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Abstract
Machine learning (ML) has advantages in studying fundamental properties of materials and comprehending 
structure-property correlations. In this study, we employed sure independence screening and sparsifying operator 
(SISSO) method (ML technique) to explore the experimental dielectric constant, temperature coefficient of 
frequency resonator, and quality factor of inorganic oxide microwave dielectric materials. Among the constructed 
white-box models, the highest accuracy, with a coefficient of determination (R2) of 0.8, was observed in predicting 
the dielectric constants of the quaternary materials. Additionally, we proposed a straightforward strategy to merge 
the ternary and quaternary datasets in a single training, aiming to address the issue of data scarcity in ML research. 
Although this strategy slightly compromises the model accuracy, it has the advantage of creating a more unified 
trained model for structural-property relationship understanding. Using the unified and interpretable model trained 
with the merged dataset, we derived a general rule governing the dielectric constant of materials. Our ML findings 
regarding the dielectric property provide fundamental insights for designing microwave dielectric materials with 
diverse dielectric constants.
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INTRODUCTION
Microwave dielectric materials have a wide range of applications in the fields of communication, the 
internet, and the military[1,2]. The dielectric constant (εr), quality factor (Qf), and temperature coefficient of 
the frequency resonator (τf) are three crucial dielectric properties[3] that significantly impact the performance 
of these dielectric materials. Therefore, designing microwave dielectric materials with optimized dielectric 
parameters is of utmost importance. However, the traditional trial-and-error approach requires a 
substantial number of experimental resources. Consequently, there is a growing interest in leveraging high-
performance computer-assisted research to minimize experimental consumption and accelerate the 
discovery of novel materials[4-9].

In recent years, high-throughput density functional theory (DFT) calculations have been employed to 
determine the dielectric constant of materials[10-13]. Nevertheless, the computational requirements remain 
high when dealing with a large number of materials or complex systems. With the advancements in 
machine learning (ML) techniques, considerable efforts have been made in materials research to extract key 
factors influencing material properties from extensive datasets. Currently, ML methods have been applied to 
investigate the dielectric property[14-18] using both theoretical and experimental data. However, these 
investigations are classified as “black-box” methods, making physical evaluations of the resulting models for 
application in material design difficult. Moreover, previous studies predominantly focused on the dielectric 
constant, neglecting the exploration of the remaining two important parameters of microwave dielectric 
materials.

In this work, we gathered and organized experimental data on the dielectric properties of microwave 
dielectric materials. A total of 1,419 single-phase material data on dielectric properties were included. After 
applying several ML regression methods on the cleaned dataset, we finally employed the sure independence 
screening and sparsifying operator (SISSO) method[19] because of its interpretability. By considering the 
elemental properties, composition information, and structural details of the material, we constructed a 
feature space for ML analysis. To reduce the dimension of the features, we utilized the random forest (RF) 
method[15] to filter important features. The filtered features were used in the SISSO training process to 
develop a predictive model for the dielectric properties of materials. Additionally, we addressed the 
challenge of varying feature space sizes due to different numbers of components in materials by employing a 
simple chemical formula splitting approach to merge ternary and quaternary datasets. This merging strategy 
enabled us to train a larger dataset and develop a unified predictive model, albeit with a slight sacrifice in 
accuracy. Finally, through analysis of the trained model, we derived general trends regarding the influence 
of material features on dielectric properties, providing valuable guidance for future microwave dielectric 
materials design.

METHODS
Data collection and processing
The microwave dielectric properties, including εr, τf and Qf, are gathered from previous work based on 
experiment measurements[1,2,18,20-23]. The dataset encompasses various types of materials, including single-
phase, multiphase, and glass compounds. To streamline our analysis, we will mainly focus on a subset of 
1,419 single-phase materials, comprising 1,419 εr, 1,188 τf, and 1,320 Qf values. Within this single-phase 
dataset, materials were further categorized into binary, ternary, quaternary, quintuple, and six-member 
materials.
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Feature space construction
Figure 1 represents the schematic framework of our ML approach. The feature space was constructed based 
on the atomic properties[24,25], compositional features, crystal structure features, and ionic properties of the 
materials in the database. The elemental compositions were normalized according to the chemical formulas 
of the materials. Crystal structure information (coordination number) was obtained from the Materials 
Project database[13], resulting in 563 crystal structures. Then, the atomic coordination numbers of each 
element in the chemical formula for these structures are analyzed. For materials without crystal structure 
information, we compared their chemical formulas with those having crystal structures and matched the 
atomic coordination number approximately if the chemical formula is similar, and the coordination 
number of the corresponding atomic position is the same. The elemental valence states were determined 
from the chemical formulas, and in combination with the coordination numbers, we derived the 
corresponding ionic radii[26].

