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Abstract
As a generalized method of mathematical statistics, machine learning (ML) is playing an increasingly significant 
role in the realm of materials design. More sophisticated methodologies for in-depth understandings and wide 
applications have been developed from initially simple data relation mappings. The present work first summarizes 
the basic technical issues of ML and then systematically reviews the main implementation strategies for ML 
methods in accelerating materials research and development process in recent years, encompassing three primary 
aspects. Firstly, it is necessary to establish the relationship between the key characteristic parameters and 
properties in any given materials system for a better prediction and exploration of new materials. Then, the 
computational algorithms in materials science need to be optimized to replace complex calculations with model-
predicted data. Finally, the ML methods are applied to summarize the one-dimensional property data and two-
dimensional microstructural images of materials to establish standardized analysis methods. During this process, 
the domain knowledge in a specific system is of great significance to improving the prediction accuracy and 
efficiency of ML methods, whether pre-processing experimental or computational databases. The powerful 
capability of ML methods to handle high-dimensional data will enable researchers to make more effective decisions 
in materials design. In the future, the relationship between the microstructure and mechanical properties, which is 

focus of ML mechanical properties of alloy materials.

Keywords: Machine learning, materials design, domain knowledge, applications of machine learning

necessary  to establish a more effective search engine for alloys with targeted mechanical properties, will be the 
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INTRODUCTION
Machine learning (ML) is a scientific discipline, in which statistical models are constructed based on 
available data and applied to analyze the data and predict unknown data[1]. The most crucial core of ML is to 
develop various algorithms for data analysis and processing, which have been continuously refined since 
1980[2-5]. The object of ML models is the “data” in the field of materials science, including the chemical 
compositions, characteristic parameters for representing microstructure and processing, metallographic 
images, etc.[6-9]. When the amount of data is abundant enough, they will exhibit a certain statistical regularity 
and render the ML model with a high prediction accuracy. Despite the availability of extensive databases 
with characteristic parameters in materials science, it is still a challenge to construct an explicit function that 
accurately reflects the specific physical meanings, resulting in a declined prediction accuracy. Recently, ML 
has emerged as a critical tool for managing vast datasets and optimizing parameters within the realm of 
Materials Genome Engineering (MGE), representing the “fourth paradigm” of data-driven strategies in the 
discovery and development of high-performance novel materials[10]. Materials design has undergone the 
evolution from empirical science (1st paradigm) to model-based theoretical science (2nd paradigm) and 
then to computational science (3rd paradigm)[11]. However, even with the assistance of computer 
technology, traditional methods for materials design still require researchers to make judgments on data 
interpretation and application. As the data dimensions increase, it becomes more challenging for 
researchers to manually identify the mapping relationship of key targets from multi-dimensional data, such 
as chemical composition, processing, and microstructure. Actually, the ML method is particularly well-
suited for addressing these types of problems, which is known as the data-driven science (4th paradigm)[12].

In 2016, Raccuglia et al. established a reaction model for the crystallization process of inorganic-organic 
hybrid materials using ML based on failed or unsuccessful experimental data, in which the accuracy for 
predicting the formation conditions of new compounds reaches up to 89%[13]. This suggests that the advent 
of ML-assisted materials discovery has great potential to radically transform traditional approaches. 
Subsequently, the ML methods have attracted more attention and have been widely applied to both the 
development of new materials and the perdition of their macroscopic properties. Medasani et al. integrated 
the high-throughput first-principles calculations with the ML technique to predict the point defect behavior 
of binary intermetallic compounds with a B2 crystalline structure[14]. Takahashi et al. obtained a big database 
of interatomic potentials calculated by the density functional theory (DFT), and then constructed the 
atomic potential functions by ML with a linear regression method, which was well applied to the molecular 
dynamics (MD) simulation of Ti element[15]. So far, the ML has covered a broad range of material systems, 
including perovskite oxides, inorganic composites, superhard nitride and carbide ceramics, shape memory 
alloys, multi-principal-element high-entropy alloys (HEAs), Ni-base and Co-base superalloys, ultra-high-
strength maraging stainless steels, high-strength and conductive copper alloys, etc.[6,16-26]. For example, the 
prediction of physical properties of perovskite materials, including band gap, stability, and electronic 
transport properties, has played a guiding role in the design of new materials[27]. The further development of 
ML will improve the interpretability of models, aid experimental research, and solve multi-scale problems. 
It will be of great significance to integrate ML with materials science and engineering education[28].

