
Zhang et al. J Mater Inf 2024;4:13
DOI: 10.20517/jmi.2024.20

Journal of 
Materials Informatics

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, 
adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as 

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

www.oaepublish.com/jmi

Open AccessResearch Article

Data-driven exploration and first-principles analysis 
of perovskite material
Lei Zhang* , Jiacheng Zhou, Xuexiao Chen

Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science & 
Technology, Nanjing 210044, Jiangsu, China.

*Correspondence to: Prof. Lei Zhang, Department of Materials Physics, School of Chemistry and Materials Science, Nanjing
University of Information Science & Technology, 219 Ning Liu Road, Nanjing 210044, Jiangsu, China. E-mail:
002699@nuist.edu.cn

How to cite this article: Zhang L, Zhou J, Chen X. Data-driven exploration and first-principles analysis of perovskite material. J 
Mater Inf 2024;4:13. https://dx.doi.org/10.20517/jmi.2024.20

Received: 29 Jun 2024  First Decision: 13 Aug 2024  Revised: 7 Sep 2024  Accepted: 18 Sep 2024  Published: 26 Sep 2024

Academic Editor: Ming Hu  Copy Editor: Pei-Yun Wang  Production Editor: Pei-Yun Wang

Abstract
In this study, we employ data-driven and first-principles methods (machine learning, density-functional theory and 
language model) to comprehensively explore crystal structures, electronic properties and applications of an 
emerging perovskite material, gadolinium scandate (GdScO3), which is an intriguing material that demonstrates 
potentials in electronics and optics. Using advanced machine learning algorithms based on genetic programming, 
we have discovered new crystal structures of GdScO3 that have not been previously reported, which are further 
examined via density functional theory (DFT) calculations and language models to provide detailed insights into 
their electronic and optical properties and potential applications. Our findings reveal novel new stable phases of 
GdScO3 and highlight the intricate influence of structural variations on its electronic band structures and light 
absorption properties. A subsequent domain-specific language model analysis indicates its possibility for 
photovoltaics pending further efforts to engineer defects revealed in the first-principles calculations. The 
integration of machine learning with first-principles calculations demonstrates a feasible approach for accelerating 
the exploration and analysis of materials. This work enriches the understanding of GdScO3 and establishes a robust 
framework for exploration and ontological analysis of new functional materials combining diverse data-driven 
techniques (e.g., language model and genetic programming) and first-principles methods.
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INTRODUCTION
In recent years, the integration of artificial intelligence (AI) and data-driven approaches has significantly 
advanced materials science, aligning with the goals of the Materials Genome Initiative (MGI)[1-5]. By utilizing 
large datasets that encompass material structures, properties, synthesis methods, and performance metrics, 
machine learning can predict material properties and, inversely, propose novel compositions with desired 
functionalities. Moreover, utilizing natural language processing (NLP) machine learning algorithms such as 
Word2Vec and large language models such as ChatGPT and MatBERT[6,7], researchers have been able to 
effectively extract latent scientific information from vast amounts of literature and propose novel material 
compositions with tailored properties[3,8,9].

Crystal structure prediction plays a critical role in physics and materials science by enabling the discovery of 
new structures of novel materials[10-15]. Software tools such as ab initio random structure searching 
(AIRSS)[16,17] and crystal structure analysis by particle swarm optimization (CALYPSO)[18,19] are exemplar 
approaches used for crystal structure prediction. AIRSS employs a random search algorithm within the 
framework of first-principles calculations to explore the structural landscape and identify the most stable 
configurations of materials. CALYPSO utilizes particle swarm optimization to efficiently search for global 
energy minima in complex potential energy landscapes, thus enabling the prediction of new and metastable 
structures. The crystal structure prediction process is often time-consuming and computationally expensive. 
However, the use of genetic algorithms has significantly accelerated this process, providing an efficient 
alternative for discovering new materials. The machine learning and graph theory-assisted universal 
structure searcher (MAGUS) software[20] utilizes advanced computational algorithms such as genetic 
algorithms and machine learning to predict the stable crystal structures of materials, and the integrated 
approach holds promise for accelerating the discovery of functional materials and optimizing their 
performance across various applications in electronics, energy storage, and beyond.

