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Abstract
Tissue damage poses a significant burden on patients’ daily lives and has long driven the search for effective 
clinical treatments. Recent decades have witnessed the development of smart biomedical materials for satisfying 
specific requirements such as irregular shapes and dynamic microenvironments at defective sites. Stimuli-
responsive polymeric films are well-positioned to play a considerable role in the exploitation of next-generation 
smart biomaterials for both soft and hard tissue regeneration. These polymeric films can be fabricated through 
diverse approaches and engineered with versatile structures and properties. Furthermore, responsive to stimuli 
such as temperature, water, and light, these films exhibit well-designed functions such as shape adaption, 
controlled drug release, and cell adhesion in vivo, effectively improving tissue regeneration. In this work, we review 
the recent advancements in stimuli-responsive biomedical polymeric films, beginning with the introduction of their 
fabrication methods. Subsequently, the stimuli-responsive mechanisms of the films are discussed and scrutinized 
in terms of structure and property variations. An overview of recent applications of stimuli-responsive films in 
tissue regeneration, including skin, cardiovascular, nerve, and bone regeneration, is provided. Finally, we further 
discuss the benefits and limitations of these smart films in practical applications, proposing our expectations and 
perspectives on future advancements of stimuli-responsive polymeric films.
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INTRODUCTION
Tissue damage, including skin injuries and bone defects resulting from diseases, surgeries, and traffic 
accidents, remains a significant global health concern[1-3]. For example, skin wounds like diabetic foot ulcers 
account for over 750,000 new cases annually among diabetic patients[4]. Tissue regeneration is a complex 
and comprehensive process that requires detailed consideration of the biomaterials’ effects on the shape, 
systemic response, and microenvironment of the damaged sites[5-7]. Over the past few decades, biomaterials 
used for replacing or repairing damaged tissues have undergone a progressive development from the 
laboratory to the clinic at an ever-increasing rate[8-10]. As science and technology advance, tissue 
regeneration increasingly requires biomaterials with more precise and personalized structures and 
properties to effectively match the repair and regeneration of the injured sites. Biomedical films, a class of 
planar biomaterials, are typically made from non-degradable polymers, biodegradable polymers, and 
synthetic or natural polymers[11-13]. Modern scientific advancements and technological innovations bring 
biomedical films with various effective preparation methods, including solvent casting[14], salt leaching[15], 
spin coating[12], electrospinning[16], and three-dimensional (3D) printing[17] to construct functionalized 
structures and properties of the films. Besides bioactivity, biocompatibility, and biodegradability, these 
biomedical polymeric films have been expansively developed with diverse stimuli-responsive functions such 
as shape adaption[18], actuation[19], adhesion[13,20], and drug release[21]. These features have significantly 
facilitated the exploration of new medical treatments for the regeneration of tissues including skin[22], 
cardiovascular tissue[23], nervous system[24], and bone[25].

Stimuli-responsive functions generally refer to the ability of polymers to alter their macro/microstructures 
and properties upon exposure to external stimuli such as heat[26,27], light[28,29], water[24,30], electricity[31], 
ultrasound[32], pH value[33], and mechanical compression[34]. These capabilities have garnered significant 
attention in biomedical applications[11,18,35]. As for mechanisms, the stimuli-responsive functionality of 
polymer materials stems from various internal changes, including the critical temperature transitions such 
as lower critical solution temperature (LCST) or upper critical solution temperature (UCST), reversible 
chemical reactions, non-covalent bonding such as hydrogen bonds, crystalline melting, electrostatic 
interactions, hydrophobic interactions, and the inclusion of small photo-responsive molecules like 
spiropyran (SP)[36]. These mechanisms can function independently or in concert, enabling the design of 
biomedical polymeric films with tunable stimuli-responsive behaviors. Research often reviews the stimuli-
responsive biomaterials according to their external stimuli approaches[11]. However, the primary responses 
of polymer films to stimuli mainly involve alterations in their structures and properties. For example, 
exposure to water can induce movement in polymer chain segments, leading to transitions from a glassy 
state to a rubbery state and resulting in contraction, expansion, bending, and folding of the films[24,37]. In 
addition, stimuli such as high temperature can trigger phase transitions in polymer materials, such as liquid 
crystal phases or microphase separation, thereby altering the films’ mechanical properties[38]. In biomedical 
applications, stimuli-responsive polymeric films can also regulate drug release rates or cell adhesion based 
on changes in the biological environment, such as variations in pH value, enzyme concentration, or 
temperature[39].

In this work, we provide an introductory overview of stimuli-responsive biomedical polymeric films, as 
shown in Figure 1. Through the internal changes of molecular structures under external stimuli such as 
temperature, pH values, and light, the polymeric films have responsive structural and property variations, 
including contraction, expansion, bending, and folding, as well as stiffness change, controlled release, 
biodegradation, and cell adhesion. Nevertheless, the films can be further applied to various tissue 
regeneration and functionalized reconstruction - for example, regeneration of skin tissue, cardiovascular 
system, nerve, and bone. This review integrates the biological functions with structural and property 
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Figure 1. Systematic overview of the mechanisms, stimuli, variations and applications of stimuli-responsive biomedical polymeric films 
for tissue regeneration.

changes in the films, which makes the design and controllability of the stimuli-responsive films more 
adaptable for specific tissue damages. Although many reviews have discussed stimuli-responsive 
mechanisms of smart materials, most focus on the various stimuli ways. In this review: (i) we discussed and 
compared advanced fabrication techniques for stimuli-responsive biomedical polymeric films developed in 
recent years; (ii) proposed a different classification framework based on structural and property changes to 
categorize response mechanisms comprehensively; (iii) based on this framework, we reviewed recent studies 
of stimuli-responsive biomedical polymeric films in diverse tissue regeneration scenarios, aligning more 
closely with their practical functional requirements in biomedical applications. Ultimately, we discussed and 
summarized the features of various soft and hard tissue damages, as well as proposing further development 
of the stimuli-responsive biomedical polymeric films for tissue regeneration, which offers new perspectives 
for the design and optimization of stimuli-responsive biomedical materials.
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FABRICATION METHODS OF THE STIMULI-RESPONSIVE BIOMEDICAL POLYMERIC 
FILMS
Stimuli-responsive biomedical polymeric films are fabricated using various methods, including solvent 
casting, salt leaching, spin coating, electrospinning, and 3D printing technology. These methods allow for 
the precise design of film characteristics such as thickness, porosity, specific structures, flexibility, stiffness, 
adhesion, and swelling ability, tailored to the repair requirements of defective tissues. The characteristics 
and limitations of various fabrication methods are summarized in Table 1. Finally, the polymeric films 
repair or replace defective sites based on their stimuli-responsive structures and properties.

