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Abstract
Artificial intelligence (AI) and machine learning (ML) involve the usage of complex algorithms to identify patterns, 
predict future outcomes, generate new data, and perform other tasks that typically require human intelligence. AI 
tools have been progressively adopted by multiple disciplines of surgery, enabling increasingly patient-specific 
care, as well as more precise surgical modeling and assessment. For instance, AI tools such as ChatGPT have been 
applied to enhance both patient educational materials and patient-surgeon communication. Additionally, AI tools 
have helped support pre- and postoperative assessment in a diverse set of procedures, including breast 
reconstructions, facial surgeries, hand surgeries, wound healing operations, and burn surgeries. Further, ML-
supported 3D modeling has now been utilized for patient-specific surgical planning and may also be combined with 
3D printing technologies to generate patient-customized, implantable constructs. Ultimately, the advent of AI and 
its intersection with surgical practice have demonstrated immense potential to transform patient care by making 
multiple facets of the surgical process more efficient, precise, and patient-specific.
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INTRODUCTION
Artificial intelligence (AI) refers to a class of computer science and engineering technologies that leverage 
sophisticated algorithms, including machine learning (ML) methods, to perform tasks that typically require 
human intelligence. Although there are several subtypes of AI, ML has been widely used in the clinical 
setting and focuses on finding patterns in large datasets and/or performing predictive modeling based on 
prior training data[1,2]. ML encompasses a plethora of model types, including artificial neural networks 
(ANN), deep neural networks (DNN), natural language processing (NLP), and computer vision (CV)[3]. 
Within healthcare, AI tools have demonstrated significant capability across various contexts, including 
remote patient monitoring, medical diagnostics, risk management, conversation agents, and provision of 
virtual assistants[1,2]. Therefore, AI is postulated to have the potential to guide the diagnostic process, 
decrease the likelihood of medical errors, and improve the precision of medical decisions. Additionally, 
there is growing interest in the ability of ChatGPT, a popular NLP algorithm, to generate patient-facing 
information[3].

ML applications in healthcare often resemble traditional statistical analysis, although ML algorithms are 
more adept at handling large, heterogeneous datasets and detecting less strictly formalized relationships 
between these data[2]. Since the amount of data in electronic health records (EHRs) has recently doubled 
every two years, AI tools that collect and analyze a number of data unachievable by human power alone will 
likely bring numerous changes to the medical field[4,5]. For example, one healthcare application of this AI 
tool is prediction algorithms, applicable in various specialties, where ML is able to provide the probability of 
outcomes[6]. Therefore, the most successful clinical applications of AI are seen in medical specialties that 
collect large amounts of standardized data, including image-recognition tasks in dermatology, radiology, 
pathology, and cardiology, as reflected by the number of Food and Drug Administration (FDA)-approved 
medical devices across these specialties [Figure 1][7,8]. For instance, in dermatology, ML has demonstrated 
performance comparable to board-certified dermatologists in the detection of skin lesions from clinical or 
dermoscopic images[9], as well as recognition of potentially cancerous lesions in radiologic images[10]. In 
radiology, AI has gained significant prominence, transforming how the specialty is practiced and reducing 
radiologists’ workloads, particularly by decreasing the time required to interpret X-rays and computed 
tomography (CT) scans[11-13].

While many surgical disciplines involve less standardized data compared to imaging-focused medical 
practices, the field has evolved significantly over the past few years to integrate AI into practice[14]. 
Specifically, AI can revolutionize plastic surgery by enhancing patient information, patient-surgeon 
communication, surgical planning, and 3D tissue modeling and printing for surgical applications[14,15]. 
Therefore, analyzing current applications of AI in surgery is critical to developing novel surgical resources 
that have the potential to provide patients with the highest-quality healthcare. In this review, we explore 
how AI has impacted multiple facets of plastic and reconstructive surgery (PRS) and demonstrate ways in 
which patient-specific care in surgery has been influenced by the adoption of AI tools.

METHODOLOGY
The literature analysis was conducted as a narrative review, utilizing the following databases: Cochrane 
Library, Embase, Web of Science, and Medline. A search strategy incorporating both MeSH terms and free-
text keywords was employed, focusing on the terms “Surgery, Plastic” and “Artificial Intelligence”. The 
search was limited to articles published within the last 10 years, from 2013 to the present. The objective was 
to identify all relevant studies that reported on the tailored application of AI in plastic surgery. Articles 
identified through the search were categorized into three key areas: Patient Preparation and Education, Pre- 
and Postoperative Assessments, and 3D Tissue Modeling and Printing. Studies that were outside the 
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Figure 1. Proportion of FDA-approved AI-enabled medical devices within different medical disciplines, displayed as percentages. FDA: 
Food and Drug Administration; AI: artificial intelligence.

thematic scope, did not involve the use of computer-based intelligence, or pertained to other surgical or 
medical fields were excluded. It was conducted in two phases: initially, a screening based on titles and 
abstracts was performed, followed by a full-text review of the selected articles. Articles that were deemed 
appropriate underwent a more comprehensive evaluation, while those not meeting the inclusion criteria 
were excluded.

PATIENT PREPARATION AND EDUCATION
AI increasing patient communication
In PRS, patient-surgeon communication is essential to address expectations of procedures, approach 
patients’ concerns and goals, and manage patients’ health. Communication between clinicians and patients 
has a demonstrable impact on patient satisfaction, clinical outcomes, and litigation[16]. However, there is 
often a discrepancy between surgeons’ level of communication and patient’s level of comprehension. One of 
the direct applications of AI in transforming medical care is optimizing the creation and delivery of patient 
information, as well as medical documentation. AI tools, including ChatGPT and artificial intelligence 
virtual assistants (AIVAs), have recently been utilized to create relevant and tailored medical information to 
support patients' needs. These NLP systems have proven their ability to increase the readability of medical 
information, respond to frequently asked surgical questions, and address the benefits and risks of PRS 
operations[17-24]. By producing patient-relevant information, AI tools can also reduce the need for healthcare 
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workers to respond to frequently asked questions during medical appointments. Additionally, ChatGPT can 
be utilized 24/7 to address patients’ concerns and promptly provide essential medical information[25]. As a 
result, chatbots may help decrease the need for in-person medical consultations and increase access to 
healthcare in rural regions at a reduced cost[26,27].