Gadolinium scandate (GdScO3), a rare earth scandate perovskite material, is of interest for applications in 
electronics[21-25]. However, the availability of its crystal structures is rather limited, impeding further 
understanding on its structure-property relationships. In electronics, the high dielectric constant and low 
loss characteristics of GdScO3 have led to its utilization in capacitors and dielectric memory devices. 
Additionally, its ion transport properties and chemical stability have positioned it as a frontrunner in solid 
oxide fuel cells and solid-state electrolytes for energy-related applications. Beyond its electronic properties, 
typical GdScO3 shows promise in optical waveguides, where its transparency and structural properties make 
it suitable for guiding light. Through density functional theory (DFT) calculations, researchers have 
unraveled the complex interplay between the atomic arrangement of oxide perovskites and their functional 
characteristics. For example, DFT simulations have elucidated the intricate oxygen vacancy formation 
energies, migration pathways, and their impact on their ionic conductivity, essential for applications in solid 
oxide fuel cells and solid-state electrolytes[26-29]. Moreover, DFT has been instrumental in predicting the 
thermodynamic stability and phase transitions of GdScO3 under various temperature and pressure 
conditions, guiding experimental synthesis efforts. Additionally, DFT simulations have shed light on the 
dopant incorporation mechanisms and their effects on the electronic band structure, aiding in tailoring its 
electronic properties for semiconductor applications. Nevertheless, there exists a gap in the exploration of 
the crystal structure of GdScO3, with a scarcity of data in materials databases. The lack of study on exploring 
alternative crystal structures of GdScO3 limits the further explorations of the perovskite material, and there 
is a pressing need for research dedicated to the generation of crystal structures for GdScO3.

In this study, we employ genetic algorithms to predict novel crystal structures of GdScO3 and analyze its 
structural and electronic properties; three new crystal structures of GdScO3 not reported elsewhere are 
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discovered. The approach leverages genetic algorithms coupled with DFT to perform crystal structure 
generation [Figure 1]. The genetically predicted new structures of GdScO3 are further examined by post-hoc 
DFT calculations for detailed characterization of structural, electronic and optical properties, including 
band structures, partial density of states (PDOS) and ultraviolet-visible (UV-vis) absorption spectra. The 
strain effects on the electronic band structure are examined based on an exemplary new crystal structure. 
Additionally, large language model analysis, combined with dimensionality reduction and clustering 
techniques, is utilized to further explore the GdScO3 material from a literature data-driven perspective, 
offering an alternative viewpoint based on insights from the model. By combining machine learning 
methods with first-principles calculations, we uncover new crystal structures of GdScO3 with distinctive 
electronic structures that can be finely tuned by strain, and ontologically analyze the material 
comprehensively using a language model starting from 1.18 million scientific articles.

METHODS
Machine learning and genetic algorithm (crystal structure generation)
The MAGUS software is employed to generate new crystal structures of GdScO3 using a combination of 
machine learning and density functional theories by leveraging evolutionary strategies. The genetic 
algorithm [Supplementary Materials] to obtain new crystal structures of GdScO3 is initiated with (1) a set of 
preliminary random crystal structures and (2) different Vienna ab-initio simulation package (VASP)[30] 
input parameters (INCAR) to fully account for the impacts of software geometrical optimization details and 
intrinsic crystal structures on the resulting crystal structures. The starting population undergoes iterative 
cycles of selection, with operations including crossover and mutation to evolve new generations of crystal 
structures. At each iteration, the crystal structures are evaluated based on their energy and stability using 
first-principles calculation, with the lower-energy configurations being preferentially selected for 
subsequent generations. The following hyperparameters are used: initSize = 20; popSize = 20; numGen: 10; 
saveGood = 3, min_n_atoms = 5; spacegroup = 2-230; d_ratio = 0.6; volume_ratio = 3. The preliminary DFT 
calculation involves Perdew-Burke-Ernzerhof (PBE) functional, 380 eV cutoff energy and convergence 
criteria (forces) of 0.01 eV/Å for atoms and 0.001 eV/Å for electrons. Four distinct k-spacing values 
expressed in different VASP input files are considered during the genetic process: KSPACING = 1.256000, 
KSPACING = 0.942, KSPACING = 0.618, and KSPACING = 0.314. These different input files act as the 
starting population to facilitate the genetic process. Full structural relaxation including unit cell parameters 
is performed, allowing the atomic positions and lattice parameters to adjust until the forces on the atoms are 
minimized and the total energy converges to stable values. Higher quality DFT calculations are executed 
based on these initial optimized structures. Through this combined approach of machine learning-driven 
genetic algorithms and DFT calculations, a diverse set of GdScO3 structures are generated and their 
electronic structures are further analyzed in detail.