Solvent casting represents a widely utilized methodology for polymeric film fabrication, which involves first 
dissolving the polymer in an appropriate solvent to form a homogeneous solution, followed by solvent 
evaporation within a mold to ultimately generate solid films [Figure 2A][40]. The designed properties such as 
mechanical strength and thermal stability of the films are determined by the selection of the polymer, e.g., 
poly(L-lactic acid) (PLLA)[41], polycaprolactone (PCL)[42], poly(vinyl alcohol) (PVA)[43], polyethylene glycol 
(PEG)[44], polyethylene oxide (PEO)[45], and solvent, e.g., N,N-dimethylformamide (DMF)[46], N,N-
dimethylacetamide (DMAC)[47], tetrahydrofuran (THF)[41], dichloromethane (DCM)[48], chloroform[49], and 
toluene[50]. A critical step in the preparation process is ensuring the polymer dissolves completely in the 
solvent under uniform stirring[51]. Bioactive components or drug particles can also be incorporated at this 
stage[52-54]. After solvent evaporation, the film is carefully peeled off for visual inspection to assess its 
integrity, color, and opacity. By adjusting the concentration and evaporation temperature of the solution, 
the thickness and other properties of the films can be controlled. Additionally, by designing the molds, films 
of various shapes, such as rectangles and tubes, can be produced for application to different organs [1,42]. Di 
et al. constructed flexible composite films using this method, enhancing the films’ high-temperature stability 
and mechanical properties[55]. Sun et al. employed the solvent-casting self-assembly approach to fabricate a 
composite responsive film with enhanced mechanical properties[56]. Silva et al. prepared biopolymer 
nanocomposite films using the solvent casting method, which demonstrated good uniformity, semi-
transparency, and thermal stability[57]. While solvent casting offers a simple and feasible method for 
producing robust films, its main limitation is the inability to control the casting of porous and other precise 
structures.

Salt leaching is considered one of the oldest methods for fabricating porous films. This technique builds on 
the solvent casting method, with inorganic salts added to the solvents to dissolve biodegradable polymers 
[Figure 2B][58]. Owing to the poor solubility of inorganic salts in typical organic solvents, films with defined 
pore structures can be fabricated[59]. A multitude of inorganic salts have been reported in literature, such as 
sodium chloride, sodium bicarbonate, potassium bicarbonate, and ammonium bicarbonate[60]. During the 
preparation process, the salts are consistently mixed with the polymer solution to form the basis of the 
subsequent pore structure. Once the film is formed, the salts are gradually dissolved and leached out by 
soaking or rinsing with water or other solvents, leaving behind the desired pore structures. This critical step 
determines the pore structure and size of the final film products[61]. The salt leaching method offers 
advantages such as simplicity, cost-effectiveness, and tunable pore architectures[60]. However, it is crucial to 
select appropriate polymers and salts, control the salt leaching rate, and manage subsequent processing 
steps to ensure the final polymeric films possess the intended porous structures[62]. Despite these benefits, 
precise control over the amount, placement, and customization of the pores remains a challenge. These 
polymeric porous films are significantly useful in tissue engineering and drug delivery systems, offering 
increased surface area and enhanced biocompatibility[63].
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Table 1. Characteristics and limitations of various fabrication methods

Fabrication 
methods Characteristics Limitations Ref.

Solvent casting Simplicity, cost-effectiveness, good feasibility Inability to control precise structures [1,40-57]

Salt leaching Simplicity, cost-effectiveness, tunable pore architectures Uncontrolled porous structural precision [58-63]

Spin-coating Simplicity, cost-effectiveness, high controllability, and 
reproducibility

Material utilization inefficiency, non-planar 
substrate control 

[4,12,64-73]

Electrospinning 
technique

High surface area and distinctive microstructure, 
permeability

High-performance equipment [16,74-78]

3D printing 
technology

Personalized customization, precise controllability of 
macro/microstructures

Cost and equipment dependency [17,24-25,79
-89]

Figure 2. Fabrication methods of stimuli-responsive polymeric films. (A) Solvent casting to prepare photosensitive polymer films. 
Copyright 2023, MDPI[40]; (B) Preparation of porous films by salt leaching method. Copyright 2023, Elsevier[58]; (C) Main process for 
preparing thin films using the spin coating method. Copyright 2021, Royal Society of Chemistry[12]; (D) Electrospinning method to 
prepare superhydrophobic films. Copyright 2024, American Chemical Society[76]; (E) 3D printing technology to fabricate films with 
controlled thicknesses and structures. Copyright 2023, Elsevier[81].

Spin-coating is a highly time-efficient and cost-effective technique for producing films with flat and smooth 
surfaces [Figure 2C][12,64]. This method involves pouring a uniformly dispersed polymer solution onto a 
rotating substrate, where centrifugal forces spread the solution evenly across the substrate, controlling the 
film thickness from tens of nanometers to several micrometers[65,66]. After solvent evaporation or other 
subsequent treatment steps, the polymeric films can be obtained. Research over the decades has clarified the 
relationship between fabrication variables and film thickness, including rotation speed, surface tension, and 
fluid viscosity[67]. In addition, the solvent evaporation rate and temperature can affect the crystallinity and 
surface morphology of the films[68]. By optimizing these parameters, the properties and structure of spin-
coated films can be effectively controlled. Spin-coating is widely used to prepare monolayer and multilayer 
thin films, including freestanding (FS) nanosheets and membranes. In the biomedical field, spin-coated 
films are utilized for applications such as wound dressings[69], cell culture substrates[70], drug delivery 
devices[71] and others[72]. Theocharidis et al. developed a strain-programmable adhesive film with two layers 
using the spin-coating method for diabetic wound healing[4]. Despite its advantages such as low cost, 
simplicity, speed, high controllability, and reproducibility, the spin-coating method has limitations in 
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material efficiency and control over non-planar substrates, which restrict its broader application in tissue 
regeneration[12,73].

The electrospinning technique has gained widespread interest in the biomedical field[74]. An electrospinning 
device generally comprises a spinneret with a syringe device, electronic equipment to control solution 
release, a collector to receive the electrospun materials, and a power supply to generate an electric field 
between the spinneret and the collector [Figure 2D][75,76]. The polymer solution is first placed into the 
syringe and then extruded as a liquid jet from the spinneret, where it forms polymer filaments under the 
electric field followed by being collected sequentially via the rotating (oriented nanofibers) or not rotating 
(nonoriented nanofibers) collectors[77]. The performance of electrospinning films is mainly influenced by 
external parameters such as humidity and temperature, as well as internal parameters including applied 
voltage, working distance, conductivity, and the viscosity of the polymer solution[78]. Electrospinning can 
produce ultra-fine polymer fibers with diameters ranging from micro to nano scales by applying a high 
electric field, resulting in films with a high surface area and distinctive microstructures. In particular, 
electrospinning films have been widely employed for biomedical applications due to their structural 
resemblance to the extracellular matrix (ECM), and their porous structure, which allows nutrient molecule 
permeability[16]. Furthermore, electrospinning technology can also be integrated with other manufacturing 
technologies, such as 3D printing and microfluidics, to fabricate multilayer composite films or hybrid 
materials with enhanced performance and functionality for tissue regeneration. Wang et al. designed a 
double-gradient biomedical film with a three-layer structure using electrospinning technology[75]. The 
multilayer nanofiber structure endowed the film with robust elasticity and unidirectional fluid transport 
capability, which effectively improved wound healing. However, the major limitations of this method 
include the need for high-voltage equipment and challenges associated with packaging, shipping, and 
handling[78].