ChatGPT - enhancing readability of patient education
Readability refers to the ease with which a reader can comprehend written material, with common scoring 
systems including the Flesch Reading Ease Score, Flesh-Kincaid Grade Level, Gunning Fog Index, Coleman-
Liau Index, and Simple Measure of Gobbledygook Index[19,21]. Each scoring system employs a unique 
mathematical formula to analyze factors such as mean number of sentences, number of syllables per 
sentence, number of words per sentence, or number of complex words per sentence[19]. Despite the need for 
readable patient-facing information, multiple studies have demonstrated that the readability level of 
information for breast reconstruction, burn injuries, hand surgery, and gender-affirming surgery exceeds 
the sixth-grade readability level recommended by the American Medical Association and National Institute 
of Health (NIH)[17-19,28]. To increase the readability of online medical material, AI tools such as ChatGPT 
have recently been evaluated in clinical settings[19,21]. In one study by Wang et al., the researchers performed 
an online search for “breast reconstruction”[28]. They collected patient information from the top 10 websites 
based on “hits” and found most of them to exceed the NIH’s readability recommendation[28]. Information 
provided by the sources was then entered into ChatGPT with the command: “Rephrase this article to a 5th-
grade readability level: ‘[Article]’”[28]. Paired t-tests of readability scores for Flesch Reading Ease, Flesch-
Kincaid Grade Level, and Simple Measure of Gobbledygook Index were performed, comparing medical 
information provided by the websites to the same information adjusted by ChatGPT. A value of P < 0.05 
indicated statistical significance. Results demonstrated that ChatGPT generally increased the readability of 
patient-facing PRS information; however, this improvement was statistically significant for only one of the 
ten websites, specifically “Plasticsurgery.org”[28]. On an important note, readability scores still exceeded 5th-
grade levels, highlighting an ongoing need to generate more readable patient-facing information[28]. Despite 
this current limitation, Wang et al. proved that ChatGPT has the potential to increase the readability of 
online information and may be utilized by plastic surgeons to help simplify complex online medical 
material[28]. Similar results were obtained by Baldwin et al., who evaluated ChatGPT’s ability to improve 
burn first aid information to an 11-year-old literacy level[19]. Baldwin et al. utilized a one-sample one-tailed 
t-test to effectively compare readability scores before and after ChatGPT modification. Before ChatGPT 
modification, only 4% of the top 50 English webpages with burn first aid information met the 11-year-old 
literacy rate according to the following readability formulas: Gunning Fog Index, Coleman-Liau Index, and 
Simple Measure of Gobbledygook Index[19]. However, after ChatGPT altered the material, 18% reached the 
11-year-old literacy rate[19]. Additionally, after ChatGPT modified online patient education materials, 
readability scores improved significantly according to all readability formulas employed (P < 0.001)[19]. 
Likewise, Browne et al. investigated ChatGPT’s ability to enhance the readability of hand surgery 
information provided by the American Society for Surgery of the Hand and the British Society for Surgery 
of the Hand[17]. Browne et al. utilized a two-tailed Paired Student’s t test to compare the readability scores 
prior to and post ChatGPT modification and set a significance level at 5%[17]. Specifically, the readability 
formulas utilized in this experiment include the Automated Readability Index, Gunning Fog Score, Flesch 
Kincaid Grade Level, Flesch Reading Ease, Coleman-Liau Index, Simple Measure of Gobbledygook, and 
Linsear Write Formula. Both Wang et al. and Baldwin et al. have utilized similar methodologies, yielding 
comparable results in different plastic surgery domains[19,28]. The readability of ChatGPT-modified hand 
surgery material improved significantly compared to unedited hand surgery information (P < 0.001) for all 
readability tests utilized and achieved a mean sixth-grade level for the Flesch Kincaid Grade Level and 
Simple Measure of Gobbledygook tests[17]. Therefore, ChatGPT has demonstrated an ability to improve the 
readability of complex surgical information available to patients across multiple disciplines.
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Evaluation of ChatGPT-generated patient-facing information
Currently, 80% of Americans use the Internet for medical information, and a new study has determined that 
78.4% of patients are open to utilizing ChatGPT for medical diagnoses[20,29,30]. Therefore, ensuring the quality 
of ChatGPT-generated information for patient safety in an age where people increasingly consult the 
Internet for healthcare information is critical. In attempts to develop safe and accurate patient-facing 
information, ChatGPT-generated responses have been evaluated across various divisions of plastic surgery: 
microsurgery, breast surgery, rhinoplasty, and cleft lip and palate surgery[20-24]. Additionally, to properly 
determine the quality of ChatGPT-generated information, material currently available from academic and 
professional sources is often compared against newly created ChatGPT medical information[20-24]. Grading 
scales and tests frequently utilized by researchers to assess the quality of PRS information generated by 
ChatGPT against online resources include Likert scales, EQUIP scales, and readability tests[18,19,21]. In one 
study by Berry et al., ChatGPT-generated responses to frequently asked microsurgery medical questions 
were compared against information currently provided by the American Society of Reconstructive 
Microsurgery (ASRM) utilizing paired t-tests[20]. Similar to Wang et al., a value of P < 0.05 indicated 
statistical significance[28]. Six plastic surgeons were tasked with assessing the comprehensiveness and clarity 
of the two sources’ responses and selecting the source that provided the highest-quality patient-facing 
information[20]. Thirty non-medical individuals only indicated their preference. Surprisingly, plastic 
surgeons scored ChatGPT information significantly higher in terms of comprehensiveness (P < 0.001) and 
clarity (P < 0.05)[20]. Plastic surgeons and non-medical individuals also chose ChatGPT as the source that 
provides the highest-quality microsurgical information 70.7% and 55.9% of the time, respectively. 
Interestingly, the readability scores of ChatGPT responses were considerably worse than ASRM according 
to the following readability tests: Flesch-Kincaid Grade Level (P < 0.0001), FleschKincaid Readability Ease 
(P < 0.001), Gunning Fog Index (P < 0.0001), Simple Measure of Gobbledygook Index (P < 0.0001), 
Coleman-Liau Index (P < 0.001), Linsear Write Formula (P < 0.0001), and Automated Readability Index 
(P < 0.0001)[20]. Therefore, even though ChatGPT has proven to create accurate, comprehensive, and clear 
microsurgical medical information, it may struggle to produce medical information at a desired 6th-grade 
reading level when not explicitly prompted to do so.

Similarly, in a study by Grippaudo et al., ten plastic surgery residents analyzed the quality of ChatGPT-
generated breast plastic surgery information utilizing an EQIP scale for the frequently performed 
procedures: breast reduction, breast reconstruction, and augmentation mammoplasty[21]. The EQUIP scale is 
made up of 36 yes or no questions with three sections: Content data (Questions 1-18), Identification data 
(Questions 25-36), and Structure data (Questions 25-36)[21]. Each question has a singular point value and a 
score above 18 is considered a high score. ChatGPT was proven to create quality breast surgery information. 
Regarding “Structure data”, ChatGPT thrived in providing clear and comprehensive information for 
patients. However, one limitation identified by the researchers was that ChatGPT-generated medical 
information struggled to perform well for the “Identification data” questions, often lacking proper 
validation or bibliographic references. Despite this limitation, ChatGPT proved to create quality PRS 
patient-facing information in regard to breast reconstruction, breast reduction, and augmentation 
mammoplasty. Additionally, in a study by Seth et al., three specialist plastic and reconstructive surgeons 
evaluated ChatGPT’s ability to create safe and high-quality breast augmentation material by asking plastic 
surgeons to qualitatively assess ChatGPT-generated responses to six breast augmentation questions. The 
researchers also performed a literature search to assess the accessibility, informativeness, and accuracy of 
the responses[22]. ChatGPT was found to provide comprehensive and grammatically accurate responses but 
lacked personalized advice[22]. Xie et al. discovered similar results to those of Seth et al. when investigating 
the use of ChatGPT to generate responses to rhinoplasty questions from the American Society of Plastic 
Surgeons (ASPS) website[23]. Responses were evaluated by four plastic surgeons qualitatively for accuracy, 
informativeness, and accessibility by plastic surgeons[23]. Surgeons determined that the ChatGPT provided 
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comprehensive and coherent answers, yet ChatGPT was limited in providing personalized advice critical for 
quality patient consultation[23].

