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Abstract
The worldwide usage of surgical face masks (SFM) has increased rapidly during the COVID-19 pandemic. Its 
degradation possibly produces billions of microplastics (MPs) in the environment. To quantify the release of 
microfibers (MFs), unused SFM were treated with eight different aqueous solutions, each with five replications in 
two categories, i.e., freshwater (FW) treatments [800 mL FW, 40 mL of 95% alcohol + 800 mL FW, 40 mL of 
30% H2O2 + 800 mL FW, and 4 g sodium dodecyl sulfate (SDS) + 800 mL FW], and saltwater (SW) treatments 
(800 mL SW, 40 mL of 95% alcohol + 800 mL SW, 40 mL of 30% H2O2 + 800 mL SW, and 4 g SDS + 800 mL 
SW) at 25 °C for 60 days. The predominant MFs disposed from SFM were transparent and sized between 1.0 to 
< 0.5 mm. The mean highest amount of MFs observed was 4,911.3 (1-day) and 6,180.24 (30-day) in sodium 
dodecyl sulfate (SDS) mixed with SW, and 7,269.7 (60-day) in SDS with FW. The greatest number of MFs 
released per day was 275 (SDS in SW), followed by 193 (SDS in FW). The results indicated that if different kinds of 
water are mixed with detergent (SDS), it could accelerate the disposal of MP, whereas SW has considerably higher 
ability to release more MFs in a shorter time period compared to FW. Furthermore, this study implied that the 
inappropriate dumping of SFM could unfortunately escalate the preexisting MP pollution in the aquatic 
environment, which could negatively affect the aquatic living beings.
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INTRODUCTION
Microplastics (MPs) are complex heterogeneous plastic particles ranging from < 5 mm to 100 nm, with 
different chemical compositions, molecular weights, sizes, colors, and shapes. MPs can either be categorized 
as primary or secondary based on their origin. Primary MPs are deliberately manufactured in a desired size 
of < 5 mm[1], while secondary MPs are produced from the degradation of larger plastic polymers. Various 
physical, chemical and biological processes such as abrasion, eroding, aging, weathering, photo-oxidation 
process, and microbial activity accelerate its degradation in the environment[2,3]. Different shapes of MPs can 
be identified based on their morphology. Beads, pellets, and granules are primary MPs, while fibers (lines 
and filaments), foam, fragments, and film are the common form of secondary MPs[4]. MP pollutants are 
ubiquitous contaminants due to their persistent and low biodegradation characteristics in nature. Owing to 
smaller particle size (< 5 mm), MPs have the potency of bio-accumulation and bio-magnification across 
food webs for both freshwater and marine environments. This emergent MP contaminant is responsible for 
environmental pollution and threatens aquatic life, which is widely recognized as a matter of global 
concern[5-8].

Surgical face masks (SFM) are currently perceived as the most used personal protective equipment (PPE) to 
curb the worldwide transmission of the COVID-19 virus[9-12]. The use of this single-use or disposable face 
mask has been advocated by World Health Organization (WHO) and researchers as an effective means 
against the spread of this virus[13]. In general, disposable surgical masks are purposed for doctors, nurses, 
and other healthcare practitioners. The usage of and demand for SFM have surged worldwide in response to 
the COVID-19 pandemic; their application has expanded from healthcare professionals to individuals, with 
the primary aim of limiting the transmission of this fatal contagious disease[14]. The annual face mask usage 
during this pandemic reported for Asian countries is 289.63 billion and 32.12 million daily in Bangladesh[15], 
leading to a significant increase in the demand for and the production of SFM worldwide. Surgical masks 
are produced from high-density polymeric materials. Synthetic non-(bio)-degradable polymers such as 
polypropylene (PP) and polyethylene (PE) are the main manufacturing components of disposable face 
masks[5]. Besides that, other polymers such as polyester (PET), polycarbonate (PC), polyacrylonitrile (PAN), 
and polystyrene (PS) are used as well[6,16]. Disposable face masks are available in various colors such as dark 
blue, green, and yellow[17] and consist of three layers: a nonwoven fabric inner layer, a melt-blown filter 
middle layer, and a nonwoven colored outer layer (water resistant), and feature ear bands made of fiber[18]. 
The nonwoven layers are produced together with short and long fibers through electrospinning. Upon 
degradation, they likely release these micro and nanofibers to the environment, addressed as a secondary 
source of MP pollutants[5,7,10,16].