New structure screening
The obtained structures based on the previous step are ranked according to their relative energy and direct 
visual inspection in the structural integrity. The top ten candidates with decent stabilities are compared with 
entries stored in publicly available crystallographic databases, including Materials Project, Jarvis, Open 
Quantum Materials Database (OQMD) and Atomly[31-33]. This process eliminates repetitive and existing 
GdScO3 crystal structures, resulting in three new crystal structures 1-3 [Table 1 and Figure 2]. The data 
associated with this article is provided and is publicly available. The optimized atomic structures are 
provided at https://github.com/Zhang-NJ-Lab/GdScO3_CSP/tree/main/Crystal_Structures/
OptimizedStructures. The initial input files for these four k-spacing values are available on the GitHub 
repository at: https://github.com/Zhang-NJ-Lab/GdScO3_CSP/tree/main/inputFold. The MAGUS input 
files (scripts) are provided at https://github.com/Zhang-NJ-Lab/GdScO3_CSP/blob/main/input.yaml 
(MAGUS yaml scripts) and https://github.com/Zhang-NJ-Lab/GdScO3_CSP/tree/main/inputFold (VASP 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202409/jmi4020-SupplementaryMaterials.pdf
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Table 1. New crystal structures of GdScO3 predicted by machine learning

Lattice Space group a (Å) b (Å) c (Å) α (°) β (°) γ (°)

1 Monoclinic Cm 6.372 3.485 8.819 90 138 90

2 Hexagonal P63/mmc 3.612 3.612 12.396 90 90 120

3 Orthorhombic Pnma 5.776 7.977 5.534 90 90 90

GdScO3: Gadolinium scandate.

Figure 1. General workflow of the integrated machine learning (genetic algorithm and language model) and first-principles process in 
this study to explore crystal structures and ontologies of GdScO3. GdScO3: Gadolinium scandate.

input files). The code and the NLP model are provided on the GitHub website: https://github.com/Zhang-
NJ-Lab/NJmatNLP/blob/main/NLP.py and https://figshare.com/articles/software/NJmatML/24607893?file=
45863628.

Post-hoc first-principles electronic structure calculation
DFT calculations are performed using the CASTEP[34,35] software package. Structural optimizations and 
property calculations are performed based on the three new crystal structures identified in the previous 
genetic+DFT step. The convergence criteria in the post-hoc DFT initial geometry optimization step are set 
to 1.0 × 10-5 eV for the energy, 0.01 eV/Å for the force, 0.02 GPa for the stress and 5.0 × 10-4 Å for the 
displacement, with PBE functional, 530 cutoff energy, ultrasoft pseudopotential and a 5 × 5 × 2 k-point set. 
Subsequently, a 9 × 9 × 4 k-point set is adopted to obtain the electronic properties such as its band 
structures, density of states (DOS) and UV-vis absorption spectra. The optimized crystal structure and the 
Magus parameter files are provided on the GitHub website (publicly available): https://github.com/Zhang-
NJ-Lab/GdScO3_CSP. For example, the three crystal structures (after geometrical optimization) are 