3D printing technology has emerged as an effective tool for fabricating films tailored to personalized 
requirements, garnering significant interest in the biomedical field [Figure 2E][80,81]. In recent years, 3D 
printing incorporating computer-aid design has been developed for precisely controlling macro/
microstructures, including the geometric shapes, thickness, and pores of the materials[25,82,83]. This method 
utilizes a polymeric solution for fused deposition modeling of films under specific conditions, e.g., high/low 
temperature, light or ultrasound, followed by removing the solvent (if present)[24,84]. During the printing 
process, parameters such as printing temperature, extrusion velocity, and nozzle movement speed directly 
affect the construction performance of the films[85,86]. The rational design of the film structure can yield films 
with varying functionalities and properties[87]. For instance, films can be designed with a porous structure to 
increase surface area, achieving improved cell adhesion and migration, thereby facilitating tissue 
regeneration[17]. Compared to other fabrication methods, the strengths of 3D printing include customized 
fabrication, rapid prototyping, and the ability to create complex structures. Liu et al. used fused deposition 
modeling (FDM) 3D printing technology to prepare a shape-memory film with good responsivity to 
temperature and water for minimally invasive treatment of various tissue defects[79]. Wang et al. employed 
3D printing technology to fabricate a thin film with Janus structures, capable of transforming from a planar 
configuration to curled 3D structures for vascular tissue regeneration[88]. Huang et al. developed a 3D-
printed wound dressing film embedded with calcium phosphate nanoparticles, which degrades in response 
to pH changes, enabling the controlled release of antimicrobial agents[89].

STIMULI-RESPONSIVE MECHANISMS
In this review, we categorize the mechanisms of stimuli-responsive biomedical polymeric films based on 
variations in their structures and properties, primarily triggered by stimuli such as temperature, light, 
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electric fields, pH value, and ultrasound [Table 2]. The responsive mechanisms to these stimuli are crucial 
for developing and implementing the functionalized biomedical applications of these films.

Responsive mechanisms of structural variations
Contraction
Contraction is a common structural change in stimuli-responsive films, enabling volume reduction under 
specific stimuli, which in turn facilitates interactions with tissues. Responsive contraction allows the films to 
adaptively wrap around or attach to target tissues in dynamic environments. Considering that most organs 
and tissues exist in a wet environment, water serves as a benign and bio-friendly stimulus, offering inherent 
advantages[108]. Yi et al. reported a water-responsive polymer film that remained stable under dry ambient 
conditions [Figure 3A][30]. When exposed to water, the film rapidly contracted, transforming into a soft and 
stretchable state as water molecules disrupted the polymer crystallites. This feature allowed the film to 
interactively wrap tissues, enhancing effective attachment and adaptability to moist biological environments 
for tissue repair. Temperature, a controllable and measurable stimulus, is widely used to induce contraction 
in thermally responsive films. Blacklow et al. reported an intelligent wound dressing comprising a thermally 
responsive adhesive hydrogel film containing PNIPAm [Figure 3B][19]. This film could adhere firmly to the 
skin and actively contract upon exposure to skin temperature, promoting wound healing through the 
mechanical force generated by contraction. Light as a stimulus offers several notable advantages, including 
immediacy and high precision. Notably, light enables a non-contact control mechanism to achieve the 
materials structure changes using small photo-responsive molecules[29]. For example, the protonated 
merocyanine (MCH+) groups in the film undergo isomerization to the spiropyran form after exposure to 
light of a specific wavelength. This transition dehydrates the polymer chains, causing a responsive 
contraction of the film [Figure 3C][109-112]. In addition, light, especially near-infrared (NIR) light, can induce 
stimuli-responsive performance via photothermal effects in thermally responsive materials. These materials 
can absorb light energy, raising temperature and subsequently activating temperature-based stimulus-
responsive mechanisms[113-115]. However, it should be noted that light as a stimulus has limitations due to its 
shallow tissue penetration depth (less than 2 cm), which restricts its effective applications for deep tissue 
regeneration[116,117].

Expansion
Expansion is commonly observed for stimuli-responsive solids, particularly for applications in supporting 
or filling defective tissues[35,118]. In the case of films, triggered expansion has been shown to remove the 
interfacial water between the film and tissue, alter the shape into the desired 3D structure, and control the 
water permeability and swelling ratio. Water and light are widely employed stimuli for inducing responsive 
expansion. Water-triggered mechanisms include the effects of hydrophilic functional groups, polymer 
network expansion, and osmotic pressure[95,96]. Light-induced expansion typically occurs by altering 
molecular characteristics, e.g., conformation, polarity, amphiphilicity, and charge[119]. Our group reported an 
adhesive biomedical film with water-triggered expansion[13]. The introduced black phosphorus nanosheets 
in the film could degrade ions to bond with the functional groups of polymer chains and then significantly 
improve the water absorption of the film. Upon being adhered to the defective tissue, the films had water-
triggered expansion to remove the interfacial barrier and achieve robust adhesion for various biomedical 
functions. Liu et al. developed a high-expansion amphiphilic dynamic thermoset polyurethane (DTPU) that 
expanded when water permeated into the DTPU network[79]. The expansion mismatch drove the 2D film to 
deform into the desired 3D structure during minimally invasive implantation. Ryplida et al. reported a light-
responsive thin film comprised of TiO2 polydopamine, perfluorosilicon carbon dot, chitosan, PVA, and 
tannic acid for skin tissue replacement [Figure 3D][91]. This film can be stimulated using Ultraviolet–visible 
spectroscopy (UV-vis) light irradiation to control hydrophobic-hydrophilic transition, significantly 
enhancing both water permeability and expansion ratio.
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Table 2. Responsive structural and property variations of stimuli-responsive biomedical polymeric films

Responsive 
structural variations Polymer substrates Fabrication 

methods Stimuli Applications Ref.