Regarding cleft lip and palate repairs, Fazilat et al. used paired t-tests to compare ChatGPT-generated 
responses to thirty cleft lip and palate questions with information from four academic and professional 
sources for quality and readability[31]. Eleven plastic surgeons evaluated the comprehensiveness, clarity, and 
accuracy of the two sources and selected the sources they preferred to create the highest-quality 
information[31]. Twenty-nine non-medical individuals only selected the source they preferred. Plastic 
surgeons scored ChatGPT significantly higher than the academic and professional sources regarding 
comprehensiveness (P < 0.0001) and clarity (P < 0.001)[31]. Additionally, plastic surgeons and non-medical 
individuals preferred ChatGPT cleft lip and palate information 60.88% and 60.46% of the time, 
respectively[31]. The number of inaccuracies in ChatGPT and the academic and professional sources were 
similar. Additionally, the readability level of both sources exceeded the 6th recommended by the NIH 
according to the following readability formulas: Flesch-Kincaid Grade Level, Flesch-Kincaid Readability 
Ease, Gunning Fog Index, Simple Measure of Gobbledygook Index, Coleman-Liau Index, Linsear Write 
Formula, and Automated Readability Index[31]. The results of this study highlight ChatGPT’s ability to 
produce quality cleft lip and palate information that plastic surgeons and non-medical individuals prefer 
against currently available academic and professional sources[31]. Likewise, in a study by Chaker et al., two 
senior pediatric plastic surgeons qualitatively evaluated the accuracy of ChatGPT-generated cleft lip and 
palate repair response to common postoperative questions against their expert responses[24]. The two 
pediatric plastic surgeons determined that the accuracy rate of ChatGPT-generated information was 69% 
compared to their expert responses, once again demonstrating that ChatGPT has the potential to generate 
patient education material and can reduce physician workload[24]. Therefore, ChatGPT may be used to 
produce high-quality information for patients across multiple disciplines, though more personalized output 
may be needed.

Effectiveness of AIVAs in producing patient educational material
AIVAs utilize NLP to comprehend human speech and provide answers in a conversational form. AIVAs 
have already been used by major technology companies such as IBM to answer customer inquiries without 
human assistance[32], and in a similar fashion, Boczar et al. evaluated the AIVAs’ ability to respond to plastic 
surgery FAQs[32]. Their study trained AIVAs to accurately answer commonly asked questions to ten 
frequent patient concerns in plastic surgery[32]. Individuals were then asked to complete a Likert scale and 
indicate if the AIVA response was correct and to evaluate its potential use as a source of patient-facing 
information[32]. AIVA answered plastic surgery patients’ frequently asked questions correctly 92.3% of the 
time, while participants believed that only 83.3% of AIVA’s answers were correct[32]. Interestingly, according 
to the Likert scale, patients were neutral when asked if the technology could replace human assistance[32]. 
Overall, AIVAs may have a future role in providing accurate information to routine surgical questions, 
though further refinement is necessary before more widespread adoption by providers and acceptance by 
patients.

PRE AND POSTOPERATIVE ASSESSMENTS
Breast reconstruction
Patient satisfaction is a central goal of breast reconstruction, and delivering patient-centered treatment 
during the reconstructive process can help improve the perception of quality of care[16]. ML methods have 
accordingly enabled more patient-specific care in PRS and other disciplines of surgery [Figure 2]. For 
example, ML has been used to assist clinicians in reconstructive method selection, preoperative planning, 
facilitation of postoperative monitoring, enhancement of patient outcomes, and to decrease hospital 
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Figure 2. AI-supported patient-specific processes in plastic surgery. AI: Artificial intelligence.

readmissions [Table 1][33]. In a pilot study by Mavioso et al., the preoperative utility of ML was evaluated for 
semi-automatic assessment of Angio CT imaging for forty patients scheduled for deep inferior epigastric 
perforators (DIEP) breast reconstruction[34] [Table 2]. Specifically, Mavioso et al. utilized a paired sample 
t-test and Wilcoxon test to compare the blood vessel sizes determined using semi-automatic identification 
against manual identification[34]. Additionally, a one sample t-test was performed to evaluate the estimated 
location of the blood vessels when utilizing semi-automatic identification[34]. When compared to the manual 
procedure performed by the imaging team, ML analysis of vessel caliber, orientation, and location 
significantly reduced the time spent on preoperative planning for DIEP flap reconstruction. However, the 
software could not accurately estimate the caliber of small vessels (< 1.5 mm)[34]. Additionally, the vertical 
component of vessel location differed by 2-3 mm from the manual method, although this discrepancy did 
not impact the dissection. Overall, this study demonstrates that ML may decrease the time spent on surgical 
planning and simplify the overall process.

ML algorithms can also be valuable for the prompt detection of complications following breast surgery. By 
analyzing available patient data, these algorithms can identify patterns and determine the associations 
among relevant variables[1]. Kiranantawat et al. developed the first smartphone application for microsurgery 
monitoring by training the algorithm with photographic data of fingers undergoing venous or arterial 
congestion[35]. Across forty-two participants, the application successfully assessed the vascular status of 
fingers with a sensitivity and specificity of 94% and 98%, respectively[35]. This study suggests that ML could 
enhance early detection of postoperative flap failure and help optimize monitoring of the flap after surgery. 
Another study by Myung et al. developed an ML model to determine patient-specific characteristics and 
surgical factors that lead to an increased risk of donor site complications after the performance of 
abdominal flaps for breast reconstruction[36]. After analyzing 568 patients, Myung et al. discovered that the 
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Table 1. Benefits and challenges of AI in pre- and postoperative assessments

Phase Plastic surgery 
current limitations AI-based solutions Benefits of AI Challenges of AI

3D imaging and modeling 
AI algorithms process patient data to create 
detailed 3D models for surgical planning

- High precision and 
customization 
- Enhanced visualization 
- Improved patient-
surgeon communication

- High cost 
- Requires extensive training 
- Data privacy concerns

AR 
AR overlays digital information onto the 
real-world surgical field, enhancing 
visualization and precision

- Real-time guidance 
- Supports minimally 
invasive techniques 
- Valuable educational 
tool

- Technical limitations 
- Integration challenges 
- High cost

Predictive analytics 
ML models analyze patient data to predict 
potential complications and outcomes

- Early identification of 
risks 
- Personalized surgical 
plans 
- Optimized resource 
allocation

- Dependent on data quality 
- Potential for algorithmic bias 
to training data 
- Integration complexity

Preoperative - Imaging and diagnostic 
- Surgical planning 
- Personalized 
visualization 
- Predictive outcomes

Breast, facial, hand, and wound healing 
(Skin) assessments 
AI aids in selecting reconstructive methods, 
preoperative planning, and evaluating 
imaging data

- Reduced planning time 
- Enhanced monitoring 
- Improved satisfaction 
and reduced 
readmissions

- Accuracy issues with small 
vessels 
- Discrepancies in vertical 
component estimation for 
breast reconstruction

Telemedicine and remote monitoring 
AI-driven platforms monitor patient 
recovery remotely, ensuring continuous 
communication and support

- Continuous support 
- Increased accessibility 
- Improved adherence to 
protocols