Based on the feature space construction method, each element corresponded to 64 feature information, 
including 60 elemental features, composition, coordination number, elemental valence, and ionic radius. 
Therefore, the feature space for each material consists of n × 64 features, where n is the number of elemental 
species in the material. However, the computational requirements of the SISSO method increase 
significantly as the feature space grows. To mitigate this issue, we employed the RF method[15] for the 
dimensionality reduction of the feature space. Specifically, the impurity-based feature importance measure 
within the RF method was employed, commonly referred to as Gini importance. This measure evaluates the 
significance of a feature by assessing the change in Gini impurity that results from splitting on that feature. 
The Gini impurity reduction across all trees in the forest provides an aggregate measure of feature 
importance. By leveraging RF calculations, we were able to ascertain the relative importance of each feature 
within our feature space. Then, only a few features with degrees of high importance were selected to 
construct the SISSO feature space.

Achieving an adequate model to characterize material properties often requires the use of high-dimensional 
descriptors. However, the computational resources required for training high-dimensional descriptors in 
SISSO are extremely demanding. Therefore, an alternative strategy is necessary to overcome this challenge. 
Here we propose an iterative running approach to enhance the complexity of SISSO output descriptors. 
Each execution of the SISSO generates new descriptors by mathematically combining descriptors from the 
feature space. These new descriptors are then added as new features to the original feature space, and the 
process continues iteratively. This iterative running and feature space updating method facilitates rapid 
increases in the dimensions of the output model generated by the SISSO method. The schematic 
descriptions are illustrated in Figure 1. The iterative running approach, combined with feature space 
updates, allows for continuous improvement in model complexity and prediction accuracy.

RESULTS AND DISCUSSIONS
ML-based dielectric properties for quaternary/ternary materials
The distribution of εr in the database shows that over 96% of the data falls within the range of 0 to 100, with 
only a small number of materials having εr higher than 100. To ensure balanced representation in the 
training set, we restrict the subsequent training to materials with εr below 100. Similarly, about 90% of the 
collected materials have the τf ranging from -100 to 100 ppm/K. Additionally, more than 93% of the Qf 
values are within the range of 0 to 1.05 × 105 GHz. Therefore, the training set is also limited to materials 
within these ranges to ensure adequate representation.
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Figure 1. The schematic framework of our ML. In SISSO-based ML, an iterative strategy is chosen to enhance the complexity of the 
model. The iterative processing will be considered convergence when the increase of R2 is less than 0.02. ML: Machine learning; SISSO: 
sure independence screening and sparsifying operator; R2: coefficient of determination.

Given the challenges of including datasets with different numbers of components and feature space 
dimensions in the same training set, we initially focus on ML of dielectric properties for only quaternary 
materials since they make up 51% of the single-phase dataset. After restricting the εr values within the 
training set, 571 dielectric constants for the quaternary material are left, which will ultimately be utilized for 
training. The statistical comparisons of the distribution of the original and cleaned (for ternary and 
quaternary materials) datasets for the dielectric properties are represented in Figure 2.

