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Abstract
The state estimation problem is investigated for a class of continuous-time stochastic nonlinear systems, where a
novel filter designmethod is proposedbasedonbackstepping design and stochastic differential equation. In particular,
the structure of the filter is developed following the nonlinear systemmodel, and then the estimation error dynamics
can be described by a stochastic differential equation. Motivated by backstepping procedure, the nonlinear dynamics
can be converted to anOrnstein–Uhlenbeck process via the control loop design. Thus, the estimation can be achieved
once the estimation error is bounded and the variance of the error can be optimized. Since the ideal estimation
error is a Brownian motion, the filter parameters can be selected following the Lyapunov stability theory and variance
assignment method. Following the same framework, the multivariate stochastic systems can be handled with the
block backstepping design. To validate the presented design approach, a numerical example is given as the simulation
results to demonstrate the state estimation performance.

Keywords: Continuous-time stochastic systems, stochastic differential equation, Ornstein–Uhlenbeck process, back-
stepping
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1. INTRODUCTION
Since state space has been widely used to present the model of the dynamic system, state estimation is a key
research problem to characterize the system properties as the internal states are mostly unmeasurable. It is
a challenging technical problem because the unmeasurable states are normally subjected to random noises.
For example, process noise and measurement noise widely exist in the state space model. Therefore, it is
also a filtering problem for state estimation if the random noises have been considered in the design procedure.
Nowadays, state estimation and filtering have been adopted inmany applications such as the robotics system [1],
intelligent manufacturing [2], transportation monitoring [3], industrial performance optimization [4,5], etc.

As a well-developed solution for estimation problem, Kalman [6] filter was firstly designed in the 1960s, and
it has been considered as a standard design method. However, the traditional Kalman filter was given for a
discrete-time linear dynamic system. To deal with the nonlinearities of the system dynamics, many variants
have been proposed successfully based on Kalman filter framework, such as extended Kalman filter [7] and
unscented Kalam filter [8]. However, the problem formulation for these filters still use discrete-time
models. To deal with the continuous-time model, the Kalman-Bucy filter [9] was proposed by solving linear
Riccati equation. Notice that the Kalman-Bucy filter has a linear structure. It is difficult to extend the result to
nonlinear systems directly, while it is difficult to solve the associated Riccati equation analytically for the non-
linear system model. Following the Kalman filter framework, robust Kalman filter [10] and unscented Kalman
filtering [11] have been extended to continuous-time models. Different from the Kalman filter framework, the
numerical solution has been developed as particle filter [12], which considers the distribution of the particle
for each sampling instant. The main issue of particle filter is the convergence analysis. It is still an open ques-
tion currently. The minimum entropy filtering has also been presented [13,14], which considers non-Gaussian
noises in the system model. Inspired by the probability density function (PDF) in particle filtering and the
minimum entropy filtering, the Fokker-Planck-Kolmogorov (FPK) equation is used in this paper to produce
the continuous-time solution.

FPK-based state estimation [15] has been presented recently. However, this paper focuses on the filtering design
based on linearization. Trying to eliminate the nonlinear effects in the closed-loop, in this paper, the back-
stepping design is adopted for the estimation error dynamics as the system model is represented by stochastic
differential equation. In particular, the structure of the filter can be confirmed using the system model. Thus,
the dynamics of the estimation error can be produced following the stochastic differential equation. To stabi-
lize the estimation error, the backstepping design is adopted. As a result, the stochastic differential equation
in terms of the estimation error can be further converted to a linear Ornstein-Uhlenbeck process [16], while
the virtual tracking error in backstepping is close to zero. In the ideal case, the estimation error is subjected to
the Brownian motion. Note that the system states are Gaussian due to the fact that the system dynamics are
converted to being linear, while the stochastic differential equation is subjected to Brownian motion. Then, we
can use variance to characterize the randomness of the estimation error. Following the variance assignment
method [17], the desired value of variance results in the optimal parametric selection for the presented filter. In
addition, the presented framework can be used for stochastic distribution control [18] where the tracking error
can be optimized similarly to the estimation error in this paper. As one possible application, neural mem-
brane potential estimation can be taken into account, as the nonlinear dynamics [19] are affected by complex
random neural interaction [20] and the membrane potential is difficult to measure directly. Then, the proposed
estimator is considered as a possible solution.