From the viewpoint of materials design, it is known that most high-performance materials were developed 
with the guidance of empirical methods and theories. For instance, the phase computation methods based 
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on d-electron theory have been playing an important role in the composition design to stabilize the specific 
face-centered-cubic (FCC)-γ/γ’ coherent microstructure and inhibit the precipitation of brittle topological-
close-packed (TCP) phases during the development of Ni-base superalloys[29]. The equivalent method, such 
as the Moeq, Creq, or Nieq, was often used to characterize the structural stability of the parent phase for the 
prediction of the phase transformation in body-centered-cubic (BCC)-based Ti/Zr alloys and various 
stainless steels[30,31]. In practice, it significantly reduces the cost of massive trial-and-error experiments[32,33]. 
With the proliferation of computer technology in the field of materials science, the calculation of phase 
diagram (CALPHAD) method based on thermodynamic and kinetic principles has become prevalent. It can 
establish the correlation among chemical composition, phase constitution, and macroscopic properties 
(including mechanical, thermal, and electrochemical properties) in complex systems, resulting in the 
composition optimization and performance enhancement[34]. Thus, the screening of materials has evolved 
from the blind global search to the optimization of key parameters in multi-component systems. However, 
it is more difficult to find the mapping correlation among the key target parameters in the multi-
dimensional data, such as composition, processing, microstructure, etc.[35]. Fascinatingly, the ML method is 
anticipated to deal with such challenges and has exhibited excellent adaptability.

As a mathematical method, ML can support the development of materials science in diverse manners due to 
its environmental self-adaptability[36]. Its primary task is to construct the mapping relationship between the 
input and the output, including the symbolic regressions for physical equations, the direct predictions of 
material properties for a given composition or process, etc.[6,37-39]. Intrinsically, it is a more generalized 
nonlinear-fitting method that can handle higher-dimensional data to enhance the analysis and prediction. 
However, it is emphasized that the sample database in any given system is so small that it can strongly affect 
the prediction accuracy of data-driven ML models[38,40-43]. The existing researches indicated that the 
determination of characteristic parameters to correlate the input and the output is crucial for improving the 
prediction accuracy of ML models containing a small database[44]. Meanwhile, the domain knowledge is 
typically employed to pre-process the data prior to the ML, in order to make full use of the limited but 
reliable experimental and computational data[44,45]. Therefore, the present work will summarize the 
applications of ML methods in materials science from three main aspects, being the development of high-
performance materials using ML-assisted design models, the acceleration of calculations and simulations 
through ML, and the materials informatics guided by ML. Additionally, the role of domain knowledge in 
data pre-processing will be generalized to illustrate how to deal with the data information in the database, 
whether from experiments or calculations, for a better improvement of prediction accuracy.

This work provides a comprehensive review of the primary applications of ML methods in material design 
in recent years, focusing on the design of alloys and solid solution compounds. It begins by summarizing 
the technical issues that need to be considered when applying ML as a tool in materials science. 
Subsequently, it introduces the main forms of application of ML methods, including direct assistance in 
material design, acceleration of computational simulation work, and the construction of materials 
informatics. From a scientific perspective, researchers prefer models that are not just “black box” for data 
processing, but rather models that are interpretable or incorporate domain knowledge inherent to materials. 
This will play a significant role in the generalization of ML models.

TECHNICAL ISSUES OF MACHINE LEARNING FOR APPLICATION IN MATERIALS 
SCIENCE
Although the ML methods have important implications for materials design, there are still many issues that 
researchers need to pay attention to. The database construction, model selection, training strategies, and 
model evaluation are necessary technical elements of ML efforts. Each element will be discussed in this 
section.
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Currently, the application of ML in the field of materials heavily relies on the construction of databases, 
such as Materials Project[46] and JARVIS[47], which can provide basic data of more than 100,000 different 
materials. With high-throughput computing, future ML tasks will be able to easily access over 10,000 pieces 
of data as a computational database for specific needs. However, it is important to emphasize that the 
experimental data is valuable due to the highest quality and information of experimental results. Thus, it 
can be used as the verification of ML results based on a computational database. Also, the data used in ML 
are limited by the generality of the data given by different research works. In practice, the construction of 
databases for specific ML tasks is closely related to the needs and capabilities of researchers. Therefore, a 
large amount of high-quality experimental data and integrated existing data will lead to better-performing 
ML methods.

Besides the ML database, there exist a series of discussions on the selection of ML models for better 
utilization. In the early days, software packages, such as Scikit-learn[48] and XGboost[49], were commonly used 
for ML tasks. In recent years, several integrated ML frameworks developed by large companies have 
emerged, including TensorFlow[50], PyTorch[51], AutoGluon-Tabular[52], etc., which have been significantly 
optimized in terms of usability and versatility. In the field of materials science, several neural network-based 
models, such as Crystal Graph Convolutional Neural Networks (CGCNN)[53], MatErials Graph Network 
(MEGNet)[54], and DeePMD-kit[55], have made breakthroughs in their respective targeted areas, whether for 
important parameters such as electrical conductivity or for constructing ML potential functions. With the 
increasing popularity of ML in materials science, researchers can choose a well-established targeted toolkit 
or a universal ML algorithm, based on which some modifications could be made according to their specific 
requirements.