Poly(N-isopropylacrylamide) (PNIPAM) + Chitosan Solvent casting Temperature Skin [19]

Polyvinyl butyral (PVB) Solvent casting Temperature Skin [22]

PCL + PEG Solvent casting Electricity Skin [44]

P(AAm-co-AAc) Solvent casting Elasticity Skin [90]

PEG + PEO Solvent casting Water Skin [45]

 
Contraction 

PEG + PEO Solvent casting Water Nerve [24,
30]

PVA + Chitosan Solvent casting Light Skin [91]

PCL Solvent casting Temperature Cardiovascular [92]

PCL + PEG + Polyurethane (PU) Solvent casting Temperature and/or 
water

Cardiovascular [79]

Poly(octamethylene maleate (anhydride) citrate) Solvent casting Force Cardiovascular [93]

 
 
Expansion 

PCL Solvent casting Temperature Bone [26-
27]

PCL + GelMA Electrospinning Temperature Cardiovascular [24,
37]

PCL + GelMA 3D printing Water Cardiovascular [88]

Polymethylmethacrylate (PMMA) Spin coating Temperature Nerve [24]

Poly(lactide-co-trimethylene carbonate) 
(PLATMC)

Electrospinning Temperature Nerve [94]

PCL + PVA Solvent casting Water Nerve [95-
96]

Chitosan + Acrylic acid-N-hydroxysuccinimide 
(AAc-NHS)

Solvent casting Water Nerve [97]

Polypyrrole Spin coating Electricity Nerve [31]

PCL 3D printing Temperature Bone [25]

Poly (lactide-co-glycolide)-b-poly(ethylene glycol)-
b-poly(lactide-co-glycolide) (PELGA)

Solvent casting Temperature Bone [98]

Bending and folding 

isotactic polypropylene (iPP) + PNIPAm Solvent casting Temperature hernia [99]

 
Stiffness 

PCL + PEG + PU Solvent casting Temperature and/or 
water

Cardiovascular [79]

Poly(vinylidene fluoride) (PVDF) + PEO Electrospinning Electricity Skin [21]

PEG Solvent casting ROS Skin [100]

PVA Solvent casting NIR and/or pH value Skin [101]

PCL Electrospinning Enzyme Cardiovascular [102]

 
 
Controlled release 

PCL + Gelatin Electrospinning Electricity Cardiovascular [103]

Polyacrylic acid (PAA) + Polyallylamine 
hydrochloride (PAH)

Solvent casting pH value / [36]Biodegradation

Poly(lactic-co-glycolic acid) (PLGA) + PAH Solvent casting Ultrasound Bone [104]

PLLA Solvent casting Ultrasound Skin [41]

PCL + PEG Solvent casting Electricity Skin [44]

PCL + GelMA Electrospinning Temperature Cardiovascular [24,
37]

PCL + GelMA 3D printing Water Cardiovascular [88]

PLLA Solvent casting Temperature Bone [105]

PLGA Salt leaching Opto-acoustic Bone [106]

Poly(dimethylsiloxane) (PDMS) Solvent casting Electricity Bone [107]

Cell adhesion 

PVDF Solvent casting Magnetoelectric Skeletal 
muscle

[52-
54]

PCL: polycaprolactone; PVA: poly(vinyl alcohol); PEG: polyethylene glycol; PEO: polyethylene oxide; PLLA: poly(L-lactic acid).
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Figure 3. Mechanisms of responsive contraction and expansion of the films. (A) Water-responsive supercontractile polymer films due 
to crystalline transition. Copyright 2023, Springer Nature[30]; (B) Thermo-responsive contraction adhesive hydrogel films due to critical 
temperature transitions. Copyright 2019, American Association for the Advancement of Science[30]; (C) Light-induced contraction and 
expansion mechanism from a hydrogel film with photo-responsive spiropyran molecules. Copyright 2024, Springer Nature[112]; (D) 
Fabrication of light-responsive films with controlled expansion due to hydrophobic-hydrophilic transition. Copyright 2019, John Wiley 
and Sons[91].

Bending and folding
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Responsive bending and folding of the films are usually employed for biological tissues with curved or 
irregular surfaces. Currently, there are two primary methods to achieve directed bending or folding changes 
in polymeric films, including: (1) the design of heterogeneous polymer networks with layered, oriented, 
gradient, and anisotropic structures; and (2) the complex control and manipulation of non-uniform 
external stimuli to achieve pre-heterogenization of components[112]. By engineering internal structures or 
modulating component interactions with external stimuli such as temperature, light, or pH, the films 
undergo controlled bending/folding motions, enabling them to conform to damaged tissue surfaces. 
Lanzalaco et al. reported a humidity- and temperature-responsive film for hernia repair surgeries, using iPP 
as the substrate material and a thermo-responsive poly(N-isopropylacrylamide-co-N, N’-
methylenebisacrylamide) (PNIPAAm-co-MBA) hydrogel as the coating layer [Figure 4A][99]. The reversible 
folding/unfolding behavior of the film was driven by the creation of hydrogen bonds among amide groups 
inside PNIPAAm and the destruction of hydrogen bonds with water molecules, enabling the structural 
changes in response to environmental stimuli. Additionally, Zhang et al. proposed a flexibly bending 
PMMA film with shape memory capability as a smart wound electrode [Figure 4B][24]. Triggered by the 
melting transition of the shape-memory polymer substrate, the film undulates toward damaged nerves 
when immersed in physiological saline solution at 37 °C, achieving targeted conformal contact. The stimuli-
responsive polymeric film can also deform with the nerve, minimizing constraints and further achieving 
biofunctions such as sensing and repairing. Ultrasound, as a non-contact stimulus, exhibits superior tissue 
penetration (greater than 5 cm) compared to light-based triggers[120]. Fundamentally, cavitation and acoustic 
radiation force are the primary mechanisms that can generate heat or molecular switches to induce 
structural changes in the films[32,33]. High-Intensity Focused Ultrasound (HIFU) is an advanced technique 
that combines powerful thermal focusing and efficient cavitation effects to concentrate ultrasound energy 
precisely on a targeted area. HIFU reduces energy loss in surrounding tissues and enhances the control of 
localized variations of responsive films for applications such as cancer treatment and tissue ablation[32,121,122]. 
Zhu et al. used HIFU to trigger shape recovery in polyurethane urea-based implant devices through a 
crystallization transition at high temperatures [Figure 4C][123]. This study highlighted the deep energy 
penetration, safety, and rapid change of the HIFU-responsive film for medical applications.

Responsive mechanisms of property variations
Besides structural changes, variations in the properties of stimuli-responsive polymeric films are also crucial 
for adapting to physiological environments and regenerating defective tissues. We categorize these changes 
in terms of stiffness, controlled release, biodegradation, and cell adhesion. These variations in properties are 
instrumental for tissue regeneration and can be triggered by stimuli such as temperature, light, electricity, 
mechanical forces, and ultrasound.

Stiffness
Temperature is a well-known factor that can significantly alter the modulus of a polymer system. For 
example, when the temperature exceeds the LCST, the PNIPAAm polymer undergoes a volumetric 
reduction but an increase in modulus due to the formation of intramolecular hydrogen bonds between C = 
O and N-H groups within the PNIPAAm chains, leading to a compact, hydrophobic collapse of the polymer 
network[124]. This process results in a contractive and fixing effect that is highly beneficial for dynamic tissue 
wound healing. In addition, the water-triggered expansion of polymer networks can induce a stiffness 
transition from soft to tough. Liu et al. developed a shape memory polyurethane (SMPU) that enables a 
transition from a soft to a rigid state during shape recovery [Figure 5A][125]. Upon hydration, this SMPU 
underwent chain rearrangement, enhancing microphase separation and promoting stress transfer. Liu et al. 
developed a 3D-printed composite film with swelling-stiffening properties and programmable deformation 
[Figure 5B][79]. The water-triggered stiffness transition originated from microphase separation formed 
between hydrophilic and hydrophobic chain segments upon hydration. Furthermore, the hydrated pattern 
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Figure 4. Mechanisms of responsive bending and folding of the films. (A) Humidity and temperature-responsive films with controlled 
bending and folding due to the creation and destruction of hydrogen bonds. Copyright 2020, John Wiley and Sons[99]; (B) A 3D twining 
film based on the melt transition of the shape memory substrate. Copyright 2019, American Association for the Advancement of 
Science[24]; (C) Responsive folding implantation through crystallization transition at high temperature triggered via HIFU. Copyright 
2024, Springer Nature[123]. HIFU: High-Intensity Focused Ultrasound.
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Figure 5. Mechanisms of responsive variation in stiffness of the films. (A) Water-triggered stiffening of shape-memory polyurethane 
due to chain rearrangement and enhanced microphase separation. Copyright 2022, John Wiley and Sons[125]; (B) 3D printing porous 
films in response to temperature and water caused by microphase separation. Copyright 2024, Springer Nature[79].

