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Abstract
The tumor microenvironment (TME) of breast cancer (BC) is depicted as an immunosuppressive dwelling that 
comprises a myriad of cell types embedded in the extracellular matrix. As one of the most abundant cell 
populations within the TME, cancer-associated fibroblasts (CAFs) play indispensable roles in increasing cancer 
aggressiveness and promoting resistance to standard-of-care therapies. Extracellular vesicles (EVs) represent a 
diverse array of biological nanoparticles, encompassing exosomes, microvesicles, and apoptotic bodies. In recent 
years, these cell-derived membranous structures have raised great interest as they can encapsulate numerous 
types of cellular cargo, such as proteins, lipids, and miRNAs. By transmitting bioactive content to recipient cells, 
EVs play pivotal roles in intercellular communication between CAFs and tumor cells. EVs secreted from tumor cells 
typically activate resident fibroblasts to acquire a myofibroblastic phenotype, while EVs diffused by CAFs, in turn, 
substantially increase the progression of BC. This review summarizes the latest findings to highlight the functional 
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role of EV cargo, especially miRNAs, in the regulatory network. A better understanding of the EV-mediated cell-cell 
interactions is crucial to achieving effective treatment in patients with BC.

Keywords: Cancer-associated fibroblast, extracellular vesicles, tumor microenvironment, intercellular 
communication, breast cancer

INTRODUCTIONS
According to the latest global cancer statistics, breast cancer (BC) is the most commonly diagnosed cancer 
in women, with approximately 2.3 million new cases in 2022[1]. Although much effort has been invested in 
improving the prognosis of patients in recent decades, BC continues to be one of the main causes of tumor-
associated death in women[2]. The current treatment methods for BC are primarily surgery, radiotherapy, 
chemotherapy, endocrine therapy, and targeted therapy[3]. However, the immunosuppressive cells 
surrounding the tumor greatly limit the therapeutic efficacy and promote the progression of cancer[4].

The tumor microenvironment (TME), which is of vital significance in influencing the conditions that 
impact tumor development and progression, refers to the noncancerous elements in the vicinity of tumor 
cells, such as immune cells, stromal cells, the extracellular matrix (ECM), and signaling molecules produced 
by these various cells[5]. As a key component of the TME, cancer-associated fibroblasts (CAFs) exhibit a 
spindle-shaped morphology with irregular nuclei and abundant cytoplasm. Compared with normal 
fibroblasts (NFs), CAFs demonstrate increased activity levels and produce greater amounts of cytokines and 
immunomodulatory factors, thus modulating the TME and influencing tumor growth, angiogenesis, and 
metastasis[6]. Recent studies revealed that the intercellular communication between neoplastic cells and 
surrounding CAFs is not only based on ECM remodeling but also modulated by paracrine signals[7]. CAFs 
stimulate the survival and self-renewal programs of cancer cells, which increases their motility and 
promotes the metastasis of malignant cells[8].

Extracellular vesicles (EVs) are membranous vesicles that can be produced in response to various stimuli 
and are widely distributed in tissue fluids, such as human blood, lymph fluid, cerebrospinal fluid, urine, and 
saliva[9]. These cell-derived membranous structures can diffuse from a vast majority of eukaryotic cell types 
both under physiological conditions and during pathological processes[10]. According to studies on the 
formation processes of EVs, these vesicles can generally be classified into three main categories: exosomes, 
microvesicles, and apoptotic bodies. Exosomes typically originate through inward budding of the 
endosomal membrane and are released after the fusion of multivesicular endosomes (MVEs) with the cell 
membrane. Microvesicles are produced via outward budding of the plasma membrane, after which they are 
secreted into the extracellular environment[11]. On the other hand, apoptotic bodies are vesicles produced by 
the plasma membrane during cell disintegration as a result of programmed cell death[9]. EVs are capable of 
transporting proteins, lipids, and nucleic acids and act on recipient cells in a paracrine or endocrine 
manner, thereby affecting the physiological functions and phenotypes of the recipient cells[12]. These vesicles 
also play essential roles in multiple pathological conditions. For example, EVs can transfer 
chemotherapeutic agents out of cancer cells, leading to increased drug resistance in malignant tumors[13].

In recent decades, emerging evidence has shown that EVs secreted by CAFs can regulate tumor 
proliferation and migration through complex signaling networks; correspondingly, EVs secreted by tumor 
cells can induce the differentiation of NFs into CAFs, thus creating a specific microenvironment favorable 
for tumor growth[6]. Therapeutic strategies targeting EVs have become a promising direction in the research 
field of BC treatment. Here, to deepen the understanding of EV-based bidirectional signal transduction, we 
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systematically summarized the interplay between CAFs and BC cells from tumorigenesis to tumor 
metastasis. Moreover, EV-related therapeutic approaches for the diagnosis and treatment of BC are also 
summarized in this review.

THE PATHOLOGICAL ROLE OF CAFs
The TME is mainly composed of tumor cells, stromal cells, and the extracellular matrix (ECM), among 
which stromal cells primarily include fibroblasts, immune cells, and endovascular cells[14]. As a prominent 
component of stromal cells in the TME, CAFs are identified by the presence of activation biomarkers, 
including α-smooth muscle actin (α-SMA) and fibroblast activation protein (FAP), along with a variety of 
secreted factors that are interrelated with ECM remodeling and immune infiltration[15].