Unfortunately, the mismanagement and improper disposal of surgical masks polluting public places such as 
streets, parks, roads, and beaches have led to the rise of environmental plastic and MP pollution in both 
terrestrial and aquatic environments, especially during the COVID pandemic[12]. People with limited 
knowledge about the proper disposal of face masks often discard them haphazardly, leading to an 
accumulation of these masks in terrestrial landfills. Subsequently, these masks can be transported into 
freshwater aquatic systems through wind and rainfall. Drains, canals, lakes, streams, and rivers ultimately 
lead to their accumulation in the marine environment. Consequently, the enhanced face mask usage that 
proved useful against the COVID-19 pandemic would have been responsible for the burgeoning 
microplastic waste in the environment[10,11] posing a serious threat to aquatic organisms. Since SFM degrade 
slowly in aquatic environments, releasing microfibers that contribute to environmental pollution and pose a 
significant threat to aquatic organisms[5]. Additionally, face masks take a longer time to release microfibers 
in natural environments due to photo-oxidation[19] and UV radiation[20]. Various studies regarding 
microfibers released from SFM have been carried out, such as face masks as a potential source of MP[5,6,13], 
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estimation of microfibers (MFs) from surgical masks[15,17,18], microfiber generation and environmental 
repercussion of MFs[8,12,14,16], and microfibers release from the simulated environment, and probable removal 
approach from water[19-21]. However, previous record has not been established on whether the salinity of 
water itself or along with alcohol, detergent or reducing agents has any differences in terms of MPs’ disposal 
from SFM; therefore, this study was aimed to delineate the qualitative and quantitative release of MP from 
unused surgical masks in both freshwater and saltwater media accompanying with different chemicals 
under laboratory condition. This study has also reviewed the MFs pathway to aquatic environments, the 
potential adverse impact of microfibers in aquatic ecology, and the management or safe disposal of SFM.

EXPERIMENTAL
Chemicals
The SFM samples considered in this experiment were new (unused), had three layers (inner, middle and 
outer) with melt-blown properties, and contained no glass fibers. Chemicals like 95% alcohol, sodium 
dodecyl sulfate (SDS, molar mass 288.38 g/mol; density: 1.05 g/cm3), 30% hydrogen peroxide (H2O2, molar 
mass 34.0147 g/mol; density 1.11 g/cm3), salt (molar mass 58.44 g/mol; density: 2.16 cm3), and cellulose 
nitrate filter (0.45 and 0.2 µm) membrane were collected from the available chemical and scientific 
equipment stores.

Experimental design
New unused SFM were exposed at room temperature for a 60-day trial period with eight different 
treatments. Each treatment had five replications in two categories, i.e., freshwater (FW) treatments (800 mL 
FW, 40 mL of 95% alcohol + 800 mL FW, 40 mL of 30% H2O2+ 800 mL FW, and 4 g SDS + 800 mL FW), and 
saltwater (SW) treatments (800 mL SW, 40 mL of 95% alcohol + 800 mL SW, 40 mL of 30% H2O2 + 800 mL 
SW, and 4 g SDS + 800 mL SW) shown in Figure 1. The ultimate destination of unaware discarded face 
masks is the aquatic environment, both in fresh and marine water[8]. The H2O2, SDS and alcohol have 
potential toxic effects on aquatic life and frequently accumulate in the aquatic environment[22,23], hence used 
in this study. Saltwater salinity was maintained at 25 ppt with regular checking using ATC portable 
Refractometer throughout the experimental period. Submersed face masks (without treatments and two 
groups) were stirred daily at 1,500 rpm for five min at room temperature.