in the film morphed into the desired 3D structure because of swelling mismatch in water, which has the 
potential for minimally invasive implantation. Yang et al. reported a hybrid film impregnated with a 
supercooled salt solution[38]. Upon instantaneous nucleation stimulus, the film switched from a transparent 
and soft state to a white and rigid state, with its hardness increasing from 15 kPa to 385 MPa. The 
mechanism exploited the phase transition and robust physical metastability of the liquid, where the 
components interacted at the molecular level, enhancing the film’s functionality for specific applications.

Controlled release
Controlled release is a crucial function of biomedical films, adapting to dynamic microenvironments, such 
as inflammation or reactive oxygen species (ROS), and providing targeted delivery of nutrients or 
drugs[126,127]. Cheah et al. published an electrically active composite film to control the release of proteins 
[Figure 6A][128].  The release function is highly related to the electro-responsive poly(3,4-
ethylenedioxythiophene) (PEDOT) within the composite. After electrodeposition, this polymer can be 
driven by electrical stimuli to induce electron movement into and out of the conjugated backbone. Then, 
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Figure 6. Mechanisms of responsive variation in controlled release, degradation and cell adhesion of the films. (A) Controlled protein 
release from PEDOT-based composite film under electrical stimulation. Copyright 2023, Elsevier[128]; (B) Responsive drug-release 
systems through ultrasound-induced cleavage of covalent and non-covalent bonds. Copyright 2021, Springer Nature[132]; (C) 
Ultrasound-responsive biodegradation and drug release due to the deconstruction of the Poly(lactic-co-glycolic acid) (PLGA) layer. 
Copyright 2024, Elsevier[104]; (D) Force-stimulated microstructure growth on the surface of a double-network hydrogel film for 
directional cell growth on demand. Copyright 2022, Springer Nature[133]; (E) NIR-triggered polymeric films modulate cell behaviors 
through transformable topographies. Copyright 2020, Oxford University Press[134]. PEDOT: poly(3,4-ethylenedioxythiophene); NIR: 
near-infrared.

mobile ions are transported within the polymer and exchanged with oppositely charged ions in the 
surrounding electrolyte to balance the net charge. The mechanism can also be used for on-demand drug 
delivery, such as delivering dexamethasone and growth factors[129,130]. Ultrasound, a remote and effective 
stimulus, can also trigger the release of drugs or bioactive components by controlling the cleavage of 
unstable covalent bonds and weak non-covalent interactions[104,131]. Huo et al. proposed three stimuli-
responsive drug-release systems where drugs could be activated due to ultrasound-induced cleavage of 
covalent or non-covalent bonds within their macromolecules or assembly precursors [Figure 6B][132]. By 
incorporating responsive structural bending or folding mechanisms, the stimuli-responsive films can have 
close contact with the target tissue, enhancing the therapeutic effects of the released drugs or bioactive 
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components.

Biodegradation
Controlled biodegradation of biomaterials is a key objective pursued by researchers in the biomedical field. 
Ultrasound has emerged as an effective tool that utilizes radiation force to deconstruct the macroscopic 
structures of films, aiding in the controlled release and biodegradation of polymeric systems. Song et al. 
demonstrated that ultrasound could specifically break down a PLGA layer, allowing for the controlled 
release of active components and enhancing the biodegradation of the polymer [Figure 6C][104]. In addition, 
pH values in the dynamic microenvironment can also alter the biodegradation of specific polymers[33]. For 
example, polyelectrolyte multilayer films (PEMs) made from PAA and PAH exhibit different properties at 
various pH values due to the dependence of charge density on the pH values of the solution. The 
biodegradation of the PEMs’ pores could be controlled by adjusting the pH values of the processing 
solution[36]. PAA can also be protonated at low pH values of the microenvironment, contributing to the 
cleavage of polymer chains[135]. These controllable behaviors underscore the versatility and adaptability of 
polymeric films in responding to environmental conditions within the body, aligning with the goals of 
effective tissue regeneration.

Cell adhesion
Cell adhesion is an integral initial phase in tissue regeneration, which can be meticulously manipulated via 
stimuli-responsive polymeric films. Studies have shown that cells exhibit strong adhesion to relatively 
hydrophobic surfaces[136]. Mu et al. reported a force-stimulated microstructure growth on the surface of 
hydrogel films [Figure 6D][133]. The mechanism is related to the stress/strain-induced bond cleavage 
followed by the rapid free radical polymerization of multiple monomers in a double-network (DN) 
hydrogel. This work showed that the surface of the hydrogel films can be engineered to improve cell 
adhesion and direct cell growth on demand. Zhao et al. proposed a NIR-triggered polymeric film to 
modulate the geometries and functions of endothelial cells by transformable topographies [Figure 6E][134]. 
Cell adhesion and migration could be promoted by the temporary anisotropic and permanent isotropic 
topographies on the film surface. This approach provides a powerful tool for precisely modulating cell 
behaviors and interactions for tissue regeneration.

APPLICATIONS FOR TISSUE REGENERATION
The variations in both the structure and properties of stimuli-responsive polymeric films are orchestrated 
through an array of mechanisms such as crystalline melting, reversible chemical reactions, non-covalent 
bonding, electrostatic interactions, hydrophobic interactions, and so on. These sophisticated mechanisms 
engender distinct functional adaptations, including contraction and controlled release, which are pivotal in 
the films’ applications. Leveraging these tailored responses, stimuli-responsive films have been meticulously 
developed to address defects in critical biological systems such as the skin, cardiovascular, nerve, and bone, 
facilitating tissue regeneration. This advanced engineering not only underscores the films' versatility but 
also their profound applicability in pioneering regenerative medicine strategies to restore and rejuvenate 
damaged tissues.

Skin regeneration
Skin, the largest organ of the human body, serves as a critical barrier against toxic substances, pathogens, 
and microorganisms[137]. Both acute and chronic skin injuries pose significant clinical challenges; for 
instance, severe diabetic foot wounds can lead to amputation or even fatal outcomes for patients[138-140]. 
Traditional wound dressings have been widely utilized for their essential functions, including antibacterial 
properties, hemostasis, and drug delivery[141,142]. Recently, stimuli-responsive polymeric films have gained 
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increasing popularity in skin repair owing to their controllable structures and properties[143].