The origin of CAFs
Currently, although the precise origin of CAFs has yet to be elucidated, evidence has shown that CAFs are 
derived from a wide range of sources. CAFs mainly originate from local resident fibroblasts and stellate 
cells, which can be activated by pathological stimulation. For example, quiescent stellate cells can acquire a 
myofibroblast-like phenotype and transcriptional features under the influence of inflammatory factors[16,17]. 
In addition, CAFs can arise from bone marrow-derived mesenchymal stem cells (BM-MSCs). 
Barcellos-de-Souza et al. reported the transforming growth factor-beta (TGF-β)-mediated differentiation of 
MSCs into CAF-like cells, which play a crucial role in promoting tumor invasiveness[18]. Additionally, 
epithelial and endothelial cells can also differentiate into CAFs via transformation through epithelial-
mesenchymal transition (EMT) or endothelial-mesenchymal transition (EndMT)[19,20]. Furthermore, some 
studies have shown that adipocytes, pericytes, and smooth muscle cells are also relevant to the formation of 
CAFs[21]. These diverse origins of CAFs underscore the complex nature of their involvement in tumor 
progression and highlight the need for further research to better understand their role in cancer 
development.

Subpopulations of CAFs
The diverse origins of CAFs lead to their phenotypic heterogeneity; thus, CAFs generate a variety of 
markers, such as α-SMA, FAP, fibroblast-specific protein-1 (FSP-1), S100A4, platelet-derived growth factor 
receptor (PDGFR), and vimentin (VIM)[22]. However, these markers lack specificity because they are not 
exclusively expressed by CAFs and can be detected in other healthy tissues. The increasing discovery of 
various subtypes of CAFs highlights the need for a more precise classification system to effectively guide 
therapeutic strategies targeting CAFs[23].

Research has revealed that two distinct subpopulations of CAFs were present in virtually all types of cancers: 
myofibroblastic CAFs (myCAFs), which are characterized by elevated levels of α-SMA expression, and 
inflammatory CAFs (iCAFs), which do not express α-SMA but instead secrete IL6[24,25]. MyCAFs are found 
adjacent to cancer cells and can produce ECM components and remodel the ECM, while iCAFs are located 
distant from tumor cells within the stroma and express high levels of cytokines and chemokines[26].

CAFs have been reported to arise from NFs that reside in the breast tissue of invasive lobular BC patients, 
among which CD26+ NFs are converted to protumorigenic iCAFs. These iCAFs play crucial roles in 
recruiting myeloid cells in a CXCL12-dependent manner. Additionally, they contribute to increasing the 
invasive ability of malignant tumor cells via increasing matrix metalloproteinase (MMP) activity[27]. Notably, 
the myCAF and iCAF subpopulations can be interconverted through specific signaling pathways[21]. These 
findings suggest that manipulating the subtypes of CAFs may hinder the growth and invasion of malignant 
tumors, offering valuable insights for cancer treatment.
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Through single-cell RNA sequencing (scRNA-seq), researchers have identified a new subtype of CAF that 
expresses major histocompatibility complex (MHC) class II and CD74 but lacks expression of classical 
costimulatory molecules. These cells were defined as “antigen-presenting CAFs” (apCAFs). ApCAFs are 
capable of inducing CD4+ T cell activation in an antigen-specific fashion. Interestingly, two-dimensional 
(2D)-cultured apCAFs lost MHCII expression but upregulated myCAF markers, further confirming that 
subpopulations of CAFs are interconvertible[28]. By applying scRNA-seq, other rare subtypes of CAFs have 
been discovered, such as vascular CAFs (vCAFs), cycling CAFs (cCAFs), developmental CAFs (dCAFs), 
and matrix CAFs (mCAFs)[29]. Given the discrepancies in the classification of CAFs, in this review, we 
focused on the universal characteristics of CAFs rather than specific subgroups.

BIOGENESIS AND SUBPOPULATIONS OF EVs
EVs are cell-derived spherical particles enclosed by a phospholipid bilayer[30]. These lipid-membrane-bound 
vesicles typically range from 30 nm to 5 μm in size and carry a wide spectrum of cell-released biomolecules 
(e.g., proteins, metabolites, and nucleic acids)[31]. Under certain circumstances, they can also contain 
subcellular organelles such as mitochondria[32]. Malignant cells have recently been shown to release more 
EVs than normal neighboring cell types do, and they can be detected in bodily fluids, making them 
promising diagnostic and prognostic biomarkers for cancer treatment[33].

According to their biogenesis pathways, EVs can be categorized into three classic subtypes: exosomes, 
microvesicles, and apoptotic bodies[34]. The generation process and biological features vary distinctly among 
these subpopulations. Exosomes and microvesicles exhibit constitutive and inducible expression from a vast 
number of eukaryotes and show remarkable potential as blood-based or urine-based indicators for cancer 
patients, whereas apoptotic bodies partially reflect the prevalence and cellular composition of dying cells[35].