Microfiber extraction
For the first sampling (24-h interval), the mask was taken from the beaker and kept in a cleaned metal tray 
using a pre-cleaned sterile scissor. The solution remaining in the beaker was filtered through a 0.45 µm 
cellulose nitrate filter (Sartorius, Germany) by a glass filtration unit (Duran, Germany) attached to a 
vacuum pump (Rocker 300), and the filter paper was immediately covered with clean glass petri dish. 
Afterward, the solution and the mask were replaced carefully in the same beaker, and to prevent cross 
contamination, the opening of the beaker was covered with aluminum foil. In addition to that, the petri 
dishes were marked according to their treatment group in order to avoid counting errors. For the second 
and third sampling, the isolation procedure (30-day and 60-day, respectively) followed was the same as the 
first sampling. Hereafter, all the filter paper was stored carefully for further analysis.

Visualization
After each sampling, the filter paper was placed under a Daffodil MCX100 microscope (Micros Austria) 
with multiple zoom levels (40-100X) for clear visual identification and quantification of MFs[5,23]. MFs were 
quantified and, at the same time, categorized according to their color and size group. For size categories, 
randomly selected 200 MFs from each treatment group were measured and categorized as < 0.5 mm, 
0.5-1 mm, and 1-5 mm. Each filter paper was photographed by AmScope camera coupled with the 
microscope with IS-capture software facilities.
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Figure 1. The treatments, filtration and visualization process for microfiber extraction.

Contamination control
The experiment was carried out in a non-ventilated, low-traffic clean room. All solutions were filtered 
through 0.2 µm filter paper prior to use. The opening of the beaker was covered with aluminum foil. The 
filter was kept in a cleaned glass petri dish. The filtration unit, beakers, and other equipment were cleaned 
with distilled water before each sampling. Glassware and metal tools were used for the whole experimental 
period.

Statistical analysis
All the recorded data were compiled in an Excel sheet and analyzed in SPSS software (IBM SPSS statistics, 
version 22). The differences in the mean abundance of isolated microfibers were analyzed by one-way 
ANOVA followed by Tukey’s HSD test. Image J software with calibrated slide (Japan) was used for size 
measurement analysis.

RESULTS
Quantitative analysis of microfibers
The amount of MFs was counted from the samples taken from 1 day, 30 days, and 60 days, respectively. The 
quantification of MFs in different treatment groups at various sampling days is illustrated in Table 1. After 
24 h of soaking, the highest average number of microfibers discharged from SFM was recorded at 
4,911.3 ± 247.0 in SDS with SW followed by 586.1 ± 5.0 and 377.3 ± 95.2 in normal SW and 95% alcohol in 
SW, accordingly. In 30-day sampling, again, the highest mean amount of microfibers (6,180.24 ± 251.7) was 
released in SDS with SW accompanied by 95% alcohol in SW with average MFs of 4,660.06 ± 123.0. At the 
end of the trial, the largest average amount of microfibers was counted with SDS in FW (7,269.7 ± 283.1), 
followed by SDS with SW (5,430.29 ± 213.9). The lowest average number of MFs was released by freshwater 
treatment, which was 112.04 ± 20.3, 2,707.1 ± 71.5, and 3,320 ± 124.0, accordingly, in three consecutive 
samplings [Table 1]. The MFs from the sampling days were averaged to get the possible MFs per day. The 
greatest number of MFs per day discarded from SFM was 275 (SDS in SW) and 193 (SDS in FW), and the 
least amount of MFs (102) was estimated from normal freshwater samples. One-way ANOVA was 
constructed in order to compare the number of released MFs from SFM among three different sampling 
days and between the water types at a 95% confidence interval. The data showed that there were significant 
differences (P < 0.05) in the released MFs number between 1-day sample and 30-day samples, whereas in 
most cases, there are no significant differences (P < 0.05) between 30-day and 60-day samples. Apart from 
this, the treatments varied significantly (P < 0.05) between freshwater and saltwater.