- Technology barriers 
- Data security concerns 
- Limited physical examination

Predictive analytics 
AI models continue to predict 
complications based on ongoing patient 
data, facilitating early interventions

- Timely intervention 
- Reduced morbidity and 
mortality 
- Personalized care

- Data dependency 
- Algorithmic bias to training 
data 
- Complexity in clinical 
workflow integration

AI-enhanced readability of patient 
education materials 
AI tools simplify medical information to 
improve patient comprehension and 
adherence to postoperative care 
instructions

- Increased patient 
understanding 
- Better adherence to 
recovery protocols 
- Improved outcomes

- Need for further refinement 
- Ensuring personalized advice 
- Patient trust and reliability 
issues

Postoperative - Managing surgical 
complications and patient 
information 
- Variability in outcomes 
- Subjective results and 
evaluation 
- Patient satisfaction

Breast, facial, hand, and wound healing 
(skin) monitoring 
Smartphone apps and ML algorithms 
monitor status and predict complications 
like infections and functional recovery

- Early detection of 
complications 
- Improved monitoring 
- Higher predictive 
accuracy

- Technical limitations 
- Dependence on image 
quality and data input

AI: Artificial intelligence; AR: augmented reality; ML: machine learning.

algorithm was able to accurately predict complications [area under the curve (AUC): 0.89] and could 
further be used as a reference for assessing the individual risk associated with abdominal flaps[36].

Additionally, ML has been applied to minimize postoperative infection following implant-based 
reconstruction, including the development of internal algorithms to guide clinical decisions such as the 
need for reoperation or introduction of antibiotics[1]. Hassan et al. developed an algorithm using ML to 
predict periprosthetic infection and explantation[37]. The study demonstrated that ML models can provide a 
higher predictive accuracy compared to multivariate logistic regression for periprosthetic infection and 
explantation[37,38]. Therefore, ML could help reduce postoperative burden and promote better outcomes in 
breast reconstruction.

Facial surgery
In the context of facial surgery, photographic data provides a means to assess surgical success or failure, and 
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Table 2. Description of primary research studies analyzed

Section Author          Title Year Journal Main aim Main finding

Wang et al.[28] Artificial intelligence in plastic
surgery: ChatGPT as a tool to
address disparities in health literacy

2024 Plastic and 
Reconstructive 
Surgery

(1) Evaluate the readability of 10 online sources of 
breast reconstruction information against those 
modified by ChatGPT 
(2) Assess ChatGPT’s ability to improve the 
readability of patient-facing medical information

(1) ChatGPT generally improved readability, but only one 
website showed statistically significant improvement 
(2) Readability scores still exceeded the 5th-grade level, 
indicating a need for more simplification of patient 
information

Baldwin et al.[19] An artificial intelligence language 
model improves readability of burn 
first aid information

2024 Burns (1) Assess the effectiveness of ChatGPT in 
improving the readability of burn first aid 
information 
(2) Evaluate the changes in the readability of 
online patient education materials after ChatGPT 
modification

(1) After ChatGPT modifications, 18% of webpages met 
an 11-year-old literacy level, compared to only 4% prior 
to ChatGPT modifications 
(2) ChatGPT significantly improved readability scores 
across all readability formulas (P < 0.001)

AI-enhanced 
readability of patient 
education

Browne et al.[17] ChatGPT-4 can help hand surgeons 
communicate better with patients

2024 Journal of Hand 
Surgery Global 
Online

(1) Evaluate ChatGPT’s ability to improve the 
readability of hand surgery information provided 
by the American Society of Surgery of Hand and 
the British Society of Surgery of the Hand 
(2) Use multiple readability formulas to compare 
pre and post-ChatGPT modified readability scores 
of hand surgery content

(1) ChatGPT significantly improved the readability of 
hand surgery information (P < 0.001) across all 
readability tests 
(2) ChatGPT-modified information achieved a mean 
sixth-grade readability level on multiple readability tests

Berry et al.[20] Both patients and plastic surgeons 
prefer artificial intelligence - 
generated microsurgical 
information

2024 Journal of 
Reconstructive 
Microsurgery

(1) Compare the quality of ChatGPT-generated 
responses to microsurgery questions against those 
provided by the ASRM 
(2) Assess the comprehensiveness, clarity, and 
readability of ChatGPT’s responses against ASRM 
content

(1) Surgeons preferred ChatGPT’s responses 70.7% of 
the time and rated ChatGPT higher in terms of 
comprehensiveness (P < 0.001) and clarity (P < 0.05) 
(2) ChatGPT’s responses had significantly worse 
readability scores across multiple readability formulas 
compared to ASRM content

Grippaudo 
et al.[21]

Quality of the information provided 
by ChatGPT for patients in breast 
plastic surgery: are we already in 
the future?

2024 JPRAS Open (1) Assess the quality of ChatGPT-generated 
breast plastic surgery information using the EQIP 
scale 
(2) Evaluate ChatGPT’s generated patient-facing 
breast surgery information across content, 
identification, and structure data

(1) ChatGPT produced high-quality information for 
breast reconstruction (19/36), reduction (19/36), and 
augmentation (20/36), scoring above 18 on the EQIP 
scale 
(2) ChatGPT information lacked identification since the 
information did not contain bibliography references or 
proper validation

Seth et al.[22] Evaluating chatbot efficacy for 
answering frequently asked 
questions in plastic surgery: a 
ChatGPT case study focused on 
breast augmentation

2023 Aesthetic Surgery 
Journal

(1) Evaluate ChatGPT’s ability to create accurate, 
informative, and accessible breast augmentation 
information 
(2) Qualitatively compare ChatGPT’s responses to 
breast augmentation questions with established 
literature

(1) ChatGPT provided comprehensive and grammatically 
accurate responses to breast augmentation questions 
(2) ChatGPT-generated information lacked personalized 
advice

Xie et al.[23] Aesthetic surgery advice and 
counseling from artificial 
intelligence: a rhinoplasty 
consultation with ChatGPT

2023 Aesthetic Plastic 
Surgery

(1) Investigate ChatGPT’s ability to generate 
accurate, informative, and accessible responses to 
rhinoplasty questions sourced from the ASPS 
website 
(2) Evaluate the quality of ChatGPT’s responses in 
a clinical setting

(1) ChatGPT provided comprehensive and coherent 
answers to rhinoplasty questions 
(2) ChatGPT lacked the ability to generate personalized 
advice, limiting its usefulness in patient consultations

Evaluation of AI-
generated patient-
facing information
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Fazilat et al.[31] AI-based cleft lip and palate 
surgical information is preferred by 
both plastic surgeons and patients 
in a blind comparison

2024 The Cleft Palate 
Craniofacial Journal

(1) Compare the quality and readability of 
ChatGPT-generated response to cleft lip and 
palate questions against those provided by 
academic and professional sources 
(2) Evaluate comprehensiveness, clarity, accuracy, 
and preference

(1) Plastic surgeons rated ChatGPT-generated 
information higher for comprehensiveness (P < 0.0001) 
and clarity (P < 0.001), and both plastic surgeons and 
non-medical individuals preferred ChatGPT 60.88% and 
60.46% of the time, respectively 
(2) ChatGPT and the academic and professional sources 
exceeded the NIH’s recommended readability level