Notably, it is not just about selecting algorithms and toolkits during ML. Researchers should also evaluate 
the ML methods by considering their ability to interpret data. Wang et al. systematically discussed the ML 
methodologies ranging from supervised learning (SL) to transfer learning (TL) and unsupervised learning 
(UL)[56] and pointed out that both SL and TL require the construction of a vast foundational database for 
further design. The difference between them is that the TL can learn from existing data and then transfer 
model parameters or material features to the target domain/tasks, which makes the cost less than building a 
new database. Furthermore, the UL can well handle the complex correlations among data, which is 
beneficial for understanding the intrinsic structure-property relationships of diverse materials. A reasonable 
UL can significantly reduce the workload required to obtain material properties, shortening the design cycle 
and achieving a higher accuracy for more complex systems. Therefore, both the key features transferred by 
TL and the feature recognition constructed by UL are expected to provide interpretable mechanisms for 
data. To achieve this goal, the generalization ability and accuracy of ML models can be improved by 
embedding domain knowledge appropriately.

Another issue encountered during ML is how to define the accuracy of the model. This involves two 
aspects: how to train and validate the model and whether the selection of loss functions is reasonable. The 
training and validation of ML models are crucial to ensure their generalization ability. Common strategies 
involve five aspects. The first one is data pre-processing, which includes cleaning data, handling missing 
values, feature encoding, and normalization. Secondly, the data set needs to be divided into training, 
validation, and testing subsets for the evaluation of model’s performance on unseen data. Thirdly, the 
K-fold method is applied to cross-validate the ML model for improving the stability and reliability of model 
evaluation. Then, a regularization is performed to reduce the model complexity and avoid overfitting. The 
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final strategy is the hyperparameter tuning, where several methods such as grid search, random search, or 
Bayesian optimization can be used to achieve the optimal model parameters. To obtain an accurate ML 
model, these strategies can be comprehensively applied in the model-building process.

In addition, loss functions are often employed to characterize the ML accuracy, but the applicability of these 
loss functions has not been well-assessed in previous studies. Naser and Alavi analyzed 78 common loss 
functions to illustrate their applicability in engineering and scientific problems[57], and they also advocated 
the use of Performance Fitness and Error Metrics (PFEMs) as the criterion for selecting loss functions. 
Unfortunately, many published studies on ML applications in engineering do not include multi-criteria or 
additional validation stages; instead, they rely solely on traditional performance metrics, such as R or R2 of 
derived models. Also, a set of PFEMs does not completely eliminate some common problems, in which the 
over-fitting and bias are the most obvious. Thus, both the learning strategies and loss functions play a 
decisive role in whether the ML method is reasonable.

ML-ASSISTED DESIGN MODELS FOR DEVELOPING HIGH-PERFORMANCE MATERIALS
The most essential issue of ML-assisted materials design is to determine the key system parameters, which 
can not only affect the macroscopic properties but also characterize the composition, microstructure, and 
processing. With the guidance of these key parameters to constrain the input and the output, the prediction 
accuracy of the ML model can be improved significantly during the development of novel high-
performance materials in any given system. Generally, the construction of such ML-assisted design models 
can be outlined into six steps: establishing the database, determining the key parameters, training and 
testing the ML models, designing new materials by the ML, verifying the properties of designed materials by 
experiments, and, finally, integrating the obtained data back into the database to initiate a new iteration of 
ML. The framework of the whole ML is presented in Figure 1. Through several iterations, the mapping 
relationship between the input and the output will progressively become more precise, which can 
undoubtedly accelerate the research and development of novel materials with a higher efficiency. In the 
following, we will provide five representative examples to illustrate the applications of ML method in the 
development of novel materials.

HEAs with prominent properties
Unlike traditional alloys that are typically dominated by one or two base elements, the HEAs are composed 
of multiple principal components with an equimolar or non-equimolar mixing, which can provide a 
tremendous composition space for exploring high-performance alloys[58]. It is due to the vast composition 
space that can render HEAs with prominent mechanical and functional properties simultaneously[59]. 
However, it is a great challenge to design new HEAs because of the limited quantity of data available in 
existing databases. In this case, Wen et al. used several key parameters, including the itinerant electrons e/a, 
modulus mismatch, work function, etc., to verify the phase constitution of HEAs in the Al-Co-Cr-Cu-Fe-Ni 
system, which can well bridge the correlation between the input (chemical composition) and the output 
(microhardness HV) of ML models with a database containing 155 samples[20]. Thus, the alloy design 
strategy combining the ML model with the experimental design rules was formulated to search for new 
HEAs with a much larger HV. It was found that the HV values of 35 alloys in 42 newly-designed 
compositions are higher than the maximum, and the hardness of 17 alloys is enhanced by more than 10% 
compared to the maximum in the training dataset. This indicates that the strategy incorporating both the 
composition and key parameters performs better than the one that solely relies on composition.