Structural variations
In terms of structural variations, responsive contraction of the biomedical films has drawn great attention, 
particularly for its ability to rapidly tighten wounds, reducing hemorrhaging and preventing further 
expansion of the injury. Blacklow et al. reported a thermally responsive adhesive film with high 
stretchability, toughness, tissue adhesion, and antimicrobial properties, which could tightly adhere to the 
skin and then actively contract the wound because of skin temperature [Figure 7A][19]. Dong et al. developed 
a temperature-responsive PVB fibrous film that incorporated a “stiff-elastic” binary component, which 
demonstrated a 70.0% contraction rate after exposure to 37 ℃ for 12 h, showing its potential in promoting 
wound closure and tissue regeneration [Figure 7B][22]. However, the 12-hour exposure period could increase 
the risk of infection and scarring. Additionally, Theocharidis et al. proposed a strain-programmed patch for 
diabetic wound regeneration, which contracted through a water-triggered shape-memory mechanism, 
enhancing wound healing in both in vitro and in vivo studies[4]. Nevertheless, water stimulus leads to a high-
humidity environment that may impair skin integrity and increase the risk of ulceration. Ma et al. designed 
a highly contractile poly(acrylamide-co-acrylic acid)[p(AAm-co-AAc)] hydrogel film by storing and 
releasing elastic potential energy in the polymer network [Figure 7C][90]. The contractile strength of the film 
was 40 kPa, significantly higher than that of most hydrogels and even biological muscles. This force 
effectively promotes wound closure; however, caution must be exercised to avoid exceeding the wound’s 
tolerance to prevent secondary damage or scarring.

Property variations
For property variations, controlled release of the drugs and growth factors are widely considered in film 
design for skin repair. Paula et al. constructed a PEG-based polyurethane-urea film modified with ROS-
responsive oxanorbornene β-aminoacrylate bonds[100]. This film disrupted its structure and released pre-
loaded silver sulfadiazine (AgSD) through a light/ROS responsive mechanism, significantly improving burn 
wound healing. Moeinipour et al. fabricated a polymer film composed of PVA, tannic acid (TA), and 
hydrogen-bonded organic frameworks (HOFs) loaded with metronidazole. This film employed the 
temperature- and pH-sensitive hydrogen bonds to enable the controlled release of metronidazole at wound 
sites, facilitating chronic wound treatment[144]. Sun et al. prepared a self-powered wound dress film using 
PVDF as a self-powered system and incorporating a “Lock-ON/OFF” electric field-driven controlled release 
mechanism [Figure 7D][21]. The film leveraged its piezoelectric effects to create the electric field for 
modulating the electrostatic balance between the drugs and their carrier, enabling on-demand drug release 
for improved wound regeneration. Zha et al. designed a NIR/pH dual-responsive Cu-Humic acid 
nanoparticles-based PVA hydrogel films loaded with SEW2781 agent for cutaneous wound healing, where 
the Cu ions were released in response to changes in pH values [Figure 7E][101]. Clinical translation of the 
stimuli-responsive films has been reported for skin wound healing. For example, Systagenix Wound 
Management Manufacturing Limited developed a responsive film product, Promogran®, to manage chronic 
non-healing wounds, which has completed a clinical trial involving 276 patients[145]. The film can transform 
into a soft, biodegradable gel upon contact with wound exudate, maintaining a moist healing environment 
and promoting tissue repair. Moreover, KoCarbonAg® Antimicrobial Dressing (Biomedical Carbon 
Technology Co., Ltd.) is also a humidity-responsive film product with enhanced antibacterial efficacy for 
wound healing[146]. However, most stimuli-responsive polymeric films are still limited by scalable 
manufacturing, regulatory compliance, and long-term biocompatibility for clinical applications.

Cardiovascular regeneration
Cardiovascular diseases, such as myocardial infarction (MI), atherosclerosis, and aneurysms, represent a 
severe global health threat associated with high disability and mortality rates[147]. Conventional treatments 
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Figure 7. Skin regeneration with stimuli-responsive films. (A) Thermally responsive adhesive films with active contraction at the wound. 
Copyright 2019, American Association for the Advancement of Science[19]; (B) A temperature-responsive fibrous film with a 70.0% 
contraction rate for wound closure. Copyright 2024, John Wiley and Sons[22]. (C) A highly contractile NIR-responsive polymer film for 
accelerated wound healing. Copyright 2020, American Association for the Advancement of Science[90]; (D) A self-powered wound 
dressing film featuring a “Lock-ON/OFF” electric field-driven controlled release system combined with electrical stimulation therapy for 
skin regeneration. Copyright 2024, John Wiley and Sons[21]; (E) A NIR/pH dual-responsive PVA-based composite film with controlled 
drug release for cutaneous wound healing. Copyright 2023, American Chemical Society[101]. NIR: near-infrared; PVA: poly(vinyl 
alcohol).

including pharmacological therapy and surgical intervention have respective limitations on obstructed 
blood circulation pathways and invasive damage to tissues[148]. Alternatively, advancements in stimuli-
responsive polymeric films offer new solutions to these challenges.

Structural variations
The responsive structural changes of these films enable minimally invasive surgery to avoid tissue trauma or 
infection. Montgomery et al. prepared an elastic film with engineered lattice microstructures using a 
biodegradable shape memory polymer {poly[octamethylene maleate (anhydride) citrate]} [Figure 8A][93]. 
This film could be programmed and temporarily fixed to a small tubular shape, followed by being injected 
through a 1-mm incision into the infarcted heart region. After that, the film could expand at the defective 
site and serve as a cardiac patch without compromising cell viability or function. Li et al. synthesized a 
shape memory and self-healing polyurethane film for treating myocardial infarction [Figure 8B][92]. The 
semicrystalline PCL segments and interchangeable and antioxidative diselenide bonds contributed to good 
shape memory effects and rapid self-healing under 405 nm irradiation. This feature enabled the deployment 
of film through a 10-mm diameter trocar into a dynamic heart model, followed by laser-induced expansion 
into a larger single patch at the targeted site, promoting myocardial repair and maintaining cardiac 
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Figure 8. Cardiovascular regeneration with stimuli-responsive films. A. Shape memory porous film stents for minimally invasive cardiac 
implantation. Copyright 2017, Springer Nature[93]; (B) Shape memory and self-healing polyurethane films for myocardial infarction 
treatment. Copyright 2023, Royal Society of Chemistry[92]; (C) An electrospinning film incorporating SA and biodegradable 
polyurethane for controlled drug release. Copyright 2024, American Chemical Society[102]; (D) Flexible responsive multilayer films for 
cardiac signal detection and drug release. Copyright 2022, Elsevier[103]; (E) Thermally responsive films enhanced endothelial cell 
adhesion and proliferation. Copyright 2018, John Wiley and Sons[37].

function. However, concerns remain regarding the stimuli used in minimally invasive surgery, such as high 
temperature and UV light, due to their limited penetrativity and safety.