The remainder of the paper is organized as follows. The formulation is given in Section 2 including the system
model and some preliminaries. The filter structure design is given in Section 3 with backstepping procedure.
Theoptimal parameter is obtained in Section 4 using the variance assignment. The simulation results are shown
in Section 5 to indicate the performance of the presented filtering algorithm. A discussion for multivariate
system is given in Section 6, and the conclusions are summarized in Section 7.
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2. FORMULATION
To illustrate the main idea of the estimation method, let us start from a simple univariate stochastic nonlinear
system which is described by the Itô process:

𝑑𝑥𝑡 = 𝑓 (𝑥𝑡) 𝑑𝑡 + 𝜎𝑑𝑊𝑡 ,

𝑦𝑡 = 𝑐𝑥𝑡 , (1)

where 𝑓 (·) stands for a known smooth nonlinear function,𝑊𝑡 denotes theWiener process, and 𝜎 > 0 is given
as a real constant. 𝑥𝑡 and 𝑦𝑡 stand for the system state and system output, respectively. 𝑐 denotes a real constant.
Note that the measurement equation is presented in linear form, which is widely used in practice to describe
the property of the sensor.

To deliver the main result, the preliminaries, such as definitions [21] and lemma [22], are recalled here.

Definition 1 For any given𝑉 (𝑥𝑡 , 𝑡) ∈ 𝒞1,2(R𝑛 × R+;R+) associated with the stochastic differential Equation (1),
the differential operatorℒ is defined as follows:

ℒ𝑉 =
𝜕𝑉

𝜕𝑡
+ 𝜕𝑉

𝜕𝑥𝑡
𝑓 (𝑥𝑡) +

𝜕𝑉

𝜕𝑥𝑡
𝑣𝑡 +

1
2
𝑇𝑟

{
𝜕2𝑉

𝜕𝑥2
𝑡

𝜎2
}
. (2)

Definition 2 The solution process {𝑥 (𝑡) , 𝑡 ≥ 0} of the stochastic system in Equation (1) is said to be bounded in
probability if lim𝑐→∞ sup0≤𝑡<∞ 𝑃 {∥𝑥 (𝑡) ∥ > 𝑐} = 0, where 𝑃 {·} denotes probability operator and 𝑐 is a real positive
constant.

Lemma 1 Consider the stochastic nonlinear system model in Equation (1) and assume that 𝑓 (𝑥𝑡) is 𝒞1 in the
arguments and 𝑓 (0) is bounded uniformly in 𝑡. If there exist nonnegative functions𝑉 (𝑥𝑡 , 𝑡) ∈ 𝒞1,2(R𝑛 × R+;R+),
𝜇1 (·), 𝜇2 (·)∈ 𝒦∞, constants 𝑐1 > 0 and 𝑐2 ≥ 0, such that

𝜇1 (|𝑥𝑡 |) ≤ 𝑉 (𝑥𝑡 , 𝑡) ≤ 𝜇2 ( |𝑥𝑡 |) ,
ℒ𝑉 ≤ −𝑐1𝑉 (𝑥𝑡 , 𝑡) + 𝑐2. (3)

where 𝑐2 = 0 implies that the system is stable probability sense and 𝑐2 > 0 means the system is second-moment
stable.

3. FILTER STRUCTURE
Based on the system model in Equation (1), the state estimation scheme can be produced by the following
filtering structure.

𝑑𝑥𝑡 = ( 𝑓 (𝑥𝑡) − 𝑣𝑡) 𝑑𝑡, (4)

where 𝑥𝑡 denotes the estimated system state 𝑥𝑡 . 𝑣𝑡 stands for the compensative signal for estimating correction.