Furthermore, Liu et al. have developed a ML-guided high-throughput experimental approach to expedite 
the development of non-equimolar superhard Co-Cr-Ti-Mo-W HEAs, which offers an effective strategy 
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Figure 1. The framework of materials design process by machine learning.

that has the potential to increase overall efficiency by a hundred-fold and reduce costs significantly, 
compared with conventional methods[60]. Specifically, the final ML model, trained using 138 experimental 
data, can predict the alloy hardness with the mean relative errors of 5.3%, 6.3% and 15.4% in the high 
(HV > 800), medium (HV = 600-800), and low (HV < 600) hardness ranges, respectively. Among them, 14 
superhard HEAs with HV > 900 were discovered by the ML-guided high-throughput experiments. 
Moreover, multiple ML models were used to predict the hardness of 3,876 hypothetical alloys covering the 
entire composition range. This analysis revealed the systematic composition effects based on the 
comprehensive correlations between composition-hardness and descriptor-hardness, where the descriptors 
include several crucial parameters, such as the valence electron concentration (VEC), melting temperature 
(Tm), enthalpy of mixing (ΔH), entropy of mixing (ΔS), and atomic size difference (δ).

Besides mechanical hardness, the thermodynamic properties, such as the thermal expansion coefficient 
(TEC), are also important for the application of HEAs. Rao et al. proposed an active learning strategy to 
accelerate the design of high-entropy Invar alloys in a practically infinite composition space, even with 
limited data available[61]. This approach operated as a closed-loop system, seamlessly integrating the ML 
with the density-functional theory, thermodynamic calculations, and experimental validation, which can 
achieve an accurate prediction of properties across a wide compositional space. After processing and 
characterizing 17 new alloys out of millions of possible compositions, two high-entropy Invar alloys were 
then identified with an extremely low TEC of ~ 2 × 10-6 per degree kelvin at 300 K.

High-strength and conductive Cu alloys
High-performance Cu alloys play a fundamental role in the integrated circuit and railroad industries, which 
need to possess both high strength and high electrical conductivity (EC) for meeting the application 
requirements. However, a higher strength always corresponds to a lower EC in most existing Cu alloys. 
Wang et al. proposed a property-oriented design strategy for high-performance Cu alloys via the ML 
method, which involves three crucial features, including ML modeling, compositional design, and property 
prediction[62]. This constructed ML model exhibits better efficiency in the achievement of a rapid 
composition design of Cu alloys with a targeted ultimate tensile strength of UTS = 600~950 MPa and an 
electrical conductivity of EC = 50% international annealed copper standard (IACS).

In order to further enhance the efficiency of composition design, all alloy parameters were subjected to 
correlation screening, recursive elimination, and exhaustive screening during the ML process. Subsequently, 
the composition was iteratively designed through Bayesian optimization[63]. Thus, five kinds of key 
parameters affecting the microhardness HV and six kinds of key parameters affecting the EC were obtained 
by screening out alloy parameters to establish the “HV - key parameters” model and “EC - key parameters” 
model, respectively, where the accuracy of these two models exceeds 90%. Then, novel Cu alloys were 
effectively designed using the Bayesian optimization and iterative optimization experiments. Among them, 
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the designed Cu-1.3Ni-1.4Co-0.56Si-0.03Mg (wt.%) alloy has prominent properties with UTS = 858 MPa
and EC = 47.6% IACS, being superior to those reported results in precipitation-strengthened Cu alloys.
Therefore, this approach breaks through the dilemma between the strength and electrical conductivity.

Multi-component β-Ti alloys with low Young’s modulus
BCC β-Ti alloys with low Young’s modulus (E) were always achieved by co-adding BCC-stabilized elements
(Mo, Nb, Ta) and low-E elements (Zr, Sn)[31,64]. When the BCC structural stability is not enough or too high,
the E values of alloys will increase. Also, the precipitation of some metastable phases (α’, ω, etc.) caused by
an inappropriate matching among alloying elements enhances the E of alloys. The Mo equivalence (Moeq)
was often used to characterize the BCC structural stability, and the low E could be obtained at the lower
limit of Moeq. In our previous work, we proposed a cluster-plus-glue-atom model to describe the chemical
short-range orders (CSROs) induced by the solute atoms in solid solution structure, from which a cluster
composition formula could be abstracted[65]. In particular, the cluster formula in Ti-Zr-Mo-Sn-Nb-Ta
system was expressed with [(Mo,Sn)-(Ti,Zr)14](Nb,Ta)1~3 to determine the added amount of each alloying
element[66,67], which can be taken as the composition constrained parameter for ML. Thus, we implemented
the Moeq and cluster formula into the ML model to design and predict novel multi-component low-E β-Ti
alloys [Figure 2]. Both auxiliary gradient-boosting regression tree and genetic algorithm methods were
adopted to deal with the optimization problem in the ML model[68]. This cluster-formula-embedded ML
model can not only predict alloy properties in the forward design, but also design and optimize alloy
compositions with desired properties efficiently and accurately. By setting different objective functions, only
several (3~5) new β-Ti alloys with either the lowest E (E = 48 GPa) or a specific E (E = 55 and 60 GPa) were
predicted by ML and then validated by a series of experiments, from which it could be found that the
experimental E can be well consistent with the predicted one. Here, it is necessary to emphasize that if the
cluster formula was not embedded in the reserve design of ML, 85 alloy compositions could be predicted by
ML for a specific E = 55 GPa, which inevitably intensifies the difficulty in experimental verification. So, the
cluster-formula-embedded ML model can make the prediction and optimization of composition and
property more accurate, effective, and controllable, since the composition constraint was implemented to
reduce the composition variants.