Exosomes
Exosomes (30-200 nm) are the smallest type of EVs with an endosomal origin[36,37]. The biogenesis of 
exosomes occurs through the inward growth of the plasma membrane and the generation of multivesicular 
bodies (MVBs) carrying intraluminal vesicles (ILVs)[38]. In the initiation stage of exosomes, the invaginated 
plasma membrane forms a cup-like structure housing cell-surface proteins and soluble proteins associated 
with the extracellular space[38,39]. The endosomal membrane subsequently generates an intraluminal budding 
process toward the lumen to create MVBs[40]. These endocytic structures end up in the cell in two ways, 
either merging with lysosomes or autophagosomes for degradation or integrating with the outer cell 
membrane, resulting in the secretion of the contained ILVs, commonly known as exosomes, into the 
ECM[38,41]. These vesicles can travel freely in body fluids to transmit information in autocrine, paracrine, or 
endocrine manners, thus modulating the biological behavior of target cells[42,43]. In pathological states, such 
as cancer, the dysregulation of exosomes has been found to be associated with the clinical features and 
survival outcomes of patients[44]. It was reported that the endogenously expressed protein TRIM1-269aa 
could be packed into exosomes, thus activating the PI3K/AKT/mTOR pathway and promoting the 
chemoresistance and metastasis of triple-negative breast cancer (TNBC)[45].

Microvesicles
Microvesicles (also referred to as ectosomes or microparticles) are apparently larger than exosomes[46]. Both 
exosomes and microvesicles are composed of a lipid bilayer membrane-enclosed structure, which protects 
the contents from degradation and potential environmental threats[11]. However, unlike exosomes, 
microvesicles are directly formed by outward budding and fission of the plasma membrane, followed by the 
instantaneous secretion of vesicles into the intercellular milieu[47]. To the best of our knowledge, the 
formation of microvesicles basically includes four stages: intracellular Ca2+ mobilization, remodeling of the 
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actin cytoskeleton, kinase phosphorylation, and NF-κB activation[48]. Because they belong to distinct subsets 
of EVs, submicron-sized microvesicles have not attracted as much attention as exosomes have. However, in 
recent decades, there have been profound changes in our understanding of these particles[49]. Microvesicles 
have been shown to have a significant effect on various pathological processes, including vascular 
inflammation and aberrant angiogenesis[50,51]. Majno et al. reported that tumor-derived microvesicles play an 
essential role in regulating the differentiation of monocytes in the TME[52]. Moreover, the functions of CD8+ 
T cells are strongly disrupted by microvesicle-shuttled PD-L1, which leads to a suppressive TME in TNBC 
patients[51].

Apoptotic bodies
Apoptotic bodies are a special subset of EVs that are generated from cells undergoing programmed cell 
death[53]. These vesicles are shown to have structures and phenotypic properties comparable to those of 
exosomes and microvesicles[35]. However, because of the lysis of apoptotic cells, the size and composition of 
apoptotic bodies vary, making it more difficult to establish common standards for investigation[54]. The 
formation of apoptotic bodies begins with cell shrinkage, nuclear chromatin condensation and 
internucleosomal fragmentation of genomic DNA, followed by extensive membrane ruffling and blebbing, 
leading to disintegration of the cellular content into separate membrane-encapsuled vesicles[55]. Once 
secreted into the extracellular space, similar to other subtypes of EVs, apoptotic bodies can also strongly 
regulate target cells by releasing their composition, such as histones, organelles, and DNA fragments[56]. 
According to Yin et al., apoptosis induced by Photodynamic therapy and chemodynamic therapy could 
generate δ-ALA-containing apoptotic bodies, which further facilitate tumor-killing effects in deep malignant 
cells[57]. Moreover, these vesicles showed distinct advantages in the application of nanomedicine systems. 
Using apoptotic bodies and Ti2N nanosheets, Yang et al. reported a new drug delivery system (Ti2N-
DOX@ABs), which exhibits a high drug loading capacity[58].

On the basis of these three canonical subtypes, technological advances have further enabled more precise 
classification of these particles, such as matrix vesicles, migrasomes, and large oncosomes[59]. Nevertheless, 
separating multiple subpopulations of EVs is still challenging because reliable biomarkers are lacking. 
Therefore, the general term EV was adopted in most published articles.

CANCER-DERIVED EVs DICTATE PREFERABLE CAF CHARACTERISTICS FOR BC 
PROGRESSION
During the development and progression of a neoplasm, various cells, such as MSCs and macrophages, 
migrate into the stromal microenvironment in response to the recruiting effects of tumor cells, whereas 
fibroblasts typically populate both primary and distant lesions[60]. These cells within the TME are 
“reeducated” by malignant cells and subsequently acquire protumoral activities[60,61]. In summary, the cancer 
immunoediting process comprises three phases: tumor elimination, tumor dormancy, and tumor escape 
from immune surveillance[62]. As important factors involved in the interplay between tumor cells and 
nontumor cells, EVs significantly influence different stages of tumor progression, including angiogenesis, 
cell migration, tumor-associated immune modulation, and TME remodeling[63]. According to Li et al., 
tumor-derived miR-770 can be translocated to tumor-associated macrophages (TAMs) via exosomes, 
thereby mediating immune remodeling and drug resistance in TNBC cells[64]. Consistently, emerging 
evidence has shown that fibroblasts can also communicate with cancer cells via EVs to acquire a specific 
phenotype. As shown in Table 1, BC-derived EVs could effectively influence various biological processes in 
surrounding CAFs.
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Table 1. The role of cargos in BC-derived EVs on CAFs