Since the estimation error is defined as 𝑒𝑡 = 𝑥𝑡 − 𝑥𝑡 , the dynamics of 𝑒𝑡 can be reflected by the following
equations.

𝑑𝑒𝑡 =
(
𝑓𝑡 + 𝑣𝑡

)
𝑑𝑡 + 𝜎𝑑𝑊𝑡 , (5)

where 𝑓𝑡 = 𝑓 (𝑥𝑡) − 𝑓 (𝑥𝑡).

It is shown above that the estimation problem can be further converted as the estimation error stabilization
using the signal 𝑣𝑡 . Next, we can introduce an integrator into the systemmotivated by the backstepping design.

𝑑𝑒𝑡 =
(
𝑓𝑡 + 𝑣𝑡

)
𝑑𝑡 + 𝜎𝑑𝑊𝑡 ,

𝑑𝑣𝑡 = 𝑢𝑡𝑑𝑡, (6)
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where 𝑢𝑡 denotes the new filtering compensative signal. Note that the signal 𝑣𝑡 in Equation (5) is the integral
of the signal 𝑢𝑡 .

Following the backstepping design approach, the virtual signal is given first:

𝜙 (𝑒𝑡) = − 𝑓𝑡 − 𝜃𝑒𝑡 , (7)

where 𝜃 denotes a real positive constant as a design parameter.

To stabilize Equation (6), the virtual error variable is further defined as follows:

𝑧𝑡 = 𝑣𝑡 − 𝜙 (𝑒𝑡)
= 𝑣𝑡 + 𝑓𝑡 + 𝜃𝑒𝑡 . (8)

Substituting the virtual error 𝑧𝑡 into Equation (6), we have

𝑑𝑒𝑡 = (−𝜃𝑒𝑡 + 𝑧𝑡) 𝑑𝑡 + 𝜎𝑑𝑊𝑡 . (9)

The Itô’s lemma can be used here to obtain the following equation:

𝑑𝑧𝑡 = 𝑑𝑣𝑡 − 𝑑𝜙 (𝑒𝑡)

=

(
𝑢𝑡 − (−𝜃𝑒𝑡 + 𝑧𝑡)

𝜕𝜙 (𝑒𝑡)
𝜕𝑒

− 𝜎2

2
𝜕2𝜙 (𝑒𝑡)
𝜕𝑒2

)
𝑑𝑡

− 𝜎
𝜕𝜙 (𝑒𝑡)
𝜕𝑒

𝑑𝑊𝑡 . (10)

Then, a Lyapunov function candidate is selected as follows:

𝑉𝑡 = 𝑉𝑒 +𝑉𝑧 =
1
2
𝑒2
𝑡 +

1
4
𝑧4
𝑡 , (11)

which leads to

ℒ𝑉𝑡 = ℒ𝑉𝑥 +ℒ𝑉𝑧 . (12)

Based on Definition 1, Lemma 1, and Young’s inequality, the following result is obtained:

ℒ𝑉𝑒 = 𝑒𝑡 (−𝜃𝑒𝑡 + 𝑧𝑡) +
𝜎2

2

= −𝜃𝑒2
𝑡 + 𝑒𝑡𝑧𝑡 +

𝜎2

2

≤ −𝜃𝑒2
𝑡 +

1
2
𝑒2
𝑡 +

1
2
𝑧2
𝑡 +

𝜎2

2

=

(
−𝜃 + 1

2

)
𝑒2
𝑡 + 𝑧2

𝑡 +
𝜎2

2

≤
(
−𝜃 + 1

2

)
𝑒2
𝑡 +

1
2
𝑧4
𝑡 +

𝜎2 + 1
2

, (13)
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and

ℒ𝑉𝑧 = 𝑧3
𝑡

(
𝑢𝑡 − (−𝜃𝑒𝑡 + 𝑧𝑡)