Novel high-strength Co-base superalloys with γ/γ’ coherent microstructure
For mature Co-based superalloy systems, the thermodynamic databases can serve as a basis for designing of
new alloys. Due to the huge amount of data in the database, the accuracy of ML models can be ensured
from the source of the database. This vast data can support ML methods to optimize multiple targets
simultaneously. Based on this, Liu et al. proposed a materials design strategy to optimize multiple targeted
properties of multi-component Co-base superalloys via ML[6]. The microstructural stability of coherent γ
and γ’ phases, the solvus temperature and volume fraction of γ’ phase, alloy density, processing window,
freezing range, and oxidation resistance were optimized at the same time. Finally, a series of novel Co-base
superalloys were successfully designed and experimentally synthesized from more than 210,000 candidates.
The best performer, Co-36Ni-12Al-2Ti-4Ta-1W-2Cr (at.%), possesses the greatest γ/γ’ microstructural
stability without any precipitation of deleterious phases, the highest γ’ solvus temperature of 1,266.5 °C, a
higher volume fraction (74.5%) of γ’ nanoparticles, a relatively-lower density of 8.68 g·cm-3, as well as
excellent oxidation resistance at 1273 K due to the formation of protective alumina scales.

Inorganic compound materials
Pb-free BaTiO3 (BTO)-based piezoelectrics with a large electrostrain have great potential in the applications
of micromotors and prosthetic devices[16,69]. Generally, a large electrostrain was achieved by chemical
substitution (i.e., dopants) with Ca2+ and Sr2+ cations for Ba2+, and with Zr4+ and Sn4+ for Ti4+ in BTO. This
family is always expressed with the formula of (Ba1.0-x-yCaxSry)(Ti1.0-u-vZruSnv)O3, showing a vast search space
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Figure 2. Cluster-formula-embedded machine learning for the design of low-E β-Ti alloys. The images are adapted from ref[68] with 
permission.

that cannot be explored by the trial and error or the intuition alone. Indeed, the key challenge in guiding 
experiments toward materials with desired properties lies in the effective navigation of the extensive search 
space encompassing the chemistry and structure of permissible compounds. Yuan et al. coupled the ML 
with optimization methods to accelerate the discovery of novel BTO-based piezoelectrics[16]. By 
experimentally comparing several design strategies, it is found that the active learning approach can balance 
the trade-off between the exploration (using uncertainties) and exploitation (using model predictions alone) 
and then obtain the optimal criterion, resulting in the synthesis of (Ba0.84Ca0.16)(Ti0.90Zr0.07Sn0.03)O3 with the 
largest electrostrain of 0.23% in the BTO family.
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Similarly, for other specific systems, such as uranium dioxide (UO2) composite fuels, the ML method can be 
applied to construct the correlations among computational data to accelerate design efficiency since the 
amount of experimental data is limited. The lower thermal conductivity (TC) of UO2 needs to be improved 
by injecting a second phase with a high TC into the matrix. Yan et al. utilized the finite element method 
(FEM) to generate massive simulated measurements and then proposed a novel algorithmic method to 
learn automatically from gathered simulation results[70]. Through the neural network, a set of key features 
associated with the effective thermal conductivity (ETC) in 2D-FEM were found to achieve both the 
forward and reverse predictions. Then, the correlation in 2D space was extended to 3D space for realizing 
the high-precision prediction of calculated results of 3D-FEM. With the guidance of the model, not only the 
ETC of a composite fuel can be predicted accurately according to its given structural characteristics, but also 
the structural characteristics of a composite fuel could be inferred from its expected ETC, in which the 
relative error of forward prediction and inverse design is less than 5%.