https://github.com/Zhang-NJ-Lab/NJmatNLP/blob/main/NLP.py
https://github.com/Zhang-NJ-Lab/NJmatNLP/blob/main/NLP.py
https://figshare.com/articles/software/NJmatML/24607893?file=45863628
https://figshare.com/articles/software/NJmatML/24607893?file=45863628
https://github.com/Zhang-NJ-Lab/GdScO3_CSP
https://github.com/Zhang-NJ-Lab/GdScO3_CSP
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Figure 2. Crystal structures of three new predicted GdScO3 with different viewpoints. (A) The monoclinic structure 1; (B) The hexagonal 
structure 2; (C) The orthorhombic structure 3. GdScO3: Gadolinium scandate.

provided at https://github.com/Zhang-NJ-Lab/GdScO3_CSP/tree/main/Crystal_Structures/
OptimizedStructures.

Literature language model
The NLP workflow to construct the language model involves several essential steps: preparing the literature 
database, preprocessing, training the literature model, and performing dimensional reduction and clustering 
for visualization purposes. The construction of the language model analyzes the ontology of GdScO3 from 
an alternative machine learning point-of-view based on the abstracts of 1.18 million scientific articles 
published in Springer Nature from 1960 to 2024 [Supplementary Materials], which corresponds to a concise 
summary of scientific information. This makes them a versatile data source despite some information loss 
compared to full texts. The searching criteria are associated with subjects in the domain of materials science, 
physics and chemistry. Additional preprocessing tasks include sentence splitting, tokenization, custom 
dictionary creation, spell checking, part-of-speech tagging, lemmatization, stemming, and tokenization. 
These steps are executed using the Natural Language Toolkit (NLTK) and verified with ChemDataExtractor 
for appropriate named entity recognition. The literature model is trained using Word2Vec with the 
following parameters: vector_size set to 100, window size of 10, sg set to 1, sample set to 1 × 10-3, and trained 
over five epochs. Additionally, t-distributed stochastic neighbor embedding (t-SNE) is employed to reduce 
the dimensionality of the word vectors, with hyperparameters set to n_components = 2 and random_state = 
42. The cosine similarity is calculated to demonstrate the evaluation of the potential applications of the 
perovskite material as follows:

https://github.com/Zhang-NJ-Lab/GdScO3_CSP/tree/main/Crystal_Structures/OptimizedStructures
https://github.com/Zhang-NJ-Lab/GdScO3_CSP/tree/main/Crystal_Structures/OptimizedStructures
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202409/jmi4020-SupplementaryMaterials.pdf
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Here, Ai and Bi represent the word vectors of the material formula and the target vocabulary in the language 
model. Cosine similarity ranges from -1 to 1, where a cosine similarity of 1 indicates that the angle between 
the two vectors is zero (more likelihood that the material can be used for certain applications), a cosine 
similarity of 0 indicates that the angle is 90°, and a cosine similarity of -1 indicates complete dissimilarity 
with an angle of 180°.

RESULTS AND DISCUSSION
Crystal structure prediction
Three new crystal structures of GdScO3 (1-3) are predicted by the machine learning crystal structure 
prediction method assisted via genetic algorithm: 1 has a monoclinic lattice and Cm space group 
(a = 6.372 Å, b = 3.485 Å, c = 8.819 Å, α = 90°, β = 138°, γ = 90°); 2 has a hexagonal lattice and P63/mmc space 
group (a = 3.612 Å, b = 3.612 Å, c = 12.396 Å, α = 90°, β = 90°, γ = 120°); 3 has an orthorhombic crystal lattice 
and Pnma space group (a = 5.776 Å, b = 7.977 Å, c = 5.534 Å, α = 90°, β = 90°, γ = 90°). The atoms in the three 
crystal structures exhibit tilted octahedrons [Figure 2] that correspond to Jahn-Teller distortions with longer 
equatorial bonds and shorter vertical bonds. In 1, the Sc–O bond lengths range from 2.04 to 2.09 Å, while 
the Gd–O bond lengths vary from 2.27 to 2.41 Å. In 2, the Sc–O bond lengths span from 2.07 to 2.09 Å, and 
the Gd–O bond length is 2.33 Å. In the structure, the planar Gd–O layers are interconnected by ScO6 
octahedrons, forming a quasi-layered architecture that may benefit the solar-rechargeable battery 
application[36,37]. In addition, 3 exhibits Sc–O bond lengths from 2.10 to 2.13 Å, while the Gd–O bond lengths 
range from 2.28 to 2.67 Å. To sum up, the crystal structures of 1-3 differ from those reported in available 
crystal databases and their electronic and optical properties will be further evaluated.