𝜕𝜙 (𝑒𝑡)
𝜕𝑒

− 𝜎2

2
𝜕2𝜙 (𝑒𝑡)
𝜕𝑒2

)
+ 3𝜎2

2

(
𝜕𝜙 (𝑒𝑡)
𝜕𝑒

)2
𝑧2
𝑡

≤ 𝑧3
𝑡

(
𝑢𝑡 + 𝜃𝑒𝑡

𝜕𝜙 (𝑒𝑡)
𝜕𝑒

− 𝑧𝑡
𝜕𝜙 (𝑒𝑡)
𝜕𝑒

− 𝜎2

2
𝜕2𝜙 (𝑒𝑡)
𝜕𝑒2

)
+ 1

2
+ 9𝜎4

8

(
𝜕𝜙 (𝑒𝑡)
𝜕𝑒

)4
𝑧4
𝑡

= 𝑧3
𝑡

(
𝑢𝑡 + 𝜃𝑒𝑡

𝜕𝜙 (𝑒𝑡)
𝜕𝑒

− 𝜎2

2
𝜕2𝜙 (𝑒𝑡)
𝜕𝑒2

)
+

(
9𝜎4

8

(
𝜕𝜙 (𝑒𝑡)
𝜕𝑒

)4
− 𝜕𝜙 (𝑒𝑡)

𝜕𝑒

)
𝑧4
𝑡 +

1
2
. (14)

Thus, the compensative signal 𝑢𝑡 is further designed as

𝑢𝑡 = −𝜃𝑒𝑡
𝜕𝜙 (𝑒𝑡)
𝜕𝑒

+ 𝜎2

2
𝜕2𝜙 (𝑒𝑡)
𝜕𝑒2 − 𝐺𝑧𝑡 , (15)

where 𝐺 denotes a design parametric function.

Substituting the designed signal 𝑢𝑡 toℒ𝑉𝑧 , Equation (12) can be rewritten as follows:

ℒ𝑉𝑡 ≤
(
−𝜃 + 1

2

)
𝑒2
𝑡 +

1
2
𝑧4
𝑡 +

𝜎2 + 2
2

− 𝐺𝑧4
𝑡

+
(
9𝜎4

8

(
𝜕𝜙 (𝑒𝑡)
𝜕𝑒

)4
− 𝜕𝜙 (𝑒𝑡)

𝜕𝑒

)
𝑧4
𝑡

=

(
−𝜃 + 1

2

)
𝑒2
𝑡 +

𝜎2 + 2
2

+
(
1
2
− 𝐺 + 9𝜎4

8

(
𝜕𝜙 (𝑒𝑡)
𝜕𝑒

)4
− 𝜕𝜙 (𝑒𝑡)

𝜕𝑒

)
𝑧4
𝑡 . (16)

Using Lemma 1, the estimation error 𝑒𝑡 with the designed signal 𝑢𝑡 is bounded in probability sense. To simplify
the expression ofℒ𝑉𝑡 , 𝐺 can be selected as follows, and then the 𝑧4 term can be further eliminated.

𝐺 =
1
2
− 9𝜎4

8

(
𝜕𝜙 (𝑥𝑡)
𝜕𝑥

)4
+ 𝜕𝜙 (𝑥𝑡)

𝜕𝑥
, (17)

which results in

ℒ𝑉𝑡 ≤
(
−𝜃 + 1

2

)
𝑒2
𝑡 +

𝜎2 + 2
2

. (18)

Thus, it is shown that the estimation error is bounded in probability sense when 𝜃 ≥ 1
2 .

Note that, as the linear dynamical measurement equation is known, the estimation error can be approximated
by the measurement error signal.

𝑒𝑡 = 𝑐−1 (𝑦𝑡 − 𝑐𝑥𝑡) , (19)

which indicates that the presented compensative signal is implementable.

http://dx.doi.org/10.20517/ces.2021.13
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4. PARAMETER SELECTION
Substituting the compensative signal into ℒ𝑉𝑧 shows that the virtual error 𝑧𝑡 is also bounded in probability
sense. Therefore, the estimation error with the designed signal can be represented by the linear Ornstein-
Uhlenbeck process.