Chaker et al.[24] Easing the burden on caregivers-
applications of artificial intelligence 
for physicians and caregivers of 
children with cleft lip and palate

2024 The Cleft Palate 
Craniofacial Journal

(1) Assess the accuracy of AI-generated responses 
for cleft lip and palate repair postoperative 
questions by comparing them to expert responses 
from pediatric plastic surgeons 
(2) Evaluate ChatGPT’s ability to reduce physician 
workload by generating patient education material

(1) AI-generated information had a 69% accuracy rate 
compared to expert responses, showing potential in 
creating patient education materials 
(2) Although AI can reduce physician workload, more 
personalized outputs are necessary for higher-quality 
patient care

Effectiveness of 
AIVAs in producing 
patient educational 
material

Boczar et al.[32] Artificial intelligent virtual assistant 
for plastic surgery patient’s 
frequently asked questions: a pilot 
study

2020 Annals of Plastic 
Surgery

(1) Evaluate the accuracy of AIVAs in answering 
frequently asked plastic surgery questions 
(2) Assess patient perceptions of AIVA responses 
as a source of patient-facing information

(1) AIVAs answered 92.3% of plastic surgery FAQs 
correctly, although participants marked only 83.3% of 
responses as accurate 
(2) According to a Likert scale, patients were neutral 
regarding AIVAs’ potential to replace human assistance

Mavioso 
et al.[34]

Automatic detection of perforators 
for microsurgical reconstruction

2020 The Breast (1) Reduce duration and subjectivity of the 
preoperative Angio CT using CV for DIEP flaps 
breast reconstruction

(1) Reduced time for Angio CT from 2 h per patient to 30 
min 
(2) Automatic perforator detection was better with the 
software compared to the radiology team when 
estimating large vessels 
(3) Software showed more difficulties estimating the 
caliber of smaller perforators

Kiranantawat 
et al.[35]

The first smartphone application 
for microsurgery monitoring: 
SilpaRamanitor

2014 Plastic and 
Reconstructive 
Surgery

(1) Develop and evaluate a free flap monitoring 
system using mobile phone technology

(1) The smartphone application is sensitive (94%), 
specific (98%), and accurate for venous (93%) and 
arterial occlusion (95%) 
(2) Potential applications for early detection of flap 
failure

Myung et al.[36] Validating machine learning 
approaches for prediction of donor-
related complication in 
microsurgical breast 
reconstruction: a retrospective 
cohort study

2021 Scientific Reports (1) Evaluate a ML prediction model for abdominal 
flap donor site complications in breast 
reconstruction and determine factors influencing 
these complications using logistic regression

(1) Neuralnet was identified as the most effective ML 
package for predicting donor site complications 
(2) Significant factors affecting complications included 
the size of the fascial defect, history of diabetes, muscle-
sparing type, and adjuvant chemotherapy 
(3) The risk cutoff for fascial defect was 37.5 cm2, with a 
high-risk group showing a 26% complication rate 
compared to 1.7% in the low-risk group

Breast reconstruction

Hassan et al.[37] Artificial intelligence modeling to 
predict periprosthetic infection and 
explantation following implant-
based reconstruction

2023 Plastic and 
Reconstructive 
Surgery

(1) Develop, validate and evaluate the use of ML 
algorithms to predict complications of implant-
based reconstructions

(1) ML showed strong discriminatory performance in 
predicting periprosthetic infection and explantation, with 
AUC values of 0.73 and 0.78, respectively 
(2) ML identified 9 and 12 predictors of periprosthetic 
infection and explantation, respectively

Turning back the clock: artificial 
intelligence recognition of age 
reduction after facelift surgery 

(1) Evaluate the effectiveness of facelift surgery in 
reducing perceived age and patient satisfaction 
using convolutional neural networks and FACE-Q 

(1) Four neural networks accurately estimated 
preoperative age, with an average accuracy score of 
100.8 

Facial surgery Zhang et al.[39] 2021 Plastic and 
Reconstructive 
Surgery

correlates with patient satisfaction patient-reported outcomes
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(2) Patients reported a greater perceived age reduction 
(-6.7 years) compared to the neural network estimates 
(-4.3 years) 
(3) FACE-Q scores indicated high patient satisfaction 
with facial appearance, quality of life, and overall 
outcome 
(4) A positive correlation was found between neural 
network age reduction estimates and patient satisfaction

Boonipat 
et al.[40]

Using artificial intelligence to 
measure facial expression following 
facial reanimation surgery

2020 Plastic and 
Reconstructive 
Surgery

(1) Evaluate the use of ML to measure facial 
expression before and after facial reanimation 
surgery using video data

(1) The facial recognition application showed a greater 
recognition of happy signals in postoperative (42%) vs. 
preoperative (13%) smile videos (P < 0.0001) compared 
to 53% in control videos

Geisler et al.[41] A role for artificial intelligence in 
the classification of craniofacial 
anomalies

2021 Journal of 
Craniofacial 
Surgery

(1) Develop CNN models based on the ResNet-50 
architecture to classify non-syndromic CS from 2D 
clinical photographs

(1) CNN model developed showed an overall testing 
accuracy of 90.6%, demonstrating the potential of ML to 
detect craniofacial conditions

Knoops 
et al.[42]

A machine learning framework for 
automated diagnosis and 
computer-assisted planning in 
plastic and reconstructive surgery

2019 Scientific Reports (1) Develop the first fully automated large-scale 
clinical 3DMM for supervised learning in 
diagnostics, risk stratification, and treatment 
simulation, and to demonstrate its potential for 
improving clinical decision making in orthognathic 
surgery

(1) The developed 3DMM achieves a diagnostic 
sensitivity of 95.5% and specificity of 95.2% 
(2) The model simulates surgical outcomes with a mean 
accuracy of 1.1 ± 0.3 mm 
(3) The 3DMM framework automates diagnosis and 
provides patient-specific treatment plans from 3D scans, 
improving efficiency in clinical decision making

Lim et al.[44] Using generative artificial 
intelligence tools in cosmetic 
surgery: a study on rhinoplasty, 
facelifts, and blepharoplasty 
procedures

2023 Journal of Clinical 
Medicine

(1) Investigating the capacity of AI tools to 
generate realistic images pertinent to cosmetic 
surgery

(1) DALL-E-2, Midjournet and Blue Willow showed a 
higher representation of females, light skin tones, and 
with a BMI < 20 
(2) AI tools could enhance patient information but must 
be integrated ethically to ensure comprehensive 
representation and maintain medical standards

Ozkaya 
et al.[46]

Evaluation of an artificial 
intelligence system for diagnosing 
scaphoid fracture on direct 
radiography

2022 European Journal of 
Trauma and 
Emergency Surgery

(1) Determine the diagnostic performance of ML to 
detect scaphoid fractures on anteroposterior wrist 
radiographs

(1) ML demonstrated 76% sensitivity, 92% specificity, 
an AUC of 0.840, a Youden index of 0.680, and an F-
score of 0.826 for detecting scaphoid fractures 
(2) The experienced orthopedic specialist had the 
highest diagnostic performance based on AUC, while ML 
performance was comparable to that of a less 
experienced orthopedic specialist and superior to the ED 
physician