ML-ACCELERATED CALCULATIONS AND SIMULATIONS
Another important application of ML is to simplify and optimize the computational models for 
fundamental physics. For example, in the process of obtaining the numerical solution of the function, every 
minor adjustment of parameter needs to be re-iterated. Thus, it is often necessary to modify parameters 
several times during the conduction of a comprehensive complex calculation, which can be optimized with 
the ML models by fitting a series of the input and output. So, when the next calculation for the parameter 
adjustment is performed, the result could be predicted directly through the ML model instead of another 
complex calculation. If the number of calculations is sufficiently large, it will significantly save time in 
subsequent calculations after training a highly accurate model. In the first-principles (Ab-initio) simulation 
software such as the Cambridge Sequential Total Energy Package (CASTEP) and the Vienna Ab initio 
Simulation Package (VASP)[71,72], the on-the-fly method based on the ML potential function has been 
integrated. For the Ab-initio molecular dynamics (AIMD) calculations enabled by the on-the-fly method, 
the output data can be added into the ML model to fit the potential function. When the fitting result reaches 
a certain accuracy, the ML potential will replace the self-consistent calculation for subsequent calculations, 
in which the Bayesian error is used to monitor the potential function. If the error is too high, a self-
consistent calculation step will be added for correction. Finally, an efficient and accurate potential function 
could be obtained after a series of iterations[73,74]. As an instance, the superiority of potential functions from 
ML force field was verified in the solid and liquid models of several systems, such as Al, Sn, Ge, Sn, MgO, 
etc.[73]. In a lot of calculations, the ML has replaced 99% of the first-principles calculations, resulting in an 
efficiency improvement of over 200 times. The average absolute errors [or the root mean square errors 
(RMSE)] for energy, force, and stress tensor are only 5.5 (6.2) meV·atom-1, 0.07 (0.09) eV·Å-1, and 0.18 
(0.27) GPa, respectively.

In addition to the applications of AIMD, the potential functions can be further abstracted and used in large-
scale MD calculations[75]. The MD calculations are often limited by potential functions and always need 
extensive efforts to construct a reliable potential function from the basic physical theorem, which is time-
consuming and laborious. The ML models could be applied to fit the input and output of physical formulas 
for obtaining high-precision potential functions in any specific system. For instance, Zong et al. established 
a domain-knowledge-embedded database containing structures and properties according to the existing 
physical basis and the background of specific material systems[76]. Furthermore, the ML and the neural 
network hybrid method has been developed to construct a more accurate interatomic potential function by 
learning from the AIMD simulations and the domain-knowledge-embedded database. On this basis, the 
developed ML potential function could be used to simulate the microstructural evolution and predict 
physical properties of allotropic metals under the static high pressure and dynamic impact environments, 
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where the microscopic mechanisms can be well understood in combination with the domain knowledge. 
This ML-AIMD interatomic potential accurately captures the energetics and structural transition properties 
of zirconium, compared with the experimental results and the density functional data for phonons, elastic 
constants, and stacking fault energies. The maximum absolute error of ML-AIMD energy is less than 
6.7 meV/atom, showing a high reliability. Furthermore, the MD simulations using this potential function 
successfully reproduce the phase transformation mechanism of zirconium and draw the pressure-
temperature phase diagram of zirconium.

ML-BUILD MATERIALS INFORMATICS
Intrinsically, the ML models act as “black boxes” to simplify complex physical calculations and to construct 
associations among huge data. However, when it was used to explain the mapping relationship between 
data, the “black box” should be simplified as much as possible into a formulaic model[77]. Based on the 
empirical rules of existing formulas, the algorithm framework and parallel program have been developed 
based on data searching formulas. Firstly, the algorithm requires the user to specify the main variables in the 
given system, and write them as y = f (x1, x2, ..., xn) along with the dimensions of variables. Then, the 
program automatically performs dimensional analysis to build the feature space. After iterative filtering, the 
program carefully uses the well-designed scoring rules to balance the accuracy of the formula in describing 
the data and the simplicity of the formula itself, and finally outputs the best formulas as the alternative 
solutions. In addition to the traversal search method, the program also provides the Least Absolute 
Shrinkage and Selection Operator (LASSO) algorithm and Genetic Algorithm (GA) as the alternatives in the 
vast space to find alternative solutions for the optimal. Wei et al. utilized this set of formulas to construct a 
flow and to establish highly interpretable formulas for describing the weight gain changes of FeCrAlCoNi 
HEAs exposed to temperature and humidity in the air, where the average error is R2 = 0.962, indicating a 
high level of reliability[78].