Cargo Target Impact on CAFs PMID

FN and Ttg Mitogenic signaling pathway Cellular transformation 21368175

miR-122 PKM2 and GLUT1 Suppress glucose uptake 25621950

miR-9 EFEMP1, MMP1, COL1A1 Fibroblast activation 27468688

TGF-β MAPK signaling pathway Myofibroblastic differentiation 27913195

miR-105 MYC signaling pathway Promote glucose and glutamine metabolism 29662176

miR-125b TP53 and TP53INP1 Fibroblast activation 31044053

ITGB4 BNIP3L Promote aerobic glycolysis 31534187

miR-146a TXNIP Fibroblast activation 32268136

Survivin SOD1 Myofibroblastic differentiation 32709750

miR-105 and miR-204 RAGC Suppress amino-acid-induced protein synthesis 33345445

miR-370-3p CYLD/NF-κB signaling pathway Fibroblast activation 33629796

Integrin αvβ1 - Fibroblast activation 35923105

miR-130b-3p SPIN90 Fibroblast activation 35948548

NME1 and NME2 FASN, ACSS2 Suppress fatty acid synthesis 36010906

Tg2 FAK signaling pathway Fibroblast activation 36475545

In 2014, Papi et al. proposed that exosomes released by BC cells under hypoxic conditions stimulate 
mammary gland fibroblasts into a proinflammatory phenotype[65]. Additionally, Jung et al. reported that 
tumor cells substantially increase the production of ECM fibrils in the early stage of BC, which facilitates the 
secretion of EVs that shuttle CAF-promoting molecules[66]. Adipose-derived stem cells (ASCs) treated with 
EVs released from BC cells subsequently undergo differentiation into myofibroblasts, with high expression 
of α-SMA and activation of TGF-β-associated signaling networks[67]. Moreover, EVs secreted from distinct 
subpopulations of tumor cells have been demonstrated to have different effects on CAFs. As reported by 
González-Callejo et al., cancer stem cell (CSC)-derived EVs can efficiently switch CAFs into a 
myofibroblastic phenotype, whereas EVs from nonstem cells stimulate secretory CAFs to help CSCs 
maintain stemness via the IL-6/IL-8 signaling pathway[68].

The transglutaminase family comprises versatile molecules with enzymatic and scaffolding functions that 
are involved in the modulation of cell destiny in numerous cellular systems and have been demonstrated to 
be crucial players in various pathological processes[69]. A decade ago, scientists demonstrated that BC-
derived tissue transglutaminase transmitted by microvesicles was tightly associated with mitogenic signaling 
activities and fibroblast transformation[70]. It was further proposed by Schwager et al. that tissue 
transglutaminase 2-rich microvesicles could effectively stimulate fibroblasts into CAFs[71], thereby 
augmenting the migration of BC cells in the TME. Survivin (also known as BIRC5), which is highly 
expressed in neoplastic tissue[72,73], was reported to be intimately correlated with poor survival rates in 
multiple malignancies[72]. EV-encapsulated survivin derived from BC could be received by surrounding 
stromal cells and effectively promote their transdifferentiation into a myofibroblastic state[74].

MicroRNAs (miRNAs) are small endogenous RNAs that typically range from 18 to 25 nucleotides in 
length[75]. In 1993, the first miRNAs were discovered by Lee et al. in C. elegans[76]. Since then, many miRNAs 
have been found in a broad range of organisms[77]. Primary miRNAs (pri-miRNAs) are generated from RNA 
polymerase II/III-specific transcripts in the nucleus to form a hairpin structure[78]. A heterotrimeric complex 
microprocessor, which is composed of DROSHA and its cofactor DGCR8, subsequently cleaves the local 
hairpin structures into ~70-nucleotide small stem loops[79]. After being exported into the cytoplasm, the loop 
is cleaved by RNase III Dicer, thereby forming a double-stranded structure of miRNA and antisense 
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miRNA[80]. The latter is typically degraded, whereas the other strand guides the miRNA-induced silencing 
complex (miRISC) to partially complementary sequences in target mRNAs for degradation and 
translational suppression[81,82]. MiRNAs are involved in multiple biological processes in cancer, such as cell 
apoptosis, migration, and angiogenesis, and also serve as biomarkers for cancer diagnosis and assessment of 
prognosis. Recently, emerging evidence has shown that miRNAs also play a functional role in EV-based 
intercellular crosstalk.

Recently, increasing evidence has suggested that EV-encapsulated miRNAs, such as miR-370-3p[83], 
miR-9[84], miR-130b-3p[85], miR-146a[86], miR-125b[87], miR-204[88], and miR-105[88,89] which are secreted from 
BC cells, are responsible for fibroblast activation. Furthermore, the synergistic action of tumor-derived 
exosomal miRNAs, miR-185-5p, miR-652-5p, and miR-1246, was shown to enhance the mobility and 
contraction of fibroblasts in the TME, which facilitates the differentiation of CAFs toward a promigratory 
phenotype[90].

CAFs can undergo energy metabolism reprogramming under specific circumstances, thus influencing the 
aggressiveness of surrounding tumor cells[91]. Integrin beta4 (ITGB4) can be released by TNBC cells through 
exosomes, which then induces BNIP3L-dependent mitophagy and lactate generation in CAFs[92]. Tumor-
released miRNAs, such as miR-105 and miR-122, have also been shown to be key players in the regulatory 
mechanism of glycolysis in fibroblasts[89,93]. In addition, an association was found between tumor-derived 
EVs and lipid metabolism in CAFs. Fibroblasts treated with NME1/2 protein-containing EVs presented 
markedly lower expression of genes associated with fatty acid and cholesterol metabolism[94].