(1) AI models exhibited strong diagnostic performance, 
with AUROC values ranging from 0.77 to 0.96 for 
scaphoid fractures and 0.90 to 0.99 for distal radius 
fractures. Accuracy ranged from 72.0% to 90.3% for 
scaphoid fractures and 89.0% to 98.0% for distal radius 
fractures 
(2) Compared to clinical experts, 92.9% of the studies 
found AI models to have comparable or better 
performance. AI models generally showed poorer 
performance on occult scaphoid fractures, though 
models specifically trained for these types of fractures 

Hand surgery

Oeding et al.[47] Diagnostic performance of artificial 
intelligence for detection of 
scaphoid and distal radius 
fractures: a systematic review

2024 The Journal of 
Hand Surgery

(1) Determine the diagnostic efficacy of AI models 
for detecting scaphoid and distal radius fractures 
(2) Compare the efficacy to human clinical experts
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performed significantly better

Hoogendam 
et

 
al.[48]

Predicting clinically relevant 
patient-reported symptom 
improvement after carpal tunnel 
release: a machine learning 
approach

2022 Neurosurgery (1) Develop a prediction model that estimates the 
probability of clinically relevant symptom 
improvement 6 months after CTR 
(2) Evaluate the model’s discriminative ability and 
calibration using various ML techniques and apply 
it to support shared decision making for patients 
considering CTR

(1) A gradient boosting machine model with 5 predictors 
was identified as the best balance between 
discriminative ability and simplicity, achieving an AUC of 
0.723 in the holdout data set 
(2) The model demonstrated good calibration, with a 
sensitivity of 0.77, specificity of 0.55, positive predictive 
value of 0.50, and negative predictive value of 0.81 
(3) The prediction model, which uses 5 patient-reported 
predictors (18 questions), has reasonable discriminative 
ability and good calibration, and is available online to 
assist in shared decision making for patients considering 
CTR

Loos et al.[49] Machine learning can be used to 
predict function but not pain after 
surgery for thumb carpometacarpal 
osteoarthritis

2022 Clinical 
Orthopaedics and 
Related Research

(1) To develop and validate prediction models for 
clinically important improvement in pain and hand 
function 12 months after surgery for thumb 
carpometacarpal osteoarthritis 
(2) Assess the performance of various predictive 
models using logistic regression, random forests, 
and gradient boosting machines to support 
preoperative decision making

(1) The random forest model for pain prediction showed 
poor performance with an AUC of 0.59 and poor 
calibration 
(2) The gradient boosting machine model for hand 
function improvement had a good AUC of 0.74 and good 
calibration, using only the baseline hand function score 
as a predictor 
(3) A web application is available for the hand function 
model, which could aid in clinical decision making, 
though the pain prediction model is not yet suitable for 
clinical use

Kim et al.[50] Predicting the severity of 
postoperative scars using artificial 
intelligence based on images and 
clinical data

2023 Scientific Reports (1) Develop and evaluate an AI model using 
images and clinical data to predict the severity of 
postoperative scars 
(2) Compare the performance of this AI model to 
that of dermatologists

(1) The AI model reached a high level of accuracy (ROC-
AUC 0.931 for images alone, 0.938 combined with 
clinical data) 
(2) The model also performed at a comparable level to 
that of 16 dermatologists

Squiers et al.[51] Machine learning analysis of 
multispectral imaging and clinical 
risk factors to predict amputation 
wound healing

2022 Journal of Vascular 
Surgery

(1) Develop a ML algorithm using multispectral 
imaging data and clinical risk factors to predict 
amputation wound healing and reduce the need for 
reoperation

(1) The ML algorithm had high sensitivity (91%) and 
specificity (86%) for prediction of non-healing 
amputation sites 
(2) ML algorithms could reduce reoperation rates, 
improve healing outcomes, and potentially decrease 
costs and patient length of stay

Robb et al.[52] Potential for machine learning in 
burn care

2022 Journal of Burn 
Care & Research

(1) Explore the potential implementation of various 
ML methods (such as linear and logistic 
regression, deep learning, and neural networks) in 
burn care within the NHS in the UK 
(2) Focus on optimizing care through ML 
applications in burn assessment

(1) The use of ML in burns holds the potential to improve 
prevention, burns assessment, mortality predictions, and 
critical care monitoring 
(2) Successful implementation requires investment in 
data capture and training 
(3) ML technology has the potential to improve 
diagnostic accuracy, objective decision making, and 
resource allocation

(1) Explore potential therapeutic agent TSA for 
diabetic wound healing with AI-assisted 
bioinformatics 
(2) Investigate the effectiveness of TSA in 

(1) TSA via microneedle patch reduces inflammation, 
promotes tissue regeneration, and inhibits HDAC4 in 
diabetic wound healing 
(2) This approach offers a minimally invasive and safe 

Wound healing and 
burn surgery

Xue et al.[53] Artificial intelligence - assisted 
bioinformatics, microneedle, and 
diabetic wound healing: a “new 
deal” of an old drug

2022 ACS Applied 
Materials & 
Interfaces
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targeting HDAC4 
(3) Develop a microneedle-mediated patch for 
TSA delivery to improve treatment efficacy and 
reduce secondary damage

treatment method with broad applications in biomedical 
fields

Knoops 
et al.[42]

A machine learning framework for 
automated diagnosis and 
computer-assisted planning in 
plastic and reconstructive surgery

2019 Scientific Reports (1) Develop a ML framework for automated 
diagnosis, risk stratification, and treatment in PRS 
(2) Enhance precision and efficiency in ML-
assisted surgical planning to improve clinical 
decision making and outcomes

(1) This approach offers high diagnostic accuracy 
(95.5% sensitivity and 95.2% specificity) and simulates 
surgical outcomes with a mean accuracy of 1.1 ±  0.3 
mmc 
(2) This framework can automate diagnosis and provide 
patient-specific training from 3D models

3D and predictive 
modeling

Knoops et al.[55] A novel soft tissue prediction 
methodology for orthognathic 
surgery based on probabilistic finite 
element modeling

2018 PloS One (1) Develop a probabilistic FEM to predict 
postoperative facial soft tissues following 
orthognathic surgery 
(2) Addressing the limitations of prediction models 
by including variability and uncertainty in the 
prediction process

(1) The probabilistic FEM was validated on 8 patients 
(2) The FEM accurately predicted changes in the nose 
and upper lip but underestimated changes in the cheeks 
and lower lip 
(3) This model offers patients and surgeons a more 
comprehensive understanding of surgical impacts

3D printing for 
planning and 
implantation

Chae et al.[62] 3D volumetric analysis for planning 
breast reconstructive surgery

2014 Breast Cancer 
Research and 
Treatment

(1) Develop a new approach to volumetric analysis 
for breast reconstructive surgery using 3D 
photography 
(2) Improve accuracy in assessing breast volume, 
shape, and projection compared to traditional 2D 
photography

(1) Multiple techniques for volumetric analysis for breast 
asymmetry were reported 
(2) Breast volumes can be visualized through 3D images, 
accurately calculated, and produced as 3D haptic models 
for operative guidance