Besides the construction of one-dimensional data relationship mapping, the ML methods represented by 
neural networks and deep learning models can also process and identify images. For the alloy design, the 
image information, such as the microstructure, is of great significance. As a bridge between composition/
process and mechanical properties, the microstructure quantification is an important tool for understanding 
physical metallurgy mechanism. Shen et al. proposed a deep learning approach to train electron 
backscattered diffraction (EBSD) images by integrating advanced materials characterization techniques and 
artificial intelligence strategies[7]. The workflow is shown in Figure 3. In this model, the EBSD 
characterization was employed to obtain accurate phase classification labels from microstructures. The 
U-Net deep learning architecture for small sample data was applied to establish a high-dimensional 
mapping correlation between the scanning electron microscope (SEM) morphology and phase diagrams. 
Data sets of dual-phase (DP) steel and quenching and partitioning (Q&P) steel were constructed through 
systematic characterization experiments. The original image was segmented into several sub-images with a 
size of 128 × 128 pixels, where some data enhancement methods such as flipping were also taken to expand 
the data size. Finally, the datasets of these two kinds of steels contain 1,914 and 6,048 sub-images 
respectively, in which both the compression and expansion paths consist of four convolutional layers, 
respectively. Thus, the optimal model of the microstructural segmentation under each data set was obtained 
by adjusting the model parameters, such as the loss function and optimizer.

APPLICATIONS OF DOMAIN KNOWLEDGE DURING MACHINE LEARNING
With the widespread application of ML methods, it is gradually realized that the data available for any 
specific materials system is scarce and highly valuable. In order to construct a more reliable ML model, the 
knowledge background behind these rare data in the algorithms is of great importance for improving the 
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Figure 3. Schematic diagram of the EBSD-trained deep learning method and its application in dual-phase steel and quenching and 
partitioning steel. The images are quoted from ref[7] with permission. EBSD: Electron backscattered diffraction.

model accuracy. Besides the direct modeling of experimental data, a large number of computational data 
containing domain knowledge can be obtained using computational methods with the basic information 
input such as physical formulas. As one of the application ways of domain knowledge, the experts system 
has long been widely used in the evaluation and diagnosis field of civil engineering systems for evaluation 
and diagnosis[79]. Similarly, in materials science, domain knowledge that greatly enhances ML will be a great 
enhancement to ML algorithms in materials science. So, the introduction of domain knowledge is a 
significant approach to enhance the data quality for a better prediction of ML.

A modular process for embedding domain knowledge into ML
For initial data in different systems, the introduction of domain knowledge into ML models can be divided 
into several modules, including the database construction and pre-processing, ML model construction and 
hyper-parameter optimization, forward prediction, and reverse design [Figure 4]. As the key step for 
building an optimal ML model, the high-quality database should be ensured firstly. The database is usually 
sourced from two kinds of data, and one of them is the experimental data, which is difficult to obtain. In 
fact, there always existed a relatively-large error among these experimental data due to the variations in the 
preparation of alloy samples by different researchers, such as the processing and composition deviations. 
Domain knowledge can be employed to pre-process these data, including the classification, grading, 
weighting, etc. The other kind of data were obtained by targeted computational simulations, where the 
domain knowledge can reduce computational effort and ensure its rationality. Thus, the domain knowledge 
achieved from materials science can be well used to optimize the dataset.
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Figure 4. The modular process for domain-knowledge-embedded machine learning.

Here, the property-orientated alloy-design strategy, combining the ML and the characteristic parameters, 
was taken for an instance to search for the BCC γ-U alloys with prominent corrosion resistance in the 
U-Mo-Nb-Ti-Zr systems[80]. To enhance the accuracy of predictions, the cluster formula approach and 
Molybdenum equivalent (Moeq) were embedded as domain knowledge of the ML model. The cluster 
formula, which reflects the elemental interactions, acts as compositional constraints, while the Moeq signifies 
the structural stability of the BCC phase. Before ML, domain knowledge was leveraged to pre-process the 
data, including data screened and weighted, to enhance the model’s predictive power. Armed with a 
screened and weighted dataset, Auxiliary Gradient Boosting Regression Tree (XGBR) methods were 
employed to establish an optimal correlation between alloy composition and corrosion-resistant lifetime (D) 
in boiling water at 343 °C. This approach outperformed both the Random Forests Regressor (RFR) and 
Support Vector Regression (SVR) methods. Subsequently, the cluster formula was integrated into the ML 
model for the reverse design, aiming to forecast new alloys tailored to achieve a desired D. The ML model 
successfully designed a multi-component alloy with a composition of U-7.17Mo-0.96Nb-0.31Ti-0.28Zr 
(wt.%), exhibiting an extended corrosion-resistant lifetime with a maximum D (190.4 days). In the absence 
of cluster formula constraints on alloy compositions, ML would yield 158 potential compositions when 
targeting D ≥ 182.0, significantly complicating experimental validation. Thus, the cluster-formula-embedded 
ML method was proved as an efficient tool for predicting alloy compositions in multi-component systems.