CAF-DERIVED EVs CONFER MALIGNANT PROPERTIES ON BC CELLS
As the dominant cell population in the TME, CAFs are known to be pivotal for mediating cancer 
progression and drug resistance via deposition of the ECM[95]. The dense ECM in solid tumors significantly 
abrogates the penetration of therapeutic agents, thus substantially impairing the therapeutic results[96]. 
Recent research revealed that EVs can transmit various kinds of factors inherited from their parent cells, 
which also play an indispensable role in such cell-cell interactions. As shown in Table 2, CAF-derived EVs 
could significantly regulate the malignant behavior and the gene expression profiles in BC cells.

Proliferation, migration, and invasion
Recent studies have highlighted the significant impact of metastasis on the prognosis of patients with 
malignant tumors, with CAFs identified as key players in promoting metastasis across various cancer types. 
Luga et al. reported that stromal exosomes could considerably facilitate the protrusive activity and cell 
migration in BC through the Wnt-PCP signaling pathway[97]. Chen et al. reported that p85a-deficient CAFs 
could markedly augment BC progression through exosomal Wnt10b in a paracrine manner[98]. Upregulated 
Wnt10b in tumor cells led to activation of the Wnt/β-catenin signaling pathway, which efficiently induced 
the metastasis of tumor cells via EMT. Hypoxic CAFs secrete exosomes rich in the protein GPR64, which 
triggers the noncanonical NF-κB pathway to facilitate the expression of MMP9 and IL-8 in recipient BC 
cells, thereby increasing cell migration and invasion[99]. Furthermore, ADAM10-enriched exosomes secreted 
by CAFs were shown to activate the Notch pathway to augment the expression of aldehyde dehydrogenase 
and remarkably accelerate cancer metastasis by regulating the GTPase RhoA[100].

Recent studies revealed that CAF-released miRNAs also play essential roles in regulating biological 
processes in cancer cells. miR-4516 secreted by NFs effectively inhibits tumor progression by interacting 
with the target gene FOSL1. However, CAFs presented markedly lower levels of miR-4516, which resulted 
in proliferative and migrative features in TNBC cells[101]. Overexpression of miR-214 was found to be highly 
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Table 2. The effects of molecules in CAF-derived EVs on BC cells

Cargo Target Impact on CAFs PMID

Wnt10b Wnt/β-catenin pathway EMT/metastasis 28394344

miR-7641 HIF-1α pathway Stemness/glycolysis 34238918

miRNA-1-3p GLIS1 Proliferation/metastasis 33154575

miR-221 ER lo/Notch hi feed-forward loop Metastases/therapy-resistant 28202520

RN7SL1 PRR, RIG-I Proliferation/metastasis/therapy resistance 28709002

miRNA-92 LATS2 Proliferation/metastasis 33162971

miR-3613-3p SOCS2 expression Proliferation/metastasis 32344463

Cd81 Wnt11 Metastasis 23806092

miR-22 Erα, PTEN Tamoxifen resistance 33173749

miR-4516 FOSL1 Proliferation 31672492

miR-214 TFAP2C Metastasis 36639824

miR-16 CCNE1, TWIST1 Metastasis 31988451

miR-148a WNT1, WNT10B Metastasis 31988451

CD44v3 ESCRT signaling pathway Radioresistance/expansion 36106109

miR221/222 MAPK signaling pathway ER repression 26186233

mtDNA - Metabolic changes 29073103

lncRNA SNHG3 miR-330-5p/PKM signaling pathway Proliferation/metabolic changes 31956955

miR-185-5p - Metastasis 35317202

miR-652-5p - Metastasis 35317202

miR-1246 - Metastasis 35317202

miR-181d-5p CDX2, HOXA5 Proliferation/anti-apoptosis 31955007

miR-500a-5p USP28 Proliferation/metastasis 33664871

lncRNA H19 miR-497/DNMT1 signaling pathway Proliferation/metastasis/chemoresistance 38558442

Cd81 Wnt-PCP signaling pathway Metastasis 23260141

ADAM10 RhoA and Notch signaling pathway Motility 25150980

circTBPL1 miR-653-5p/TPBG signaling pathway Proliferation/metastasis 37495592

associated with stromal components, especially CAFs and MSCs, in samples from BC patients. Cancer-
mediated activation of IL-6/STAT3 signaling in CAFs led to the accumulation of miR-214-enriched EVs in 
TME, which subsequently enhanced extravasation and metastasis formation of BC[102]. In coculture systems, 
miR-181d-5p encapsulated by CAF-derived EVs can be transmitted into MCF-7 cells and directly target the 
CDX2/HOXA5 signaling pathway by antagonizing apoptosis and promoting EMT in BC[103]. It was revealed 
by Tao et al. that miRNA-1-3p encapsulated by fibroblast-derived EVs could interact with Krüppel-like 
zinc-finger protein Gli-similar 1 (GLIS1) to inhibit BC growth and migration[104]. The expression level of 
miR-1-3p was significantly downregulated in CAF-secreted EVs, making it a potential therapeutic target in 
BC patients. miR-16 and miR-148a reportedly decelerate tumor metastasis, which is markedly suppressed in 
EVs from CAFs with FAK signaling activation[105]. In addition, according to our previous study, exosomal 
miR-500a-5p released by CAFs enhances the malignant properties of BC cells via interactions with 
ubiquitin-specific peptidase 28 (USP28)[106]. On the basis of advances in high-throughput sequencing 
technologies, more differentially expressed miRNAs have been identified between EVs derived from NFs 
and those derived from CAFs in BC patients. In the research of Liu et al., a miRNA array revealed that miR-
3613-3p was sharply upregulated in CAF exosomes[107]. EV-shuttled miR-3613-3p from CAFs substantially 
enhanced the proliferative and migrative capabilities of BC cells via direct targeting of the tumor-
suppressing gene SOCS2. According to Dou et al., a significantly increased expression level of miR-92 was 
found in CAF-derived exosomes, which led to the downregulation of the target gene LATS2 in BC cells, 
thus promoting both the proliferation and migration of cancer cells[108]. Consistently, a recent study further 
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revealed that these miR-92-containing stromal exosomes could also increase the invasive ability of tumor 
cells by attenuating the expression of another target gene, G3BP2[109].