Qualitative analysis of microfibers
The MFs released from the face masks were identified, categorized, and estimated based on their 
morphology, color, and size. The morphology of isolated microfibers on different treatment groups of 
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Table 1. Quantity of MFs in different treatment groups at various sampling days

MF number in sampling days
Treatment Water

1 30 60
MFs/day

FW 112.04 ± 20.23a,1 2,707.10 ± 71.56b,1 3,320.12 ± 124.01b,1 102Normal

SW 586.110 ± 5.00a,2 4,021.00 ± 111.66b,2 4,779.03 ± 154.11b,2 156

FW 131.02 ± 33.21a,1 2,943.09 ± 119.02b,1 3,578.11 ± 116.31b,1 11195% Alcohol

SW 377.30 ± 95.22a,2 4,660.06 ± 123.03b,2 3,792.00 ± 138.77b,2 147

FW 246.22 ± 49.06a,2 3,191.09 ± 139.04b,1 4,259.27 ± 205.10b,1 12830% H2O2

SW 119.21 ± 14.30a,1 4,256.07 ± 133.05b,2 5,122.02 ± 182.01b,2 158

FW 377.10 ± 29.30a,1 3,940.55 ± 234.06b,1 7,269.70 ± 283.11c,2 193SDS

SW 4,911.33 ± 247.02a,2 6,180.24 ± 251.71b,2 5,430.29 ± 213.91ab,1 275

Different alphabetic and numeric superscript indicates (a, b: significance among columns; and 1, 2: significance among rows) the significant 
difference (P < 0.01) among the sampling days and between the water types, respectively. All the data except MF per day are expressed as mean 
± SD. FW: Freshwater; MFs: microfibers; SDS: sodium dodecyl sulfate; SW: saltwater.

freshwater and saltwater is shown in Figure 2. The percentage ratio of MFs released per day from SFM 
based on their colors is depicted in Figure 3. Transparent and blue were the dominant colors of the 
microplastic fibers discharged from the SFM in this experiment. The highest percentages of transparent 
(colorless) microfibers were released from face masks treated with SDS (84%), whereas normal saltwater 
treatment produced the lowest percentage of 41%. The discharge of blue microfibers was recorded as 
dominant (59.0%) in normal saltwater treatment.

The size distribution of released microfibers from unused SFM was categorized under three different sizes: 
1-5 mm (large), 0.5-1.0 mm (medium), and less than 0.5 mm (small). The percentage of MFs size group is 
shown in Figure 4. The highest percentage of microfibers was small (46.25%) when treated with freshwater 
and medium-sized (0.5 to 1 mm) microfibers were prominent (39.25%) in saltwater treatments. SDS and 
30% H2O2 mixed with freshwater produced a greater number of small microfibers, whereas seawater with 
95% alcohol released the greatest percentages of medium-sized particles.

DISCUSSION
The release of MP had been witnessed in the present study after unused SFM were put into different 
treatments. Various literatures addressed that SFM contributed to the release of MP in the forms of MFs 
and fragments in the environment. MFs discharged from fabrics are the most common form of MP to be 
found in terrestrial and aquatic environments[24,25]. Aqueous solution is a comparatively more appropriate 
medium to observe the release potentiality of MP from SFM[26,27]. In this experiment, SFM were submerged 
in eight different solutions, and the morphology and release capability of MFs were quantified. The face 
masks submerged in solutions were observed to degrade and a substantial amount of microfibers were 
released in both freshwater and saltwater media. A previous study reported a higher number of microfibers 
(360 items per mask) released from static water compared to the present study[18]. However, studies 
conducted laboratory assessments for the release kinetics of MPs from surgical face masks and gloves 
aligned with the present study[28,29]. The color of released microfiber from SFM is dependent on its use, the 
color of the mask, and the polymers and processes used to manufacture it[5,16]. Transparent microfibers 
could be high in number if face masks are made of PP or PET[25]. Airborne MPs are colorful and ubiquitous 
in the environment[30]; as a result, there is a chance of finding more colorful microfibers in used SFM. 
However, from this study, it was perceived that freshwater, when mixed with detergent (SDS), alcohol and 
hydrogen peroxide, becomes more active in degrading SFM in order to release the greatest percentages of 
small- to medium-sized microfibers.
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Figure 2. Microscopic images of isolated microfibers from different treatment groups of freshwater [(A) 400 ml FW; (B) 40 mL 95%
alcohol + 800 mL FW; (C) 40 mL 30% H2O2 + 800 mL FW; and (D) 4 g SDS + 800 mL FW] and saltwater [(a) 800 mL SW; (b) 40 mL
95% alcohol + 800 mL SW; (c) 40 mL 30% H2O2 + 800 mL SW; and (d) 4 g SDS + 800 mL SW]. Scale bar: 1 mm; and zoom: 4X.