Property variations
The responsive property variation of the polymeric films offers effective methods for controlled drug 
delivery and release. Liu et al. developed an electrospinning film incorporating salvianolic acid (SA) and 
biodegradable polyurethane to repair cardiovascular system damage [Figure 8C][102]. SA was released in 
response to the surrounding microenvironment, facilitating cellular infiltration and tissue regeneration. 
Huang et al. fabricated a flexible responsive multilayer film based on the synergism of polyurethane and 
nanofibers for cardiac signal detection and drug release [Figure 8D][103]. When abnormal symptoms were 
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detected, electrical stimulation would be applied to control drug release rapidly for cardiac treatment. 
Inadequate endothelialization remains a major limitation in achieving effective treatment with implanted 
grafts. Zhao et al. reported thermally responsive films that can alter their planar shape to a 3D tubular 
shape, thereby enhancing endothelial cell adhesion and proliferation [Figure 8E][37]. When designing 
stimuli-responsive films with layered or microstructure surfaces for cardiovascular applications, mechanical 
compatibility with native cardiac tissues must be carefully considered because excessive rigidity may lead to 
further damage to the cardiovascular tissues, potentially causing arrhythmias and other complications. The 
evolving landscape of stimuli-responsive polymeric films offers significant promise in addressing the 
complexities associated with cardiovascular diseases, combining minimally invasive approaches with precise 
control over structure and properties. Nevertheless, clinical applications of these smart films on heart-like 
deep tissues are still challenging.

Nerve regeneration
Nerve damage significantly impairs patients’ cognitive abilities, motor functions, and daily activities, 
profoundly diminishing their quality of life[149]. Damage to nerves is primarily classified into central nervous 
system (CNS) and peripheral nervous system (PNS) injuries. CNS damage often results in irreversible 
injuries, such as permanent paralysis and sensory loss, because the limited regenerative capacity of neurons, 
formation of glial scars, and chronic inflammation could obstruct repair[150]. Current treatment strategies 
primarily include pharmacological interventions (e.g., anti-inflammatory drugs and neurotrophic factors), 
physical therapies (e.g., electrotherapy), and rehabilitation training. Deep anatomical location, complex 
structures and immune issues of the CNS limit the applications of stimulus-responsive polymer films for 
nerve regeneration. In contrast, PNS, distributed across the body surface and viscera with axons ensheathed 
by myelin and endoneurial tubes, benefit from a permissive regenerative microenvironment. Conventional 
treatments for PNS often involve surgical suturing or autologous nerve grafts, but these surgical procedures 
are intricate and pose risks of further damage. Recent decades have witnessed the fast development of the 
stimuli-responsive polymeric films applied in nerve regeneration, especially for PNS regeneration[151,152].

Structural variations
Responsive structural changes like contraction and warping could improve the interface interaction between 
the materials and tissues. Zhang et al. fabricated a mimosa-inspired film composed of chitosan and AAc-
NHS lipid via gradient crosslinking with glutaraldehyde [Figure 9A][97]. This film could curl into a conduit 
under water stimulation, offering good biocompatibility, diameter adaptability, and seamless biointegration. 
In vitro and in vivo studies further demonstrated its efficacy in promoting nerve repair while reducing 
regeneration time and minimizing suture-related inflammation. Wang et al. developed a self-forming 
multichannel nerve guidance conduit made of PLATMC polymer synthesized from lactic acid (LA) and 
trimethylene carbonate (TMC), which could alter its shape from an electrospinning film to a conduit under 
temperature stimulation [Figure 9B][94]. This self-forming film and the nerve guidance conduit enhanced cell 
growth and improved the regeneration of rat sciatic nerve defects.

Property variations
Besides responsive wrapping and self-forming of the film, responsive property variations like controlled 
release are useful for nerve generation and functional construction. Shan et al. developed a responsive 
cascade drug delivery film scaffold (RCDDS) to enhance PNS injury repair [Figure 9C][153]. This system 
employed a two-stage encapsulation with vitamin B12 (VB12) and nerve growth factors (NGFs), where the 
controlled release was regulated by ultrasound-responsive disassembly of polymer chains, thereby aligning 
treatments with the individual recovery period. Additionally, research has demonstrated that the intrinsic 
mechanical properties of biomaterials profoundly influence cell behaviors[154]. Roth et al. developed protein-
engineered hydrogels encapsulated with human induced pluripotent stem cell (hiPSC)-derived neural 
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Figure 9. Nerve regeneration using the stimuli-responsive films. (A) Mimosa-inspired water-responsive films with good 
biocompatibility, diameter adaptability and seamless biointegration. Copyright 2023, John Wiley and Sons[97]; (B) A multichannel nerve 
guidance conduit triggered by body temperature for enhancing cell growth and improving nerve regeneration. Copyright 2020, Springer 
Nature[94]; (C) A responsive cascade drug delivery film scaffold for PNS injury repair. Copyright 2024, Royal Society of Chemistry[153]; D. 
Water-responsive polymer films with wrapping ability and mechanical compatibility for function reconstruction. Copyright 2023, 
Springer Nature[30].

progenitor cells (NPCs). Due to the fast stress relaxation rates of the hydrogels, the NPCs exhibited longer 
neurite projections, reduced metabolic activity, and higher gene expression[155]. Therefore, stiffness 
variations were further studied based on the responsive-wrapping film. Yi et al. designed a water-responsive 
supercontractile polymeric film made from PEO and PEG-α-cyclodextrin [Figure 9D][30]. The film 
immediately contracted upon exposure to moisture, transforming into a soft, stretchable material that could 
adaptively wrap around nerves and support functional reconstruction. The ongoing advances in stimuli-
responsive polymeric films bring new opportunities for addressing the complexities of nerve injuries, 
offering adaptable and less invasive alternatives that can potentially transform clinical practices in the field 
of nerve regeneration.

Bone regeneration
Bone defects caused by severe trauma, malignant tumors, and osteoporosis are notoriously challenging to 
repair due to issues such as infection, large affected areas, and irregular shapes, making these defects a 
critical clinical concern[156,157]. Such defects are often accompanied by significant damage or loss of the 
periosteum, which is a connective tissue membrane tightly enveloping the surface of bones. The periosteum 
plays a vital role in osteogenesis and bone regeneration by providing skeletal fortification, preservation, and 
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reparative capabilities[158]. Film materials have recently gained attention for their potential to replicate the 
structure and function of the periosteum[159,161]. Stimuli-responsive polymeric films pave a new pathway for 
promoting bone regeneration through their adaptive variations in structure and properties.