Circular RNAs (circRNAs) are single-stranded RNA molecules that are created through back-splicing, 
resulting in covalently closed loops[110]. Once considered transcription noise, these non-coding RNAs were 
subsequently shown to be crucial players in the progression of various cancers. Scientists have reported that 
circRNAs, such as circHIF1A and circRNA-CREIT, can also be packaged into EVs, thus influencing cell-cell 
communication in BC[111,112]. With respect to tumor-stromal interactions, exosomal circTBPL1 secreted from 
CAFs could markedly protect TPBG from miRNA-induced degradation by acting as a miR-653-5p sponge, 
consequently reinforcing the proliferation and metastasis of BC cells[113].

The signal recognition particle (SRP), an ancient ribonucleoprotein machine composed of a 7S RNA and six 
polypeptides, is crucial for the delivery of secretory and membrane proteins across the endoplasmic 
reticulum (ER)[114]. SRP RNA plays a fundamental role in SRP assembly, translational elongation stalling, 
and stimulation of SRP guanosine triphosphatases[115]. In BC, unshielded SRP RNA RN7SL1 covered by 
stromal EVs could be released into the extracellular space and received by tumor cells, thereby exacerbating 
cell proliferation and migration by triggering the pattern recognition receptor RIG-I[116].

Metabolic changes
It has been seven decades since Otto Warburg discovered reprogrammed metabolism in malignant cells, 
which includes increased glucose uptake and increased glycolysis[117]. Alterations in metabolic processes in 
neoplasms, such as increased cell growth, metastasis and angiogenesis, are interrelated with the phenotypic 
traits of tumor cells compared with those of normal cells[118]. These distinct metabolic characteristics satisfy 
the increased energy demand in neoplasms, thus playing a crucial role in the development and progression 
of cancer[119]. In recent years, emerging evidence has shown that the functional significance of these 
biological changes in metabolism is not only based on different BC subtypes but also associated with 
communication between tumor cells and intricate TMEs[120].

A recent study revealed that miR-7641 plays a key role in the regulation of glycolysis by interacting with 
HIF-1a signaling networks. Compared with that in NFs, a lower expression level of miR-7641 was found in 
CAF-derived small EVs, which facilitated glycolysis and adjacent stem cell populations in the BC niche[121].

The mechanism of competitive endogenous RNA (ceRNA) activity involves transcripts that possess shared 
miRNA binding sites engaging in competition for posttranscriptional regulation during the progression of 
different types of cancer[122]. The CAF-derived lncRNA SNHG3 can be packaged into exosomes and serve as 
a miR-330-5p sponge after being received by BC cells, thereby protecting PKM from degradation. 
Upregulated PKM subsequently suppresses mitochondrial oxidative phosphorylation and markedly 
increases glycolytic carboxylation, which leads to accelerated cancer growth[123].

Therapy resistance
Drug resistance resulting from long-term drug use has emerged as a critical issue in the treatment of 
malignant tumors. Tumor drug resistance is influenced not only by tumor cells and the neoplasm 
microenvironment, but also by the role of CAFs, which has become a prominent topic in research. In recent 
years, scientists have found that EVs played a significant role in CAF-induced therapy resistance. Despite 
the serious adverse reactions, chemotherapy remains the gold standard for BC treatment[124]. Epirubicin is a 
widely used anthracycline for BC patients in oncological practice[125]. When stimulated by epirubicin, 
stressed CAFs can subsequently release exosomes in a TCF12-mediated manner, which increases the 
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expression of CXCR4 and c-Myc in ER+ BC cells to facilitate treatment resistance to epirubicin[126]. Paclitaxel 
(PTX) is considered the gold standard chemotherapeutic drug for various malignancies, such as pancreatic 
cancer and BC[127]. In BC research, Tao et al. reported that hypoxia-induced CAFs released lncRNA H19, 
which could be delivered to surrounding tumor cells via EVs, which led to paclitaxel resistance via 
regulation of the expression of miR-497[128].

Radiotherapy plays an indispensable part in the recent progress of anti-cancer therapies, including elevation 
in organ-sparing treatment and achieving lower local recurrence and longer survival time[129]. CAFs 
triggered by radiotherapy can secrete increased levels of EVs into the TME, which substantially increase the 
survival of BC cells through exosomal srpRNA RN7SL1 and the expression of the heparan sulfate 
proteoglycan CD44v3 on the outside membrane of the vesicles[116,130].