Figure 3. The percentage ratio of isolated microfibers from the different treatments per day by colors. SDS: Sodium dodecyl sulfate.

However, Chen et al. (2021) observed the release ability of MPs through soaking used and unused SFM in 
deionized water[28]. They recorded that the release potentiality of MPs from used face masks (average 
1,246.6 ± 403.5 particles/piece) was higher than the unused ones (average 183.0 ± 78.4 particles/piece) in 
24 h. Another 24-h experiment exhibited that SFM released 3,600, 5,400, and 4,400 items in first use, 
whereas this amount had risen to a total of 116,600, 168,800, and 147,000 items after second and third use 
under ultrapure water, detergent, and alcohol treatment, respectively[18]. Similarly, SDS discharged the 
greatest amount of MPs in the form of microfibers in this study [Table 1]. Detergent affects the surface 
charge of fabric tissue and disturbs the distribution of woven fabric by causing microfractures. It also 
reduces the binding force between nodes and facilitates the release of microfibers. In this study, the released 
MFs per day in SDS in SW were highest (275), whereas the total disposed microfibers from a single mask 
was reported to be 254 by Sun et al. (2021)[31].
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Figure 4. The percentage ratio of isolated microfibers from the different treatments per day by size. SDS: Sodium dodecyl sulfate.

The presence of discarded SFMs is reported to be everywhere, likely streets, parks, beaches, freshwater and 
marine environments[6,32]. The inappropriate disposal of SFM gives rise to solid waste on the land. The 
general pathway of SFM, along with its degradation process from land to water, follows when the initial 
decaying of face mask polymer commences on the terrestrial landfills under the interaction of roughness of 
land surface along with the high temperature (UV radiation)[33,34]. These factors make the face mask more 
delicate, brittle, and prone to be fragmented to release microfibers on land and air. Friction stress on rough 
road surfaces exceeds the limiting strength of the outer layer fabric (nonwoven) of the face mask, 
subsequently leading to the disruption of the face mask[35]. Discarded face masks could persist on land for 
several weeks before reaching the aquatic environment. These masks can reach inland or marine water 
bodies through various means, such as surface runoff, precipitation, drainage pipes, or direct disposal in 
landfills[36,37]. Upon entering the aquatic environment, face masks undergo discoloration, weakening, tearing, 
and fragmentation as a result of the fabric integrity being compromised by physical and mechanical 
stress[38,39]. Furthermore, waves are considered a major driving force for the release of fragmented 
microfibers from face masks in marine environments[40]. Additionally, various mechanical forces, including 
water turbulence, tides, water current on the river bed, and abrasion with bottom sand and rocks, coupled 
with microbial activity, contribute to the enhanced release of MFs from SFM in aquatic environments[41].