Electronic structures
The band structures of the three new crystal structures of GdScO3 predicted via genetic algorithms are 
examined to understand their electronic properties [Figure 3 and Supplementary Figure 1]. The band 
structures reveal a semimetallic pattern with a minority of band lines crossing the Fermi level near the Γ 
point before bending back. However, the semimetal feature is not significant and they can be considered as 
shallow defects that minimally influence the electronic excitation between valence band and conduction 
band in many cases[38,39]. Several semimetal materials have been demonstrated to deliver bulk photovoltaic 
effects and generate shift and injection photocurrents allowed by noncentrosymmetry[40]. Specifically, the 
monoclinic phase 1 characterized by the Cm space group exhibits an electronic band structure with a 
forbidden gap of 0.48 eV between 0.259 and 0.735 eV; this refers to a single band line ranging from -0.136 to 
0.259 eV passing through the Fermi energy, and a nearby band line ranging from 0.735 to 0.974 eV is 
available. As a result, the band structure shows an energy gap between the neighboring bands near the 
Fermi level and the defect is considered to be shallow. The semimetallic behavior of the monoclinic phase 
suggests potential applications in spintronics and thermoelectric devices, where high electrical conductivity 
and thermoelectric efficiency are desirable. The hexagonal phase 2 of GdScO3, characterized by the P63/mmc 
space group, exhibits a similar band structure feature showcasing the semimetallic behavior. For 2, multiple 
band lines pass through the Fermi energy level, such as one ranging from -0.064 to 0.086 eV and a second 
band line ranging from -0.058 to 0.122 eV. Meanwhile, there is no distinctive energy gap near the Fermi 
energy level, and the metallic behavior of 2 is suggested to be stronger than 1. In addition, the orthorhombic 
phase 3 of GdScO3 characterized by the Pnma space group exhibits a band structure indicating slight 
semimetallic behavior; e.g., a forbidden gap of 0.851 eV is available for 3 between 0.056 and 0.907 eV and 

(1)

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202409/jmi4020-SupplementaryMaterials.pdf
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Figure 3. Band structures of new GdScO3 crystal structures, including (A) the monoclinic structure 1; (B) the hexagonal structure 2; and 
(C) the orthorhombic structure 3. The Fermi level corresponding to the highest occupied state is set at 0 eV. GdScO3: Gadolinium 
scandate.

the empty states at 0.056 eV is considered to be shallow defects[41-43]. The semimetal feature observed in these 
structures can be considered as shallow defects. This is based on the fact that these defects, akin to those 
observed in perovskite materials, introduce energy levels close to the band edges. As a result, they have a 
negligible effect on electronic excitation processes, which is crucial for maintaining efficient charge 
transport in applications such as photovoltaics. The shallow nature of these defects ensures that they do not 
act as major recombination centers, aligning with the established behavior of similar defects in perovskite 
materials. To sum up, the genetic algorithm identifies three distinct crystal structures of GdScO3 with minor 
semimetallic features corresponding to shallow defects toward optoelectronic applications.