Using the feature space construction method described earlier, we generated a total of 256 (4 × 64) features 
for each material in the quaternary εr datasets. Prior to engaging in SISSO-based model predictions, we 
conducted a thorough evaluation using a suite of numerical regression algorithms. These included gradient 
boosting regression (GBR), random forest regression (RFR), adaptive boosting regression (ABR), kernel 
ridge regression (KRR), and support vector regression (SVR), all aimed at predicting the quaternary 
dielectric constant. To ensure the robustness of our analysis, the entire dataset was randomly partitioned, 
allocating 80% for training and the remaining 20% for testing. The performance of the optimized models 
derived from these algorithms was rigorously assessed using two key metrics, as depicted in Figure 3: the 
coefficient of determination (R2) to evaluate the strength of the correlation, and the root-mean-square error 
(RMSE) to quantify the prediction error. Figure 3 reveals that the GBR method emerged as the most 
effective, exhibiting the highest R2 value of 0.80 and the lowest RMSE of 6.93 on the testing set. The 
predictive outcomes are graphically represented as scatter plots in Figure 4, with distinct visualizations for 
data from both the training and testing sets.
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Figure 2. The distribution of the original and cleaned (selected ternary and quaternary materials) database. (A-C) represent the 
dielectric property of εr, τf, Qf, respectively.

Figure 3. Comparison of the predictability of the five different regression models. (A) R2; (B) RMSE. R2: Coefficient of determination; 
RMSE: root-mean-square error.

While the GBR model demonstrated remarkable accuracy, the results from our five-fold cross-validation are 
unacceptable, which yielded an RMSE of 11.95 and, notably, a negative R2 value, underscores the lack of 
generalization capability. These findings, coupled with the inherent limitations of “black-box” models in 
providing interpretable physical insights, have prompted us to seek alternative modeling strategies. Our 
subsequent focus on symbolic regression using the SISSO approach is driven by the need for a more 
transparent and interpretable model that can elucidate the underlying relationships within the data.

In pursuit of this goal, we turned our attention to feature selection, a critical step in preparing for SISSO 
analysis. To reduce the dimensionality for SISSO and identify the most influential features, we employed an 
RF-based importance ranking, as depicted in Figure 5A. This ranking is essential for understanding how 
each feature correlates with the dielectric constant εr and for guiding the selection of key predictors in our 
symbolic regression model. The symbols “A”, “B”, “C”, and “D” represent the four components present in 
the quaternary material system. In our database, the quaternary material components A-B-C-D are 
arranged according to the following rules, which may differ from the traditional arrangement in the 
chemical formula. For instance, A is typically alkaline-earth metals or rare-earth elements, C is transition 
metals, B can be any element found in A or C, and D is always oxygen. Furthermore, the order of elements 
in the chemical formula is usually sorted from left to right based on the electronegativity, with lower 
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Figure 4. Scatter plot of the predicted dielectric constant versus the experiment reports using different ML models. (A) GBR; (B) RFR; 
(C) ABR; (D) KRR; and (E) SVR. ML: Machine learning; GBR: gradient boosting regression; RFR: random forest regression; ABR: adaptive 
boosting regression; KRR: kernel ridge regression; SVR: support vector regression.

Figure 5. ML results of εr for quaternary materials. (A) RF ranking of the importance of material features for εr in the quaternary material 
dataset; (B) The variation of R2 and RMSE (in the black bracket) as a function of SISSO iterations; (C) Scatter plot of the predicted 
dielectric constant versus experiment reports after four iterations. ML: Machine learning; RF: random forest; R2: coefficient of 
determination; RMSE: root-mean-square error; SISSO: sure independence screening and sparsifying operator.

electronegativity on the left and higher electronegativity on the right.

Six most significant features are selected for constructing the SISSO training feature space (4 × 6 = 24 for 
each material), including element ratio (x), coordination number (cn), ionic radius (ir), atomic chemical 
potential (cp), atomic mass attenuation coefficient for CrKα (mac), and atomic polarizability (ap), as shown 
in Figure 5A. These features are used to train the SISSO model iteratively, with new descriptors generated in 
each round of training. The training results are shown in Figure 5B and C. After four iterations, the 
prediction model achieved an R2 accuracy of 0.8. The equation representing the prediction model can be 
found in Supplementary Equation (1). We will delve into a detailed discussion later.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4075-SupplementaryMaterials.pdf
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A five-fold cross-validation was also performed. The results of these cross-validation iterations are 
presented in Table 1. They demonstrate that our model not only achieves high accuracy on the training data 
but also maintains consistent performance across different validation sets. This consistency indicates that 
our SISSO-based model is not overfitted with the training data and has a strong generalization capability. 
Based on this foundation, we further investigate the impact of utilizing a newly optimized polarizability 
database[27] on our model’s accuracy. Incorporating this database, we observed a comparable level of 
accuracy, with an R2 of 0.78 and an RMSE of 7.68. This additional analysis, while not altering our primary 
conclusions, provides valuable insights into the sensitivity of our model to different polarizability values and 
further underscores its reliability.