AI: Artificial intelligence; ASRM: American Society of Reconstructive Microsurgery; ASPS: American Society of Plastic Surgeons; NIH: National Institute of Health; AIVAs: artificial intelligence virtual assistants; FAQs: 
frequently asked questions; CT: computed tomography; CV: computer vision; DIEP: deep inferior epigastric perforators; ML: machine learning; AUC: area under the curve; FACE-Q: Facial Appearance and Cosmetic 
Surgery Quality of Life Questionnaire; CNN: convolutional neural networks; CS: craniosynostosis; 3DMM: 3D morphable model; BMI: body mass index; ED: emergency department; CTR: carpal tunnel release; TSA: 
trichostatin A; HDAC4: histone deacetylase 4; PRS: plastic and reconstructive surgery; FEM: finite element model.

it can also be used as a tool for enhancing communication between patient and physician. ML has been explored in combination with photographic data to 
maintain proper standardization of procedures and offer more precise postoperative assessment[39]. Using pre- and postoperative pictures, Zhang et al. showed 
that neural networks could identify preoperative age and facial age reduction following facelift surgery[39]. A positive correlation between the algorithmically 
determined result and patient satisfaction after facelift was identified, representing a validated method of quantifying postoperative results and efficacy for 
plastic surgeons[39]. In another study, Boonipat et al. used ML to assess postoperative facial expression improvement after facial reanimation surgery[40]. 
Recording of facial expressions was performed for each patient in a video clip and analyzed with ML software to detect facial expressions[40]. ML algorithms 
were found to be capable of reading facial emotional expressions and providing a quantification of those expressions. These tools may thus be helpful in 
assessing facial palsy and the success of postoperative outcomes[40]. Moreover, corrective procedures, the use of neurotoxins, or soft tissue fillers could utilize 
ML as an assessment tool for photographic or recorded data[39,40].
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ML has also been applied to perform automatic detection of craniofacial conditions, facilitating early 
diagnosis based on photographic images and annotated datasets. In an early study by Geisler et al., neural 
networks have successfully achieved an overall testing accuracy of 90.6% for the detection of 
craniosynostosis, opening the field for earlier diagnosis and minimizing the need for CT scans[41]. Another 
study by Knoops et al. described a computer-assisted model framework involving supervised learning for 
diagnostic, predictive outcome and treatment stimulation in craniofacial surgery[42]. The algorithm was 
trained on non-ionizing 3D face scans of healthy faces and orthognathic patients, and it provided an 
accurate classification with a 95.5% sensitivity and 95.2% specificity[42]. The algorithm was also able to 
stimulate patient-specific postoperative outcomes with a mean accuracy of 1.1 +/- 0.3 mm. compared to 
conventional surgical planning, suggesting that the model could predict the postoperative shape of the face 
in a single step and reduce the time for the planning process[42].

In addition to data classification, the advent of generative AI tools such as DALL-E2 can enable the creation 
of various types of synthetic images or text on demand[43]. Cosmetic surgery, given its inherently visual 
nature, can, therefore, take advantage of generative AI to simulate post-surgery results even prior to the 
procedure. In one study by Lim et al., DALL-E2, Midjourney and Blue Willow were evaluated in their utility 
to provide images clinically relevant after cosmetic surgery[44]. In future cases, surgeons could virtually 
simulate different interventions and examine the AI outcomes with patients for preoperative scoring and 
evaluation, which may help surgeons fine-tune the planned procedure and aim for specific modeled 
outcomes.

Hand surgery
Similar to radiology and other imaging-dominated disciplines, AI has been applied in hand surgery for 
fracture detection[45]. Despite the performance of standard clinical examination and X-ray characterization, 
scaphoid fractures, representing 15% of acute wrist fractures, are missed initially in nearly 16% of cases[45]. 
Therefore, there is an existing need for ML algorithms to improve the detection of scaphoid fractures, wrist 
fractures, and other cases within emergency departments. In a recent study by Ozkaya et al., an ANN model 
for scaphoid fracture detection on anteroposterior wrist radiographs was compared to three physicians (two 
orthopedic specialists and one physician in the emergency department)[46]. The ANN showed a 76% 
sensitivity and 92% specificity, which exceeded the performance of emergency department physicians, but 
still lagged behind that of an experienced orthopedic specialist[46]. However, the addition of clinical 
examination findings in the algorithm, as well as lateral views, could enhance the sensitivity of the ML 
algorithm. Further, Oeding et al. discovered that recent AI models have demonstrated excellent 
performance in detecting scaphoid fractures and radius fractures, with AUC values of 0.77-0.96 and 0.90-
0.99, respectively[47]. The majority of AI models have currently demonstrated comparable or better 
performance than many clinical experts, and further improvements in speed and performance may result 
from larger data sets, more powerful computing resources, and increasingly open-source code toolboxes[47].

Based on patient-specific data such as age, smoking status, dominant hand, occupation, and subtype of 
fracture, ML could also provide useful information in the acute setting, such as deciding whether to perform 
one type of hand surgery over another (e.g., replantation vs. amputation)[48,49]. Recently, two studies by 
Hoogendam et al. and Loos et al. from the Hand and Wrist Study Group in the Netherlands have 
introduced user-friendly graphical applications, supported by ML algorithms, for predicting postoperative 
function[48,49]. These ML approaches were applied to data from 2,119 patients with carpal tunnel syndrome 
(CTS) and 2,653 patients with thumb carpometacarpal osteoarthritis[48,49]. These applications calculated the 
probability of functional improvement 6 months after CTS surgery and 12 months after first 
carpometacarpal joint surgery, based on preoperative patient-reported outcome measures (PROMs). While 
these ML algorithms are freely available, it is crucial to note that such online applications often lack external 



Brenac et al. Art Int Surg 2024;4:296-315 https://dx.doi.org/10.20517/ais.2024.49                                                       Page 310

validation, which is essential for ML algorithms to be generalized to other patient cohorts.

Wound healing and burn surgery
While postoperative wound assessment and management are essential to ensure optimal treatment, no 
“gold standard” for scar evaluation currently exists[50]. Challenges in scar evaluation may arise from the 
variability in clinical assessments and difficulty in achieving consistent accuracy in follow-up evaluations. A 
recent study by Kim et al. introduced DNN models to classify postoperative scars based on scar severity. 
This model was trained with both an image-based AI model and a model based on clinical variables related 
to postoperative scars, such as patient demographic data, scar age, and symptoms[50]. Four scar severity 
groups were successfully classified using these image-based AI models at a performance level comparable to 
that of board-certified dermatologists, underscoring the efficacy of AI in clinical assessments[50]. A pilot 
study by Squiers et al. separately demonstrated the utility of combining image-based analysis with ML risk 
factor assessment in predicting the healing outcomes of primary amputation wounds[51]. The level of 
amputation was determined by the subject’s surgeon prior to imaging, and was based on clinical judgment 
such as patient history, physical exam, and any perfusion studies[51]. Multispectral imaging of the subjects’ 
lower extremity planned for amputation was also conducted on postoperative day 30[51]. Analysis of 
multispectral imaging demonstrated greater effectiveness in predicting primary amputation wound healing 
relative to surgeon judgment, with an 88% accuracy rate compared to 56%[51]. If further evaluation and/or 
external validation confirm these findings, this type of ML tool may enhance the decision-making process in 
wound healing treatments.