The PDOS spectra of 1-3 [Figure 4] further illustrate the details of the electronic properties of the genetic-
predicted new crystal structures of GdScO3. An energy gap is available for 1-3 near 0.5 eV. The semimetallic 
feature is more prominent for 2 because of the additional empty states near 0.4 eV. In contrast, the valence 
band and conduction band of 1 and 3 are more separated, suggesting a reduced possibility of charge 
recombination after light excitation. For 1 and 3, the Gd elements mainly contribute to the energy states 
near 0 eV while the Sr-d orbitals mainly contribute to the conduction band for 2. In addition, the oxygen-p 
orbitals are universally present in the valence bands of 1-3 and contribute strongly to the bands from -4 to 
-2 eV. It is expected that charge transfers such as Gd → Gd, Gd → Sr, O → Gd and O → Sc may occur upon 
light excitation. In the X-ray photoelectron spectroscopy (XPS) and DFT analysis in the literature[44], the O 
2p states are observed in the region from -3 to -5.5 eV, which is consistent with the present research. The 
Gd 4f states appear in a more localized region, and this spatial and energetic proximity suggests interactions 
between the O 2p and Gd 4f orbitals, indicating a potential charge transfer from oxygen to gadolinium. 
Additionally, the presence of Gd 5p states and Sc 3p states provides further evidence of charge distribution 
involving Gd and Sc atoms. The consistency between these XPS features and DFT calculations supports the 
proposed charge transfer pathways, particularly O → Gd and O → Sc. As a result, the optoelectronic 
performance of these new crystals of GdScO3 is considered to be decent, and further structural engineering 
is required to further optimize the optoelectronic properties of these crystals.

The simulated UV-vis absorption spectra of 1-3 [Figure 5] demonstrate distinctive absorption bands in the 
UV-vis region. The absorption intensity is higher for 3 between 450 and 700 nm in the visible region 
(reaching 30,000 at the peak wavelength of 525 nm). However, 1 displays a strong absorption band near 
800 nm, which is distinctive among the three. The absorption intensity of 2 in the visible region is 
comparatively inferior; however, 2 exhibits a large UV absorption intensity at 300 nm in the UV region. To 
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Figure 4. PDOS spectra of the GdScO3. (A-D) Total DOS (total) and projected DOS (s, p and d) of 1; (E-H) Total DOS and projected 
DOS of 2; (I-L) Total DOS and projected DOS of 3. PDOS: Partial density of states; GdScO3: gadolinium scandate; DOS: density of states.

Figure 5. Simulated UV-vis absorption spectra of GdScO3 crystal structures. UV-vis: Ultraviolet-visible; GdScO3: gadolinium scandate.

conclude, the new GdScO3 perovskite structures demonstrate decent absorption in the UV-vis region 
toward optoelectronic applications.

Strain effects
The strain effects on the band structure of material 1 are evaluated by applying strains ranging from -10% to 
10%, in increments of 2% [Figure 6]. This range includes both compressive (negative) and tensile (positive) 
strains, allowing for a comprehensive analysis of how different strain levels influence the material’s 
electronic properties. The band structures exhibit intricate changes as the strain is varied from compression 
(-10%) to tension (+10%). The symmetry of the band structures changes with strain; under compressive 
strain, the band lines show higher symmetry compared to those under tensile strain. In addition, the 
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Figure 6. Band Structure of the monoclinic structure 1 with strain level from -10% (compressive strain) to 10% (tensile strain): (A) -
10%, (B) -8%, (C) -6%, (D) -4%, (E) -2%, (F) 0%, (G) 2%, (H) 4%, (I) 6%, (J) 8%, (K) 10%.