𝑑𝑒𝑡 = −𝜃𝑒𝑡𝑑𝑡 + 𝜎𝑑𝑊𝑡 . (20)

For the obtained Ornstein-Uhlenbeck process, the Fokker-Planck-Kolmogorov equation can be obtained as
follows:

𝜕𝑝(𝑥, 𝑡)
𝜕𝑡

= 𝜃
𝜕

𝜕𝑥
[𝑥𝑝(𝑥, 𝑡)] + 𝜎2

2
𝜕2𝑝(𝑥, 𝑡)

𝜕𝑥2 , (21)

where 𝑝(𝑥, 𝑡) and 𝑥 stand for the probability density function and the random variable of 𝑒𝑡 , respectively.

Solving the presented FPK equation in analytical form, we have

𝑝(𝑥, 𝑡) =
√

𝜃

𝜋𝜎2 (
1 − 𝑒−2𝑡𝜃 ) exp

(
− 𝜃

𝜎2

(
𝑥 − 𝑥0𝑒

−𝑡𝜃 )2

1 − 𝑒−2𝑡𝜃)

)
, (22)

where 𝑥0 denotes the initial value of 𝑒𝑡 at 𝑡0.

Following the aforementioned discussion in introduction, the designed signal governs the PDF of estimation
error 𝑒𝑡 following the Gaussian distribution. Moreover, the mean value converges to zero and the variance
value can be calculated as follows:

𝑉𝑎𝑟 (𝑒𝑡) =
𝜎2

2𝜃

(
1 − 𝑒−2𝑡𝜃

)
, (23)

where the variable is governed by the design parameter 𝜃.

To achieve the filtering performance, the design parameter 𝜃 should be selected properly. Note that, if we have
the ideal case for the system state estimation, 𝑓𝑡 = 0 holds. Thus, the estimation error dynamics can be further
described as follows:

𝑑𝑒𝑡 = 𝜎𝑑𝑊𝑡 , (24)

where the associated FPK equation is obtained as the following heat equation.

𝜕𝑝(𝑥, 𝑡)
𝜕𝑡

=
𝜎2

2
𝜕2𝑝(𝑥, 𝑡)

𝜕𝑥2 . (25)

Based on Green’s function and heat kernel, the optimal variance 𝑟 (𝑡) can be obtained.

𝑟 (𝑡) = 𝜎2𝑡. (26)

Then, the parameter 𝜃 can be formulated by analytically solving the following equation.

𝜎2

2𝜃

(
1 − 𝑒−2𝑡𝜃

)
= 𝑟 (𝑡) , (27)

which can be rewritten as follows.

𝑒−2𝑡𝜃 = −2𝑟 (𝑡)
𝜎2 𝜃 + 1. (28)

http://dx.doi.org/10.20517/ces.2021.13
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Based on Lambert W function, we can further solve this equation and its solution is given as follows:

𝜃 =

𝑊0

(
− 𝑡𝜎2

𝑟 (𝑡) 𝑒
− 𝑡 𝜎2

𝑟 (𝑡)

)
2𝑡

+ 1
2𝑡
, (29)

where𝑊0 (·) stands for Lambert W function.

Note that the real solution of equation above does not always exist, and we can consider the stationary solution
to simplify the calculation.

𝜃 =
1
2𝑡
, 𝑡 ≤ 1. (30)

We can further select 𝜃 = 1
2 when 𝑡 > 1 in order to satisfy the estimation error stabilization condition.

Remark 1 Note that variance is equivalent to entropy for linear stochastic system, thus the proposed filtering
algorithm can be considered as a special case for minimum entropy filtering.

To summarize the design procedure, the following pseudo-code is demonstrated here as Algorithm 1.