Structural variations
Zhang et al. designed an artificial periosteum with tunable degradation properties, comprising 
hydroxyapatite (HA) and amphiphilic PELGA [Figure 10A][98]. The film could adjust its stiffness upon 
hydration and wrap the bone at body temperature due to its excellent shape recovery ability, efficiently 
delivering skeletal progenitor cells around the target bone and promoting bone regeneration. You et al. 
employed 3D printing technology to prepare a multi-responsive film with a shape memory polymer (SMP) 
layer and a hydrogel layer [Figure 10B][25]. The SMP layer had responsive surface microstructures capable of 
modulating cell behaviors, including proliferation and differentiation, for improving bone regeneration. The 
hydrogel layer could easily be engineered into a 3D shape matching specific bone structures. Current 
limitations of biomedical films for bone wrapping and repair include their inability to precisely match the 
complex 3D curvature and irregular microstructures of the bone surface. For instance, although the bilayer 
film designed by You et al. could be adaptable to the macroscopical structure via the 3D printing hydrogel 
layer, achieving this adaptation at the micron scale remains challenging but essential. As a result, these films 
can effectively wrap the bone, secure the defective site, and release bioactive components for optimal bone 
regeneration.

Property variations
Smart-responsive polymeric films can promote cell proliferation and differentiation by altering their 
properties. Zheng et al. reported a thermo-responsive PLLA-based composite film incorporating liquid 
crystalline phases (LC phases) inside [Figure 10C][105]. This film maintained stable LC phases at body 
temperature, facilitating materials transport and signal transmission. The results demonstrated that the 
liquid crystal-modified PLLA film promoted cell proliferation and differentiation through 
immunomodulation. Huang et al. fabricated a photoacoustic-responsive PLGA-graphene oxide(GO) film 
that enhanced bone regeneration through photoacoustic stimulation[106]. Qiao et al. designed a sandwich-
like PDMS electroactive film, incorporating a SiO2 electret capable of generating continuous electrical 
stimulation. This stimulation improved the hydrophilicity of the film, promoting osteoblast adhesion and 
proliferation, thereby facilitating enhanced bone regeneration [Figure 10D][107]. Mechanical compatibility is 
important to hard tissues[162]. Liu et al. demonstrated that a higher loss modulus of hydrogels enhanced both 
chondrogenesis and osteogenesis in bone marrow mesenchymal stem cells (BMSCs)[163], which was crucial 
for bone regeneration. Although the stimuli-responsive polymeric films hold promise as tools for 
reconstructing the functional properties of the periosteum, further research is needed to develop films that 
can self-adapt to the structure and mechanical properties of natural bone for advanced and effective bone 
regeneration.

CONCLUSIONS
Damaged soft and hard tissues remain significant clinical challenges, demanding advanced strategies for 
effective repair and healing. Stimuli-responsive biomedical polymeric films have emerged as transformative 
tools in tissue regeneration, offering dynamic adaptability to complex biological environments. This review 
systematically outlines the fabrication methods, stimuli-responsive mechanisms, and applications for tissue 
regeneration of these smart materials, highlighting their structural and property variations under diverse 
stimuli. Among fabrication methods, it is noticed that solvent casting remains the most common and 
straightforward method for producing thin films, while 3D printing is employed to construct precise 
structures with high accuracy. More importantly, by categorizing responsive mechanisms into structural 
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Figure 10. Bone regeneration using stimuli-responsive films. (A) Shape memory artificial periosteum with controlled degradation and 
cell delivery. Copyright 2016, John Wiley and Sons[98]; (B) 3D printing multi-responsive films with a SMP layer and a hydrogel layer for 
modulating cell behaviors and matching specific structures. Copyright 2021, John Wiley and Sons[25]; (C) An immunomodulatory 
thermal-responsive composite film for promoting osteogenic cell proliferation and differentiation. Copyright 2022, Frontiers Media 
S.A.[105]; (D) A sandwich-like PDMS electrical-responsive for improving osteoblast adhesion and proliferation. Copyright 2022, 
American Chemical Society[107].

(e.g., contraction, bending) and functional (e.g., stiffness modulation, drug release) changes, this work 
provides a framework for designing films tailored to specific tissue repair needs. Recent applications in skin, 
cardiovascular, nerve, and bone regeneration demonstrate the potential of these smart films to enhance 
wound closure, enable minimally invasive implantation, promote cell behaviors, improve interfacial 
interactions, and so on. However, challenges such as limited deep-tissue penetration, mechanical 
compatibility with native tissues, and insufficient long-term biocompatibility validation underscore the need 
for further innovation.

Specifically, various stimuli have their own unique balance of advantages and limitations, necessitating 
context-specific selection for practical applications. Temperature-based stimuli offer fast response and high 
operability but risk normal tissue injury, particularly in deep tissues. Light-based methods provide high 
spatiotemporal resolution and remote controllability, but they are limited by unsatisfactory tissue 
penetration, reliance on photosensitizers, and potential phototoxicity. Water-triggered methods are mild 
and highly biocompatible, though they suffer from slow response and dependency on ambient humidity. 
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Electrical stimulation enables precise spatiotemporal control and is minimally invasive; however, implanted 
electrodes may cause inflammation, and the approach often involves complex, non-portable equipment. 
Ultrasound stands out for its strong penetration depth and non-invasive nature, yet it can still damage 
normal tissues and requires expensive devices and technical operations. pH-responsive systems leverage 
natural targeting (e.g., acidic tumor microenvironments) and eliminate the need for external equipment. 
However, their effectiveness is hindered by variability in individual/tissue pH levels and challenges in 
achieving precise local pH control. To achieve suitable responsive functions based on the demands of 
damaged tissue, researchers or doctors must first consider the features of these stimuli. Additionally, films 
with structural variations usually generate mechanical force for wrapping, supporting, or fixing; however, 
mechanical compatibility with specific tissues must be carefully evaluated in vivo to prevent secondary 
damage. Films with property variations, such as controlled biodegradation and drug release, can adapt to 
the dynamic microenvironment at defective sites. These advantages make these films highly suitable 
throughout the entire tissue regeneration process, but their complex components and fabrication methods 
remain a major limitation. The clinical translation of stimuli-responsive biomedical polymeric films is 
another critical challenge. Although there are commercial films for skin repair and regeneration, clinical 
applications of most smart films for deep tissues are still intractable, particularly in achieving scalable 
manufacturing, regulatory compliance, and long-term biocompatibility.

Future research should prioritize multifunctional integration to address the dynamic demands of tissue 
regeneration. For example, bone repair is a long-term and comprehensively dynamic healing process, 
requiring films with minimally invasive capabilities, fixation strength, and controlled bioactivity. Therefore, 
combining multiple stimuli (e.g., temperature-light-pH) within a single platform to drive systematic internal 
changes such as critical temperature transitions and reversible chemical reactions could enable 
spatiotemporal control over material behaviors, particularly for deep-seated defects. Moreover, advancing 
mechanobiological studies to optimize film-tissue mechanical interactions (e.g., modulus adaptation for 
cardiovascular implants) will minimize secondary damage. In addition, simplifying fabrication processes 
while enhancing structural complexity (such as 4D-printed films with programmable shape memory effects) 
may bridge the gap between laboratory-scale prototypes and clinical scalability. Furthermore, leveraging 
artificial intelligence (AI)-driven design for predictive material customization and exploring biodegradable 
systems with eco-friendly components could align these structural and property variations with sustainable 
medical practices. Ultimately, the convergence of materials science, bioengineering, and clinical insights will 
unlock the full potential of stimuli-responsive polymeric films in personalized regenerative medicine.
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