bandwidth changes with the strain values, with certain bands widening or narrowing significantly as the 
strain varies, highlighting the intricate sensitivity of the material’s electronic band structure to mechanical 
strain. (1) Applying compressive strain to GdScO3 causes variation in the band lines that cross the Fermi 
level, resulting in a less pronounced crossing at the Γ and Y points in the Brillouin zone and potentially a 
reduction in the level of defects near the Fermi level toward optoelectronic application. In addition, this 
influences the effective mass of charge carriers as well as charge carrier mobility and electrical conductivity. 
The negative strain causes smaller energy separation between the neighboring empty band near 1 eV and 
the valence bands, leading to less pronounced semimetallic behavior under compressive strain; (2) 
Conversely, under tensile strain, the band line that crosses the Fermi level shifts upwards near the special 
points including M and A. Nevertheless, the level of defects near the highest occupied states is not 
prominent and the separation between the conduction band near 1 eV and the valence band near 0 eV is 
distinctive; this is associated with a shallow defect and desirable band gap formation in topological 
materials. Apart from that, the application of tensile and compressive strain often witnesses a reduction in 
the amount of empty states above the highest occupied states, signifying a possible minimization of 
undesirable defects near the valance band toward optoelectronic applications. These observations are crucial 
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for photovoltaic applications where the material may be subjected to varying mechanical stresses, such as in 
flexible electronics or strain-engineered semiconductors.

The simulated UV-vis absorption of 1 further displays the impacts of mechanical strain on the 
optoelectronic properties of GdScO3 [Figure 7]. Three distinctive regions in the UV-vis spectra are clearly 
influenced by the strain: a band in the UV region centered at 350 nm; a second band in the visible region 
centered at 590 nm; a third band in the near-infrared region centered at 850 nm. For the first band in the 
UV region, shifting from the negative strain to the tensile strain (from -10% to 10%) results in a monotonic 
absorption intensity reduction (bleaching effects). Nevertheless, both bands peaked at 590 and 850 nm 
demonstrate an initial reduction in the absorption intensity but a subsequent upward shift in the intensity 
when the tensile strain is more prominent. The transition occurs at strain = -4% for the band peaked at 
590 nm and strain = -2% for the band peaked at 850 nm. As a result, both tensile and compressive strains 
may lead to enhanced absorption intensity in the visible and near-infrared region, while the absorption 
intensity is higher for the compressive strain and lower for the tensile strain in the UV region. To sum up, 
the light absorption properties of the predicted GdScO3 can be strongly influenced by external mechanical 
stimuli.

Language model analysis of GdScO3

The ontology of GdScO3 material is comparatively insufficiently investigated and a holistic investigation is 
carried out in this study using language model employing 1.18 million scientific articles. The textual words 
are vectorized to evaluate the latent relationships between materials and their potential applications 
[Figure 8]. The NLP workflow for constructing the language model involves several key steps, including 
preparing the literature database, preprocessing, training the model using Word2Vec with a skip-gram 
approach, and performing dimensionality reduction for visualization [Supplementary Materials]. The 
literature database, built using the SpringerNature API, spans physics and chemistry publications from 1960 
to 2020, covering abstracts from 1.18 million articles. In the skip-gram model, a shallow neural network is 
employed in an unsupervised manner to convert each word into a 200-dimensional vector. This model 
optimizes the probability P(wc|wt) of a context word wc given a target word wt, by minimizing the loss 
function J, where wt is the center word and wt-1, wt-2, wt+1, wt+2 are the surrounding context words. To 
visualize the high-dimensional word vectors, t-SNE is used, which reduces the dimensionality by preserving 
the local structure of data, effectively mapping similar high-dimensional points to nearby points in lower 
dimensions. This method minimizes the divergence between probability distributions of points in the high-
dimensional space and their corresponding low-dimensional representations. Finally, cosine similarity is 
calculated to evaluate the potential applications of materials, and they are ranked for photovoltaic 
applications. Known solar cell materials such as FAPbI3, CIGS, MAPbI3, GaAs, CdTe, and InP are identified. 
GdScO3, with comparable cosine similarity, suggests potential as a promising photovoltaic material, as 
corroborated by the clustering effects observed after t-SNE dimensional reduction. Currently, the 
applications of GdScO3 are mainly limited to high-k dielectric material in electronic devices, thin film 
capacitors and as a substrate for the epitaxial growth of materials in advanced electronic devices. However, 
the language model suggests that the GdScO3 material is also recommended for various alternative 
applications related to semiconductors, photoconductivity, composites, photoemission, interfaces, devices 
and photovoltaics. For example, the language model recommends GdScO3 for photovoltaic application; 
after t-SNE, GdScO3 clusters with CIGS, CIGSe, GaAs and MAPbI3 that are typical solar cell materials (dark 
region) [Figure 9 and Supplementary Figure 2]. In addition, the cosine similarity between GdScO3 and 
photovoltaic is high, and the similarity value is comparable to that of typical solar cell materials such as 
CdTe and InP. This suggests the possibility of this perovskite oxide material for optoelectronic application. 
This, to some extent, contradicts the previous DFT calculations regarding the defects and semimetallic 
features of GdScO3. However, the following two points are suggested to justify the suitability of GdScO3 for 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202409/jmi4020-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202409/jmi4020-SupplementaryMaterials.pdf
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Figure 7. Strain effects on the simulated UV-vis absorption spectra of the monoclinic structure 1. (A) Negative strain effects; (B) Positive 
strain effects. UV-vis: Ultraviolet-visible.