Endocrine therapy markedly prolongs overall survival in both pre- and postmenopausal patients with 
hormone receptor (HR)-positive BC[131]. However, the development of endocrine resistance was a major 
obstacle to existing treatments. Novel approaches showed that the expression of ER was at least partially 
dependent on the regulation of CAF-derived EVs. It was reported by Shah et al. that miR221/222 in the 
exosomes at least partially lead to MAPK-related ER repression in the basal-like BC subtype[132]. miR-221 
shuttled by stromal microvesicles could transfer into tumor cells by endocytosis and remarkably triggered 
the ERlo/Notchhi feed-forward loop, which converts noncancer stem cells into CSCs, thus contributing to 
endocrine resistance in patients with luminal BC[133]. A novel CAF subpopulation, CD63+ CAFs, can release 
large amounts of miR-22 encapsulated by EVs, which directly target ERα and PTEN after being taken up by 
BC cells. The loss of ERα and PTEN expression subsequently led to decreased tamoxifen sensitivity in BC 
patients[134]. In ER+ BC, the transition from a hormonal therapy-sensitive state to a treatment-resistant state 
was found to be tightly associated with host mtDNA-mediated oxidative phosphorylation (OXPHOS). 
Sansone et al. proposed that CAF-derived EVs play an essential role in the horizontal transfer of the full 
mitochondrial genome into BC cells, which substantially induces cancer stem-like cells, thus contributing to 
endocrine therapy resistance in BC patients[135].

THE ROLE OF IMMUNE CELLS IN EV-BASED CROSSTALK IN BC MICROENVIRONMENT
The immune cell population comprises functionally diverse subtypes, such as T cells, B cells, and natural 
killer (NK) cells, which are essential for protective immunity against pathogens and malignancies[136,137].

Cancer cell-derived EVs deliver bioactive molecules to immune cells to establish an immune escaping and 
immunosuppressive microenvironment. Exosomes derived from malignant cells decrease the expression of 
NKG2D on NK cells and CD8+ T cells, resulting in a reduction in their cytotoxic capabilities in vitro, 
thereby facilitating immune evasion and tumor progression[138]. In BC, an increase in PD-L1-shuttled EVs 
secreted from BC cells following oscillatory strain leads to additive T cell suppressive functions in the 
TME[139]. Similarly, it has been reported that a TGF-β type II receptor (TβRII) encapsuled by BC-derived 
EVs can trigger CD8+ T cells to enter an exhausted state, thus leading to the failure of immunotherapy[140].

CAF-derived EVs can also induce immune tolerance and facilitate immune evasion by modulating the 
activity and functionality of immune cells[141]. In pancreatic ductal adenocarcinoma, CAF-derived EVs 
carrying lncRNA RP11-161H23.5 have been shown to induce immune escape by downregulating HLA-A 
expression levels and inhibiting the activation of CD8+ T cells[142]. Additionally, Shang et al. discovered that 
hypoxia-induced CAF-derived exosomes encapsulating circHIF1A promoted the proliferation and invasive 
activity of hepatocellular carcinoma while inhibiting the cytotoxicity of CD8+ T cells through the 
upregulation of PD-L1 expression[143]. Although increasing evidence has proven the immunoregulatory 
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function of CAFs in BC, few studies have focused on the role of EVs in this process. According to Liao et al., 
suppression of FAP+ CAFs significantly contributes to their polarization from Th2 to Th1 cells in the TME, 
which attenuates tumor angiogenesis and lymphangiogenesis[144]. Moreover, CAFs in BC enhance the 
infiltration and differentiation of CD4+CD25+ Tregs via CXCL12/SDF1-α, thereby hindering the function of 
effector T cells[145]. Recently, integrated transcriptomics and proteomics analyses revealed an EV-specific 
signaling network to predict the immunosuppressive effects of CAF-released EVs on macrophages and 
CD8+ T cells[146]. However, the underlying mechanism remains to be elucidated.

DISCUSSION
In recent years, the incidence of cancer has increased, and cancer is the leading cause of mortality 
worldwide. BC is the most prevalent malignant tumor among women and represents a significant threat to 
women’s lives and health[147]. Although personalized comprehensive treatment approaches have significantly 
increased the survival rates of patients, tumor recurrence and metastasis are still the core problems affecting 
the outcomes of patients with malignancies[148]. In recent years, advances in technologies have allowed a 
deeper understanding of the TME. This comprehensive network of cellular organization, which consists of 
multiple cell types, was shown to play a dual role[62,149]. Along with the development and progression of 
cancer, numerous factors within the TME can not only exert antitumor effects by damaging immunogenic 
tumor variants but also fuel the aggressiveness of malignant cells by shaping tumor immunogenicity[62].

CAFs can promote tumor growth by providing cancer cells with a more proliferative and invasive 
nature[150]. To the best of our knowledge, there are multiple methods of intercellular communication 
between CAFs and BC cells, among which the secretory properties of CAFs play essential roles in the 
reconstruction of the TME. For example, fibroblast growth factors (FGFs) expressed in stromal fibroblasts 
effectively trigger the paracrine stimulation of cancer cells by activating fibroblast growth factor receptors 
(FGFRs), which leads to tumor progression[151]. It has been reported that CAF-derived basic fibroblast 
growth factor (bFGF/FGF2) can substantially lead to BC proliferation via sharply increasing the 
phosphorylation of Akt[152]. Furthermore, the activation of FGFR3, which is expressed on BC cells, 
contributes to resistance to endocrine therapy through the MAPK/PI3K signaling pathway[153]. Recently, 
emerging evidence has demonstrated that EVs are also deeply involved in the communication between 
CAFs and cancer cells in a variety of pathophysiological conditions.

