolute error.

work. The module is mainly divided into multi-scale feature interaction and dynamic selection. Multi-scale
feature interaction is used to realize cross-scale feature embedding and improve the representation ability of
the network within the layer; features of various scales have different representation abilities for salient tar-
gets. To measure this difference, we deploy dynamic selection after multi-scale feature interaction to extract
useful information by assigning different weights to features of different scales. We complete the design of the
backbone network with the SAFE module as the basic unit and combine it with a decoder based on the MFA
module to realize the final SANet. We use four quantitative metrics, maxF, avgF, MAE, and S, to evaluate
the effectiveness of the model on six commonly used SOD datasets and a traffic dataset, and use parameters
(#Param), FLOPs, and FPS to evaluate the effectiveness. In addition, SANet is qualitatively compared with
state-of-the-art heavyweight and lightweight methods. The final results show that SANet achieves 62 fps on an
NVIDIA GTX 3090 GPU with only 2.29 M parameters, significantly outperforming other models. In terms
of model performance, it matches the performance of general heavyweight methods and surpasses three other
state-of-the-art lightweight methods.

In this paper, we have conducted extensive ablation experiments to validate the parameter selection of the
SAFEmodule, although further research on its theoretical foundation is needed. Therefore, in future work, we
will further explore this theoretical basis. Additionally, we aim to improve the detection performance of the
proposed model and expand its applicability to more scenarios.
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