The aging or natural weathering process has a huge impact on the degradation of fabric, depending on the 
characteristics of the fabric and the media in which the aging occurs. The nonwoven part of the face mask 
(inner and outer layer) used in this experiment also became fragile due to natural weathering and tended to 
release microfibers. The release capacity of microfibers is augmented with the retention time of face masks 
in different aqueous media. Saliu et al. (2021) assumed that if the mass loss of a disposable face mask is 0.2% 
in the artificial weathering process, it will take about 2 years for complete degradation[26]. Here, it is observed 
that saltwater has the ability to degrade SFM more quickly than freshwater, but when water is mixed with 
detergent, alcohol or oxidizing agent, the decaying time can be less [Table 1]. According to Kenney et al., 
(1985) seawater has the potential to decrease the strength of synthetic fabric by approximately 10%[42]. The 
degradation of face masks is also accelerated when other physical, chemical and mechanical forces are 
applied. The effect of high temperature (UV radiation), friction with the surface (abrasion), turbulence, 
wave action, storm, and microorganisms can easily degrade plastics into macroplastics (> 5 mm) and then 
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to MPs. Since the environment is exceptionally variable, it is almost impossible to perform a laboratory 
simulation that encompasses all the factors or their interactions responsible for the decomposition of 
surgical masks in the environment. The abrasion-induced degradation of plastic is a common phenomenon 
in marine environments that leads to the formation of MPs[43].

Environmental microplastic pollution is a serious concern of the scientific community[44-47]. MPs appear to 
be an emergent class of contaminants with long-term adverse consequences for aquatic ecosystems[12,48]. 
Owing to its smaller size, MPs are reported to be ingested by aquatic organisms of many different species[49]. 
This consumption process might be active, i.e., uptake as food material, or passive (ingested accidentally 
while grazing food). Larger aquatic organisms could easily ingest entire SFM or fragments released from 
them. A disposable face mask had been found in the stomach of a dead juvenile penguin (Spheniscus 
magellanicus) from Brazil, and it was suspected that the cause of its death was starvation through gut 
obstruction[50]. Additionally, entanglement with face masks is a common phenomenon that has been 
reported for several species of birds (Larus sp., Falco peregrinus, and Turdus migratorius), crabs (Carcinus 
minus and Coenobita perlatus), and fishes (Sphoeroides testudineus)[51]. This entanglement can alter its 
survivability through immobilization, strangulation, and starvation, making animals prone to predation, 
infection, or temporary irritation[11]. Moreover, microfibers released from SFM are also reported to be 
ingested and accumulated by marine zooplankton, directly affecting its reproductive potentiality by 
reducing fecundity[31]. Microfibers are believed to enter into the higher food chain level through 
bioaccumulation and biomagnification, imparting various adverse effects on the physiology of aquatic 
organisms[10,51]. Polyethylene, polypropylene, and polyester (as a form of microfibers) were traced from filter 
feeders such as bivalves, small crustaceans, crabs, and small fishes[52,53]. The adverse ecotoxicological effects 
include cessation of feeding, reduced body mass, hampered growth, reduced embryonic development, and 
mortality; in addition, disruption in metabolic activity, inflammation, and oxidative stress at the cellular 
level were reported[54,55]. The presence of MPs in aquatic environments is a threat to human existence 
because their major food supply is dependent on freshwater and marine food chains. Due to their smaller 
size, microfibers can easily affect the marine environment physically or biologically by entering into food 
webs[56]. Additionally, MPs can either leach toxic substances and/or absorb harmful chemicals, such as heavy 
metals[57]. Furthermore, MPs can serve as biofilm and are suspected of harboring disease-carrying 
pathogens[40].