EVs are heterogeneous lipid bilayer vesicles released by living cells that are associated with various 
biological processes as intermediaries for cell-cell interactions[154]. In addition to approaches in cancer 
immunology, increasing evidence has indicated that EVs play indispensable roles in the modulation of the 
immune response in the TME[31]. As depicted in Figure 1, bioactive molecules contained in BC-derived EVs 
effectively lead to differentiation from NFs to CAFs, while various types of CAFs could, in turn, regulate the 
behavior of BC cells in an EV-dependent manner.

Scientists found that the diffusion and capture of EVs are modulated in a more controlled way than they 
expected[155]. However, the regulatory mechanism of EV generation is yet to be elucidated. Hypoxia is a 
crucial hallmark of various malignancies. On the basis of the neoplastic immune context, hypoxia-mediated 
processes elicit complicated intercellular contacts, and recent studies revealed that EVs might play a pivotal 
role in such processes[156]. It has been reported that the resistance-associated lncRNA H19 is markedly 
overexpressed in EVs derived from hypoxia-induced CAFs[128]. Hypoxia-induced activation of the oxidized 
ataxia-telangiectasia mutated (ATM) gene can phosphorylate both BNIP3 and ATP6V1G1 to increase the 
number of EVs secreted from breast CAFs by promoting the accumulation and fusion of 
autophagosomes[99]. In addition, reactive oxygen species (ROS)-induced autophagy has been shown to be 
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Figure 1. Intercellular crosstalk between EVs in the TME.

responsible for the loss of CAV-1 and subsequently triggers the HIF-1α signaling pathway under ROS-
mediated pseudohypoxic conditions[157]. In BC, genotoxic chemotherapy-induced production of ROS in 
CAFs could lead to TCF12-dependent diffusion of EVs, thus facilitating chemoresistance in tumor cells[126].

Focal adhesion kinase (FAK) is a cytoplasmic protein tyrosine kinase upregulated in numerous advanced-
stage solid tumors, which modulates adhesion-related cell migration, proliferation, and drug resistance[105]. 
In a model of hypertrophic scar formation, fibroblast-specific FAK-deficient mice have enormously 
suppressed inflammatory response and fibrosis than animals in the control group[158]. a recent study revealed 
that the activation of FAK in CAFs plays a central role in mediating cell-cell interactions with BC cells via 
the regulation of secreted EVs[105]. Depletion of FAK in CAFs effectively resulted in a reduction in the 
protein and RNA components of these vesicles.

Notch signaling is an evolutionarily conserved pathway that directly links cell components at the 
cytoplasmic membrane with the modulation of transcription[15]. Fibroblasts within the TME can be directly 
stimulated through contact with tumor cells via the activation of Notch signaling[159]. Typically triggered by 
BC, upregulation of the stromal NOTCH-MYC pathway in CAFs is also tightly associated with alterations 
in the composition of EVs. The activation of the signaling pathway resulted in increased POL3-dependent 
expression of the exosomal srpRNA RN7SL1. Unshielded RN7SL1 taken up by recipient neoplastic cells 
could, in turn, promote tumor progression and drug resistance in BC patients[116].

Increasing evidence has demonstrated the ability of nonmalignant stromal components to normalize tumor 
cells, indicating the promising role of strategies targeting protumoral communication between cancer cells 
and fibroblasts in the immunosuppressive TME[160]. In BC, a CAF regulator named dasatinib was shown to 
have synergistic antitumor effects with an immunogenic cell death (ICD) inducer (epirubicin) by 
reprogramming CAFs through the modulation of apoptotic vesicles[96]. In addition, scientists have reported 
that integrin αvβ1 plays a key role in the retention of EVs; thus, suppressing the integrin αvβ1 complex with 
a galectin-3 inhibitor could significantly attenuate the differentiation of fibroblasts into CAFs[161]. According 
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to Papi et al., nuclear receptors such as pioglitazone can also abrogate the functions of hypoxic MCF7-
derived exosomes, thereby promoting a proinflammatory phenotype of fibroblasts in the BC stem cell 
niche[65].

In addition, tumor-derived exosomes are released by tumor cells and carry substances that can reflect the 
features of parental tumor cells. Therefore, exosomes can be used as tumor diagnostic markers. A promising 
clinical trial (NCT03974204) is ongoing to explore the use of exosomes in cerebrospinal fluid as diagnostic 
markers in BC patients with leptomeningeal metastasis[162]. Although multiple types of EVs, such as 
exosomes and microvesicles, play pivotal roles in the TME, only exosomes have a suitable size for potential 
application as novel drug vehicles in cancer treatment[163]. After artificial modification, engineered exosomes 
carrying antitumor agents could efficiently release these cargos into tumor sites with fewer side effects[164]. 
Recently, Li et al. reported a HER2-specific exosome-T vaccine that could substantially augment immune 
functions in patients with HER2-positive BC[165].

CONCLUSION
Tumor development is a comprehensive process that is not only interrelated with biological alterations 
inside tumor cells, such as altered cell behavior and dysregulated metabolic pathways, but also related to 
interactions with surrounding stromal cells. EVs are among the most significant media involved in cell-cell 
contacts. Hence, EV-dependent communication between breast tumor cells and CAFs has received much 
attention in recent decades. Here, we systematically reviewed the intercellular networks associated with EV 
transportation and the underlying mechanisms of the phenotypical alterations in both fibroblasts and 
malignant cells. Strategies targeting secreted EVs in the TME are likely to play a pivotal role in the treatment 
of patients with BC.
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