Certain complex wounds, such as those from diabetes and burns, are particularly susceptible to 
complications and delayed healing due to impaired circulation and increased risk of infection. Recently, 
advancements in burn management have been integrated with AI tools to enhance the treatment of burn 
wounds[19]. DL-based analysis models were able to identify the depth of early burn wounds using inputs 
based on clinical photographs of the wound. Furthermore, in a study by Robb et al., ANNs provided 
accurate diagnoses of burn injuries based on color attributes and successfully classified burns into 
standardized categories, achieving a diagnostic accuracy of approximately 80%[52]. Apart from their 
beneficial role in burn assessment, AI algorithms have the potential to aid in clinical decision making by 
accurately predicting clinical outcomes in wound healing, such as the need for skin grafts or amputation[52]. 
Diabetic wounds similarly pose significant challenges in the clinic due to their higher complications and 
slow healing, which may be addressed using AI techniques for modeling and therapeutic discovery[53]. In 
one early example, Xue et al. used AI tools to identify a novel therapeutic agent for diabetic wound healing 
by predicting molecular interactions between the drug Trichostatin A and its receptors at the wound site[53]. 
Ultimately, AI tools can support the personalized treatment of wounds and burns by integrating clinical 
data, patient-specific risk factors, biological modeling, and prediction of potential postoperative 
complications.

3D TISSUE MODELING AND PRINTING
3D and predictive modeling
Given the unique size and geometry of each patient’s surgical site, 3D modeling has been utilized for 
patient-specific surgical planning[42]. Similarly, the advent of 3D printing technologies has enabled the 
design of increasingly site- and patient-specific constructs for surgical implantation[54]. Digital models of a 
surgical site can be reconstructed using traditional medical imaging techniques such as CT or magnetic 
resonance imaging (MRI)[42]. In addition to supporting the preoperative planning of incisions, positioning, 
and other factors, these models can utilize AI methods to simulate patient-specific changes in tissue 
geometry (e.g., facial shape) that may result from a procedure[42,55]. In one example, Knoops et al. utilized 
finite element modeling to develop patient-specific predictions of maxillofacial transformation based on 
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preoperative and postoperative CT scans[55]. The authors also utilized experimental design to infer the 
contributions of input parameters, including Young’s modulus and viscoelasticity, to soft tissue 
displacement[55]. In other examples, surgeon-scientists have utilized generative AI to produce 3D models of 
facial shapes based on 2D medical images[42,56-58]. For instance, a 3D morphable model trained on over 4,000 
faces has been applied for the diagnosis, risk stratification, and treatment simulation of jaw surgery 
patients[42]. Ultimately, ML algorithms have demonstrated the potential to help improve surgical outcomes 
and reduce medical costs by creating patient-specific predictive models prior to operation[56].

3D printing for planning and implantation
In addition to 3D modeling, 3D printing may be utilized in combination with AI to generate increasingly 
patient-specific models and implants. On the printing and technological side, ML can be utilized to identify 
the optimal printing parameters to generate a desired shape and/or internal architecture[59]. Hierarchical ML 
algorithms, for instance, have been used to identify optimal material formulations, process variables, and 
fiber geometries for the production of silicone implants and other constructs[60,61]. With the support of AI 
methods, patient-specific models of the breast, vasculature, craniofacial tissue, and more have accordingly 
been fabricated by 3D printing for purposes of preoperative planning[54]. Chae et al., for instance, used CT 
and MRI scans to visualize and print breast tissue models for mastectomies[62]. In addition to supporting the 
planning process, “bedside” 3D printing has been explored in some early instances for the development of 
patient-specific implants[54]. In one notable example, Lei et al. utilized ML models to design cochlear 
implants with optimal electro-anatomical properties given the patient’s specific inner ear geometry[63]. 
Ultimately, 3D printing methods can produce more geometrically complex and site-specific constructs 
compared to traditional fabrication methods, particularly when paired with AI models.

DISCUSSION
Plastic surgery is a growing field, with cosmetic and surgical procedures recently seeing more than a 5% 
annual increase, according to the ASPS[64]. As the specialty advances with recent innovations such as 
minimally invasive treatments, organ transplantation, super microsurgery, and the integration of AI, it 
continues to encounter challenges related to patient information, pre- and postoperative assessments, and 
preoperative planning[64]. The subjective nature of plastic surgery often leads to variability in result 
assessments, and it requires tailored procedures to accommodate individual/ethnic features as well as 
excellent comprehension between the surgeon and the patient to obtain satisfaction with results[16,65].

AI is considered an innovation in plastic surgery, characterized as “something new or a modification to an 
existing product, idea, or field”[64]. Applications of AI tools have the potential to significantly address the 
limitations of plastic surgery by improving the efficiency and precision of surgical procedures, diagnostic 
analytics, and patient outcomes. ML algorithms can also analyze patient-specific data to create highly 
personalized treatment plans and predict surgical success in a more accurate manner[66]. Virtual planning, 
3D modeling, and patient-specific cutting guides allow for increased precision, decreased operative time, 
and improved cosmetic outcomes[67]. Additionally, autonomous surgical robots are emerging as a novel AI-
based healthcare technology. These robots have the potential to be trained using cadavers, similar to 
students learning through dissecting cadavers, allowing the robots to experience a full-contact ML 
environment[68]. These advancements are particularly beneficial to plastic surgery due to the intricate and 
complex nature of these procedures. While these tools have shown to be promising, the benefits closely 
depend on the quality of input data and the ability to address potential inherent biases within AI models. 
The use of large datasets and varying patient demographics could affect the accuracy of AI predictions and 
introduce certain biases if the training data are not diverse. Ethical considerations, such as ensuring patient 
data privacy and maintaining transparency of AI-driven decision making, must also be considered for the 
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successful integration of AI into clinical practice[69].

Given these challenges, it is essential to standardize the methodologies for using AI in surgical practice and 
patient care. Future studies should focus on developing uniform protocols for data collection and analysis, 
which can be achieved by implementing standardized imaging techniques, applying consistent data 
annotation, and establishing clear criteria for validating the accuracy of AI tools. These protocols would 
help support the production of reliable and comparable results by AI, regardless of the clinical setting or 
patient demographic. In addition to standardization, future research should prioritize conducting 
longitudinal studies to best assess the sustainability and long-term outcomes of AI-assisted procedures. 
These efforts will help researchers pinpoint areas where AI provides significant benefits and where further 
improvements can be made.

CONCLUSION
With ongoing increases in healthcare data collection and the efficacy of AI tools, the utility of AI models for 
improving patient-specific care continues to grow. AI applications may become integral to various areas of 
plastic surgery, including breast reconstruction, craniofacial surgery, hand surgery, burns and wound 
healing surgery. Further, AI can assist surgeons in providing more detailed preoperative counseling to 
patients and may also improve patient-surgeon communication. Automated postoperative simulations may 
also be increasingly utilized before surgery to help patients understand the expectations of an operation, 
answer patients’ questions, and ultimately improve postoperative satisfaction. In the future, these 
personalized simulations may be combined with 3D modeling and printing techniques to create patient-
specific constructs for reconstructive procedures. However, it is crucial to ensure that the adoption of these 
technologies does not negatively impact the patient-surgeon relationship by decreasing physical 
examination, exposing the patient to data security concerns, or introducing any other unintended 
consequences. Nonetheless, the utilization of AI in surgery continues to grow rapidly, and these new tools 
have already demonstrated the potential to enable more time-efficient, precise, and patient-specific clinical 
care.
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