The overall results of this experiment indicated that seawater mixed with chemicals released a larger amount 
of MFs in a shorter time period than that of freshwater treatments [Table 1], i.e., if water is contaminated 
with undesirable chemicals, it leads to a shorter release time for microfibers; consequently, the organisms 
inhabiting in water bodies near chemical discharge points are at a higher risk of exposure to microfibers. 
However, the present study was carried out in a photic place of the laboratory and stir was done daily at 
1,500 rpm (except normal FW and SW). It could be deduced that the exposure of a beaker containing SFM 
to photic zone, along with daily stirring and its chemical characteristics, enhanced the release of microfibers. 
In addition, the overall aging process used in this study revealed that transparent MFs released by normal 
freshwater treatments generated comparatively more microfibers (72.25%) than saltwater treatments 
(66.25%). The release of transparent fibers was around 2.5 times and 2 times higher than blue microfibers in 
freshwater (FW) and saltwater (SW) treatments, respectively [Figure 3]. On the other hand, it has been 
observed that the degradation of face masks results in the release of a considerable amount of microfibers 
ranging between < 0.5 mm to 1 mm; particularly, when exposed to normal saltwater, noteworthy 
percentages of small microfiber (46%) are generated compared to exposure to regular freshwater treatments 
(33%). In contrast, freshwater itself, along with 95% alcohol, 30% H2O2, and SDS, had the capacity to release 
82.0% of MFs with a size range of 1 mm - < 0.5 mm [Figure 4]. Therefore, it could be speculated that if the 
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Figure 5. Schematic diagram of microfiber released from SFM to increase aquatic pollution. SFM: Surgical face masks.

degradation of SFM occurred in freshwater, it could produce more microfibers of relatively transparent and 
larger size. Due to its size and transparency, there could be huge chances that visual and/or filter feeder 
organisms such as fishes, crustaceans, mollusks, etc. in freshwater might mistakenly identify these plastic 
particles as food[58]. These indigestible particles have the capacity to obstruct the gut and negatively interfere 
with the digestion of daily food uptakes. In contrast, saltwater produces more micro-sized fibers; as a result, 
aquatic organisms in saltwater are exposed to smaller particles that can bio-accumulate, produce toxicity 
and alter the physiology of aquatic organisms when penetrating to the cellular level[59-61].

SFM are addressed as the leading COVID-related waste found in terrestrial and aquatic environments. SFM 
has been anticipated as a potential MP pollutant in freshwater, coastal and marine environments, allowing 
aquatic organisms to be exposed to relatively higher concentrations of MPs[62]. The release of microfiber and 
its pollution inducing schematic diagram is illustrated in Figure 5. Management of plastic waste is still 
challenging for many South Asian countries such as Bangladesh and this situation is worsening because 
SFM usage has significantly increased during the COVID and post-COVID period, imposing additional 
pressure on existing waste management practices. Improperly discarded face masks in the environment are 
causing pollution. To address this issue, proper management strategies should be implemented, which 
include raising public awareness, labeling masks with recycling marks, and ensuring that used or discarded 
masks are sealed in containers and subsequently incinerated. In addition, SFM could be manufactured using 
biodegradable materials, such as wood fibers or 3D filaments, instead of synthetic polymers. Furthermore, 
in addressing the chemical nature of MPs for removal from aquatic environments, a recent breakthrough 
has been achieved by a group of scientists who proposed the use of a froth flotation method to remove MPs 
from water, leveraging the hydrophobicity/hydrophilicity properties of MPs[63,64].

CONCLUSIONS
This study successfully addressed the ability of SFM to release microfibers in different aquatic 
environments, although the limitation of this study was yet to use micro-FTIR (Fourier Transform Infrared 
Spectroscopy) for the confirmation of microfiber composition. In addition, the probable threat to aquatic 
life has been assumed in this experiment, since detailed work of microfiber release and its adverse effect on 
fish physiology could be another scope of further research. In conclusion, it could be stated that SFM can 
produce MPs of different shapes and sizes in aquatic environments. The release potentiality varies between 
freshwater and seawater. The potency of discharge is also influenced by chemicals such as alcohol, reducing 
agents, detergent, and/or other various environmental factors. However, the usage of SFM has been 
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enhanced during COVID-19 worldwide, of which 1%-10% has finally landed in aquatic environments. The 
total mass that reached aquatic environments could produce billions of MPs, which could have adverse 
consequences for aquatic organisms. The authors believe that due to improper management of SFM, it has 
become an undesirable contributor to the preexisting plastic waste in the aquatic environment. The proper 
management, including both collection and disposal, of SFM is crucial in terrestrial environment, because 
once SFM enter aquatic environments, their persistence and harmful effects will be impossible to address.
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