The same approach is applied to study the τf and Qf of the quaternary materials. The feature space is 
expanded to include the dielectric constant as an additional feature, resulting in a total of 4 × 64 + 1 = 257 
features. The RF importance ranking of these features for τf and Qf are shown in Supplementary Figure 1A 
and 2A, respectively. Prediction models for τf (Qf) are developed using this feature space, and their 
performance is depicted in Supplementary Figure 1B and C (Supplementary Figure 2B and C), as given in 
Supplementary Equations (2 and 3).

We observe that the prediction models for τf and Qf have lower accuracies than the model for εr. This 
discrepancy is likely due to the influence of extrinsic factors, such as sintering temperature, which can cause 
variations in τf and Qf, leading to inconsistencies across different studies[28-35]. Currently, these external 
factors are not reflected in our feature space, which may also be incomplete, missing critical information 
pertinent to τf and Qf. Consequently, these limitations can affect the models’ ability to accurately fit the data.

Similar investigations were performed for the εr, τf and Qf ternary dielectric materials. The results and 
formulas of these investigations can be found in Supplementary Figures 3-5 and Supplementary Equations 
(4-6). The observations made in the ternary materials align with those in the quaternary materials, leading 
us to concentrate on dielectric constant predictions due to their more accurate prediction model. It was 
observed that the dielectric constant formulas for quaternary and ternary dielectric materials 
[Supplementary Equations (1 and 4)] exhibit a comparable trend in terms of the influence of atomic 
characteristics, such as mass attenuation coefficient and atomic polarizability of elements at different 
positions, on the calculation results. However, there are differences in the impact of material composition 
information and coordination numbers on the prediction of εr between the ternary and quaternary models. 
These differences suggest variations in the data distribution of dielectric constant datasets between ternary 
and quaternary datasets.

These findings emphasize the significance of merging the datasets to create a unified prediction model 
capable of capturing common trends and characteristics across multi-component material systems. By 
combining data from ternary and quaternary materials, it becomes possible to develop a more 
comprehensive and robust prediction model that can generalize well to different compositions and 
structures. This would enhance our understanding of the structure-property relationships in dielectric 
materials and enable more accurate predictions for a wider range of material systems.

ML of dielectric constant for merged multi-component dataset
Considering the characteristics of our dataset, which primarily consists of inorganic oxide materials, it is 
worth noting that most quaternary materials are obtained by doping ternary materials at specific cationic 
sites. Therefore, we can see the ternary materials as quaternary by splitting the cation sites in the chemical 
formula. The ternary oxide (AiBjOk) can be split in two different ways: AiBjOk → AxiA(1-x)iBjOk or AiBjOk → 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4075-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4075-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4075-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4075-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4075-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4075-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4075-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4075-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4075-SupplementaryMaterials.pdf
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Table 1. Cross-validation results for dielectric constant using the quaternary dataset

Training groups Testing group Training R2 Training RMSE Testing R2 Testing RMSE

1~4 5 0.77 7.75 0.75 8.56

1~3, 5 4 0.79 7.35 0.72 9.40

1, 2, 4, 5 3 0.77 7.84 0.76 7.67

1, 3~5 2 0.76 8.16 0.75 6.94

2~5 1 0.78 7.55 0.71 8.99

Average 0.77 7.73 0.74 8.31

R2: Coefficient of determination; RMSE: root-mean-square error.

AiBxjB(1-x)jOk. By employing the splitting methods, the ternary oxide materials are transformed into 
quaternary-like materials. In the feature space construction, we duplicate the feature information of the 
corresponding site. This allows us to merge the ternary oxides with the original quaternary oxides, thereby 
expanding the dataset in a single training.