Figure 8. Language model analysis for GdScO3. (A) Workflow of the language model construction and materials analysis, starting from 
scientific literature database and followed by preprocessing, model construction, dimension reduction and materials prediction. Here, 
the skip-gram method to predict textual words; (B) Ranking of exemplar materials identified by the language model toward photovoltaic 
application based on cosine similarity. GdScO3: Gadolinium scandate.

photovoltaic applications. (1) The semimetallic features of 1-3 are not completely detrimental for 
photovoltaics evidenced by the apparent forbidden gap next to the band lines near the Fermi level, and the 
defects are considered to be shallow toward the light excitation; (2) Photovoltaic effects have been observed 
in several semimetal materials, including the colossal mid-infrared bulk photovoltaic effect in a Type-I Weyl 
semimetal, and optically induced thermal gradients via the Seebeck effect are suggested to benefit the 
current production provided with careful balance of the optical, electronic and thermal material 
properties[40,45,46]. In addition, for perovskite-based materials (where the target word is perovskite and the 
cosine similarity is calculated between the material formula entity and the application entity), the GdScO3 
material clusters with MAPbI3, FAPbI3 and MAPbBr3 that are typical hybrid perovskite materials toward 
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Figure 9. Visualization of language model for analyzing GdScO3 toward various potential applications, which are based on t-SNE 
dimension reduction from a language model using 1.18 million scientific articles. The following targets are evaluated: (A) perovskite, (B) 
semiconductor, (C) photovoltaic, (D) photoconductivity, (E) composite, (F) photoemission, (G) interfaces and (H) devices. GdScO3: 
Gadolinium scandate; t-SNE: t-distributed stochastic neighbor embedding.

photovoltaic applications. Meanwhile, the spatial distribution of GdScO3 is far away from the comparatively 
inferior halide perovskite CsPbI3 material toward the photovoltaic application, manifesting the potential of 
GdScO3 toward this particular application. Moreover, the GdScO3 material clusters well with CIGS, GaAs 
and InP for semiconductor application. Similarly, higher cosine similarity is observed between GdScO3 and 
various applications such as photoconductivity, composite, photoemission, interfaces and devices. To sum 
up, the language model obtained via 1.18 million scientific articles suggests that GdScO3 is a possible 
material for photovoltaic applications.

CONCLUSION
A hybrid approach combining genetic algorithms and DFT is employed to explore novel crystal structures 
of GdScO3 and elucidate the electronic properties based on monoclinic (Cm), hexagonal (P63/mmc) and 
orthorhombic (Pnma) crystal systems. The post-hoc DFT calculations provide detailed insights into the 
crystal structures and electronic and optical properties of these new phases, suggesting the possibility for 
optoelectronic applications despite the existence of shallow defects. The electronic properties can be fine-
tuned by mechanical strain. Additionally, leveraging language model analysis with dimensionality reduction 
and clustering techniques enables a data-driven ontological exploration of GdScO3, and further suggests the 
possibility of GdScO3 toward photovoltaic applications. This integrated approach enhances the 
understanding of GdScO3 and establishes a robust framework for exploring novel functional materials 
combining DFT calculations and machine learning methods.
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