Algorithm 1 Backstepping based filtering for stochastic nonlinear systems

Require: Model of the investigated system 𝑓 , system discretization for simulation.
Input: Setup simulation time 𝑡𝑠 and the measured value 𝑦𝑡
Output: The estimated value of the system states 𝑥𝑡

Initialization: Pre-specified the initial values.
for 𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑡𝑖𝑚𝑒 ≤ 𝑡𝑠 do

Obtain the filter structure in Equation (4) and obtain the estimation error value
Convert the system model into backstepping design form using Equation (6)
Define virtual input [Equation (7)] and formulate the virtual error [Equation (8)]
if Lambert W function in Equation (29) is solvable then

Select the parameter 𝜃 by Equation (29)
else

𝜃 = 1/2
end if
Obtain the compensative filtering signal by Equation (15)
Calculate 𝑣𝑡 by integral of 𝑢𝑡
Produce the estimated state values by Equation (4).

end for

5. SIMULATION
As a validation, we consider the following numerical system model as an example:

𝑑𝑥𝑡 = (−𝑥𝑡 + sin (𝑥𝑡)) 𝑑𝑡 + 0.01𝑑𝑊𝑡 ,

𝑦𝑡 = 𝑥𝑡 . (31)

To achieve the objective of filtering design, the system state 𝑥𝑡 subjected to noise should be approximated using

http://dx.doi.org/10.20517/ces.2021.13
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Figure 1. The estimation of the system state 𝑥𝑡 .

the measured signal 𝑦𝑡 . Using the proposed algorithm, the designed filter can be obtained as follows:

𝑑𝑥𝑡 = (−𝑥𝑡 + sin (𝑥𝑡) − 𝑣𝑡) 𝑑𝑡,
𝑑𝑣𝑡 = 𝑢𝑡𝑑𝑡. (32)

Using the designed nonlinear filter, the estimation error 𝑒𝑡 can be produced in a nonlinear form. Then, the
nonlinear dynamics of this estimation error and the virtual signal 𝑧𝑡 can be further formulated. Based on
the presented backstepping design, the simulation results are developed in Figures 1-5, where the initial value
of the compensative signal is 0 and the initial value of the system state is -0.1. Figure 1 demonstrates the
estimation performance of the presented method where the measured signal and the estimated one are shown
separately as a comparison. It is shown that the randomness in the measured signal is attenuated, while the
estimated signal is close to the ideal signal without noise. A comparative study is also given in this figure using
a high-gain observer. It is shown that the high-gain design achieves the state estimation with filtering effects.
However, the performance is sensitive regarding to the gain value. Figure 2 indicates the estimation error
signal. As in the aforementioned analysis, the estimation error would be described as a Brownian motion
in ideal condition. However, in the computational simulation, the discretization has to be used where the
trajectory is the increment of the Brownianmotion. In particular, it is described as Gaussian white noise. Note
that error 𝑒𝑡𝑟𝑢𝑒 is given in the figure where the value is given between the estimated value and the true value
without noise. 𝑒𝐻𝐺 and 𝑒𝑡 are the values between the measured value and the estimated values. 𝑒𝐻𝐺 implies
that the high-gain design is closer to the measured value as an observer and the presented filtering algorithm
leads to a result close to the true value without noise. Figures 3-5 illustrate the designed filtering compensative
signal 𝑣𝑡 , 𝑢𝑡 , and the tracking error of virtual signal 𝑧𝑡 . In addition, Figures 6 and 7 show the mean values of
𝑧𝑡 and 𝑒𝑡 . Notice that the mean values of both signals are bounded and close to zero. In addition, Figures 8
and 9 show the variance values of 𝑧𝑡 and 𝑒𝑡 , where the variance value of 𝑒𝑡 is close to the assigned value 0.0001.
Basically, in the assigned value there exists an error due to the influence of the filtering compensative signal.
Based on these results, the design estimation objective for the investigated system is achieved.

http://dx.doi.org/10.20517/ces.2021.13


Yin et al. Complex Eng Syst 2022;2:1 I http://dx.doi.org/10.20517/ces.2021.13 Page 9 of 14

0 50 100 150 200 250 300 350 400 450 500
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

Figure 2. The estimation error of the system state 𝑥𝑡 .

0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

4

6

8

10
10-3

Figure 3. The compensative signal 𝑣𝑡 of filter with integrator.