Before proceeding with the ML analysis of the merged dataset, it is crucial to understand the potential 
impact of splitting methods and splitting ratio (x) on the training results. To address this, we perform ML 
studies on the quaternary-like dataset (the split ternary dataset) using the two distinct splitting methods and 
varying splitting ratios. We found that neither the splitting methods nor the splitting ratio had an effect on 
the results when compared to those obtained from the original ternary dataset. The prediction accuracy of 
R2 remains consistent with that using the original training model. This observation provides a robust basis 
for merging the quaternary-like dataset with the original quaternary dataset, thus supporting further 
analysis.

In the subsequent ML training using the merged dataset (quaternary and quaternary-like), we adopted a 
splitting ratio of x = 0.5. It is worth noting that the choice of splitting methods, AiBjOk → A0.5iA0.5iBjOk or 
AiBjOk → AiB0.5jB0.5jOk, may potentially influence the training model for the merged dataset. Consequently, 
we consider three different splitting strategies in our simulations: (1) exclusively splitting the A sites 
(Strategy-A); (2) exclusively splitting the B sites (Strategy-B); and (3) randomly selecting either A or B sites 
for splitting (Strategy-AB).

Figure 6A compares the training results of different merging strategies with the original training model. The 
models trained using the combined datasets are consistently less accurate than those trained using either 
dataset alone. Furthermore, we observed differences in accuracy among the different merging strategies 
when no iteration was performed. Notably, Strategy-B achieved the highest accuracy. This is likely because, 
in the quaternary dataset, the main doping site is at the B site, which aligns with the actual doping situation 
for the B site in the quaternary materials. However, after a few iterations, we found that the accuracy of all 
three strategies became much closer. This indicates that as the model complexity increases, the choice of 
merging strategies no longer affects the overall accuracy.

To analyze the reason behind the decrease in accuracy of the merged dataset, we speculate that it is 
primarily due to the differing distribution characteristics of the ternary and quaternary material dielectric 
constant datasets. To demonstrate this, we present the prediction accuracies for the corresponding ternary/
quaternary database using different models (trained by Strategy-AB, the original quaternary and ternary 
datasets) in Figure 6B and C. For the single quaternary dataset, the model trained with Strategy-AB 
generally exhibits lower prediction accuracy than the model trained solely on the quaternary dataset. 
However, the overall trend with the number of iterations aligns with the expectation, as indicated by the 
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Figure 6. R2 values for the merged dataset of ternary and quaternary. (A) The comparison of R2 obtained by the merged dataset with 
three different strategies and the training model for the ternary (quaternary) dataset alone; (B) Comparison of the predicted R2 for the 
original quaternary dataset by using the models obtained by strategy-AB and the original quaternary dataset; (C) Comparison of the 
predicted R2 for the quaternary-like (ternary) dataset by using the models obtained by Strategy-AB and the original ternary dataset. R2: 
Coefficient of determination.

purple stars in Figure 6A. On the other hand, the prediction accuracies of the quaternary-like (ternary) 
dataset using the Strategy-AB trained model are consistently worse overall, and they do not show a 
consistent pattern with iterations. This demonstrates that the εr for the ternary material dataset used in this 
study has a distinct distribution compared to the εr for the quaternary material dataset. Given that the 
amount of quaternary material data used is 2.5 times larger than the ternary material data, merging these 
differently distributed datasets and training a model on them results in a final model that tends to be closer 
to the quaternary dataset and deviates from the ternary dataset. As a result, this leads to a decrease in the 
prediction accuracy of the model for either single quaternary or single ternary datasets.