When the ML model is limited by the quantity and quality of experimental data, the domain knowledge can 
also be embedded into the computational methods in advance to obtain a series of reliable data with 
intrinsic characteristics for ML, which will open a breakthrough for the design of novel materials with 
scarce experimental data. Zou et al. developed a ML design method for high-strength and ductile Ti alloys 
based on high-throughput first-principles calculations[81]. Among them, three procedures, the formula 
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description of strengthening mechanisms, the empirical design principle, and the calculation of multi-
component solid solution model by the similar atomic environment (SAE) approach[82], were required to 
obtain the meaning functions from the knowledge-based modeling, which is essential to further optimize 
the design strategies recommended by ML. After data mining and ML, the Ti-7543 (Ti-7Mo-5Al-4Cr-3Nb-
0.5Fe-0.2O wt.%) alloy was obtained, exhibiting a higher yield strength of 1239 MPa and good ductility with 
the elongation of 8.2 %. If these underlying requirements and principles in the knowledge base were not 
considered, there would exist a huge deviation in the predicted strength data, such as the contributions from 
the solid-solution strengthening and grain refinement hardening, which will conflict with these related 
strengthening mechanisms.

Another way to enhance the generalization capability of ML models is to employ interpretable ML models. 
In Liu and Sun’s work, the Explainable Boosting Machine (EBM) was utilized to forecast the compressive 
strength of concrete materials and to elucidate the contribution of mix ratio factors for the compressive 
strength[83], where 1030 compressive strength values were used to construct the model. The Bayesian 
optimization algorithm was applied to iteratively construct the hyperparametric model and identify the 
optimal point in the space, which significantly reduced the time consumption in building the ML model. In 
terms of model prediction performance, the EBM algorithm exhibited excellent performance with the 
coefficient of determination (R2) being 0.93, the RMSE being 4.33, and the mean absolute error (MAE) being 
3.10, respectively. It allows a comprehensive interpretation of the contribution of individual features to the 
predicted results from both global and local perspectives, thereby further determining the influence of each 
mixing ratio on the compressive strength of the concrete. It should be noted that the interpretable model 
itself does not involve the application of domain knowledge. However, the various parameters provided by 
interpretable models will ultimately affect the performance and serve as an important reference for materials 
design, from which the intrinsic mechanisms in materials can be gleaned as new domain knowledge.

CONCLUSIONS AND PROSPECTS
ML methods have provided new approaches for materials researchers to resolve present challenges. In 
practical applications, these methods can be used to construct mapping correlations, whether to formulate 
physical equations or directly to predict materials properties for any given compositions or processes. For 
materials design, the ML methods can identify the key parameters that determine performance and achieve 
design goals. In computational materials science, the ML methods can accelerate the construction of 
important calculation foundations, such as potential functions, thereby improving the speed of AIMD 
methods by one or two orders of magnitude. When describing a specific phenomenon, the ML can 
construct accurate and precise mathematical formulas. Moreover, deep learning methods can also be 
utilized to recognize the image information for accelerating the analysis processes. In situations where the 
data are scarce but valuable, the introduction of reliable domain knowledge into the ML can allow for a 
certain degree of independence from relying solely on big data. This approach will allow the materials 
design to be guided only by a few key parameters, thereby enabling a greater focus on improving precision 
and efficiency rather than relying on a large amount of data.

In the future work, the application of ML in material systems will involve two directions. First, from a 
technical point of view, the application of ML will become more standardized and regulated, including the 
standardization of database construction patterns and data formats, as well as the standardization of model 
selection and training methods. The standardization of databases will enable ML to have more and more 
data available in the future, thereby promoting the “data-driven” approach from the technical level. The 
standardization of model selection and training will automate the entire process of ML, starting from the 
database to efficiently obtain the most suitable model. Further, for the material systems, through the 
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accumulation of critical data, the ML methods have established an algorithm-based understanding of 
materials science. The powerful capability of these methods to handle high-dimensional data will enable 
researchers to make more effective decisions in materials design. The ML has reduced the enormous search 
space for functional materials and has facilitated the endless quest for improving novel materials. However, 
compared with the physical and chemical properties, the mechanical properties of alloy materials involve 
more factors, such as composition and microstructure. It needs to be emphasized that the microstructure of 
an alloy is largely determined by a series of processing factors. Thus, the relationship between the 
microstructure and mechanical properties remains unclear, and establishing this connection is crucial for 
developing a more effective search engine for alloys with targeted mechanical properties. This will be the 
focus of future ML applications in predicting mechanical properties of alloy materials[84].

Recently, “MatGPT” of materials informatics has been proposed, outlining technical roadmaps for data, 
descriptors, generative models, pre-trained models, directed design models, collaborative training, and 
experimental robots[85]. It aims to bring materials design work closer to the Large Models, thus achieving the 
“ChatGPT” in the field of materials. With the development of “MatGPT”, materials researchers will finally 
be liberated from tedious, repetitive work and have more energy to conduct more creative research.
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