6. DISCUSSION
Only the single variable estimation is considered above to simplify the backstepping design. Themain challenge
of extending the presented algorithm to themultivariate case is basically themulti-variable backstepping design.
Inspired by multi-variable controller design [23], the block backstepping design is one of the potential solutions.
The system model in Equation (1) can be extended to vector-valued form as follows:
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Figure 4. The compensative signal 𝑢𝑡 of filter before integral.
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Figure 5. The trajectory of the virtual error 𝑧𝑡 .

𝑑𝑥𝑡 = 𝑓 (𝑥𝑡) 𝑑𝑡 + Σ𝑑𝑊̄𝑡 ,

𝑦𝑡 = 𝐶𝑥𝑡 . (33)

where 𝑓 (·) stands for a known smooth nonlinear function 𝑓 : R𝑛×1 → R𝑛, 𝑊̄𝑡 denotes n-dimensional Wiener
process, and Σ denotes a given as a real positive square matrix with n dimensions. 𝑥𝑡 ∈ R𝑛 and 𝑦𝑡 ∈ R1 stand
for the system state vector and system output, respectively. 𝐶 ∈ R𝑛 denotes a vector-valued coefficient.
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Figure 6. The mean value of the virtual error signal 𝑧𝑡 .
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Figure 7. The mean value of the estimation error 𝑒𝑡 .

Then, the filter structure can be confirmed in vectorized form.

𝑑 ˆ̄𝑥𝑡 =
(
𝑓
( ˆ̄𝑥𝑡 ) − 𝑣̄𝑡

)
𝑑𝑡, (34)

where ˆ̄𝑥𝑡 denotes the estimated system state 𝑥𝑡 . 𝑣̄𝑡 ∈ R𝑛 denotes the vector-based filtering compensative signal.

Similar to the design procedure, the Lyapunov functions can also be reused where the vector-value variables
will be used. Since Lemma 2 holds for the multivariate system, the developed result in this paper can be
extended directly following the block backstepping design. Notice that the linear Ornstein-Uhlenbeck
process will be in the multi-dimensional form which leads to difficulty in solving the FPK equation as the joint
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Figure 8. The variance of the virtual error signal 𝑧𝑡 .

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4
10-3

Figure 9. The variance of the estimation error 𝑒𝑡 .

probability density function has to be involved in the multivariate case. To avoid this problem, the design
parameter 𝜃 should be selected as the positive diagonal matrix. Then, a set of FPK equations can be obtained
where the vector state can be decomposed as multiple single variables. Therefore, the presented parameter
selection scheme can also be reused for the multivariate system.

In addition, the measurement noise cannot be ignored in practice. An extended model should be formulated
with the measurement noise which can be expressed as another stochastic differential equation. Thus, the
convergence of the estimation error cannot be simply converted as the proposed linear dynamics. This
extension will be considered as a future work with other assumptions.
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7. CONCLUSION
The state estimation problem is investigated for a class of stochastic nonlinear systems, where the systemmodel
is described by the stochastic differential equation. To achieve the design objective, a new nonlinear filtering
approach is designed. In particular, the design scheme is divided into two components: (1) The filtering
structure can be confirmed based on the system model while the nonlinear estimation error can be further
formulated. Then, an integrator is introduced into the estimation error for matching the backstepping design
procedure. After that, the nonlinear dynamics can be converted to a linear Ornstein-Uhlenbeck process, where
the mean value and variance value of the obtained estimation error is adjustable. (2) Since the variance value
can be formulated analytically, the parameter can be designed for the filter. Ideally, the Brownianmotion can be
considered to obtain the desired variance value. Then, the design parameter in backstepping can be confirmed
in order to attenuate the randomness of the state estimation. The simulation results and themultivariate system
extension are also given to show the effectiveness and the potential extension of the presented estimation
method. To extend the presented results, some comparative studies will be produced as future work where
high-order sliding mode design [24,25] and adaptive high-gain design [26] will be further considered.
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