Interpretation of the model and rational design
We employed an iterative training approach to update the feature space in our research. However, as we 
progressed through several iterations, the resulting trained model became excessively intricate, which 
presented difficulties in terms of analysis. Nonetheless, we observed that the model’s prediction accuracy 
improved after two iterations compared to a non-iterative model. Therefore, to facilitate a more thorough 
investigation of the underlying physics, we opted to analyze the model after two training iterations. A 
generalized fitting model, developed by Strategy-AB, for the merged ternary-quaternary oxide system (the 
corresponding parameters are listed in Supplementary Table 1), is given as:

In order to gain a clearer understanding of the equation mentioned above, the normalized contribution of 
each term to the dielectric constant is estimated. The results are depicted in Figure 7, clearly illustrating the 
distinct contribution ratios of each term. In materials with high dielectric constants, the first two terms have 
a dominant influence on the dielectric constant. Therefore, when designing systems with high dielectric 
constants, it is crucial to consider the characteristics and variations represented by these terms. Conversely, 
the third term becomes the primary factor influencing the dielectric constant in materials with low dielectric 
constants (e.g., less than 25). Hence, when designing systems with lower dielectric constants, it is essential to 
consider the characteristics encompassed by all three terms.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/jmi4075-SupplementaryMaterials.pdf
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Figure 7. Normalized contribution of the dielectric constant prediction given by each term in the trained model using the Strategy-AB 
dataset after two iterations. The black solid line shows the variation of the dielectric constant from large to small. The colored dots 
correspond to the contribution of the first to the fourth term (red-blue-green-magenta) in the equation to the dielectric constant, while 
the corresponding solid lines represent the fitting of these respective contributions.

In detail, the following findings were observed: 
(a) A positive correlation between the dielectric constant and the mass attenuation coefficient of elements 
A, B, and C. 
(b) The dielectric constant is positively correlated with the chemical potential of the element in the A site 
and negatively correlated with the chemical potential of the element in the C site. 
(c) The dielectric constant is negatively correlated with the atomic polarizability of the element in the C 
position. 
(d) The dielectric constant is positively correlated with the normalized number of elements in C and D sites 
in the chemical formula.

These findings provide some general guidelines. To achieve lower dielectric constants, the A position can be 
filled with elements such as Li, Na, and Mg, which have lower elemental mass attenuation coefficients. 
Additionally, Li and Na possess suitable chemical potential values for achieving low dielectric constants. In 
the C position, choosing B (boron) is advantageous for minimizing the dielectric constant due to its lower 
elemental mass attenuation coefficient, which consists of previous experimental reports very well[30,36,37]. 
Despite boron has low atomic polarizability, it is the mass attenuation coefficient that predominantly 
influences the reduction of the dielectric constant. This subtlety underscores the intricate balance of atomic 
properties that collectively dictate dielectric performance. Conversely, for materials with higher dielectric 
constants, the A position can be occupied by elements such as Ag, Pb, and Bi, which have large mass 
attenuation coefficients and chemical potential. In the C position, Zr is the most favorable choice for 
achieving high dielectric constants due to its chemical potential and atomic polarizability values. 
Additionally, Ti is also more likely to result in large dielectric constants.

Our results offer valuable insights and guidelines for the rational design and selection of elements in the 
different positions to create new dielectric materials with desired dielectric constants. By considering the 
elemental properties, such as mass attenuation coefficients, chemical potentials, and atomic polarizability, 
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researchers can make informed choices in the design process. These guidelines provide a framework for 
developing dielectric materials with tailored properties, contributing to advancements in material science 
and technology.

CONCLUSION
In this study, we employed the SISSO method to investigate the dielectric properties of microwave dielectric 
materials, specifically focusing on the dielectric constant, quality factor, and temperature coefficient of the 
frequency resonator. A predictive model with high interpretability was developed. While the model’s 
accuracy was influenced by varying experimental conditions, the results regarding the dielectric constants 
were particularly valuable. To address the challenge of merging datasets with different numbers of 
components, a straightforward splitting chemical formula approach was proposed. This method allows for 
training on a combined (larger) dataset of dielectric constants for multi-component compounds. The 
analysis of the prediction model also revealed a general guideline for tuning the dielectric constant of 
materials. The proposed approach of combining datasets with different numbers of elements for dielectric 
properties can be applied to other properties in future ML investigations of multi-component materials. 
Moreover, the insights acquired from evaluating the prediction model offer valuable guidance for 
developing future microwave dielectric materials.
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