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Abstract
The environmental performance of electric vehicles (EVs) largely depends on their batteries. However, the 
extraction and production of materials for these batteries present considerable environmental and social 
challenges. Traditional environmental assessments of EV batteries often lack comprehensive uncertainty analysis, 
resulting in evaluations that may not be sufficiently accurate or reliable. To address this issue and quantify 
uncertainties in the evaluation of EV battery production, based on the foreground data of the lithium-iron-
phosphate battery pack manufacturing process, the ReCiPe midpoint methodology was adopted to quantify the 
lifecycle environmental impacts using eleven environmental indicators. Given the parametric uncertainties in the 
manufacturing process of lithium-iron-phosphate, a Bayesian Monte Carlo analytical method was developed to 
determine the probability distribution of global warming potential and acidification potential. Local sensitivity 
analysis was conducted to identify the influential factors of selected environmental indicators. Results indicated 
that battery cell production is the largest contributor to the entire emissions and resource utilization (comprising 
63.38% of the production of each battery pack), in which cathode electrode paste and anode current collector 
manufacturing processes were the two predominant components with the highest environmental burdens. 
Sensitivity analysis showed that environmental indicators were quite sensitive to different substances in the 
battery pack. The application of Bayesian Monte Carlo uncertainty analysis effectively reduces the uncertainties in 
life cycle assessment. This study would contribute to uncertainty quantification towards solid life cycle 
assessment.
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INTRODUCTION
The advancement of electric vehicles (EVs) is critical in mitigating greenhouse gas emissions and is essential
for achieving carbon neutrality objectives. By replacing internal combustion engines with battery-powered
systems, EVs are claimed to have significant potential for emission reduction[1]. Over the past decade, the
growth in EV development has been substantial, with the number of available models surpassing 500 by
2022, more than doubling since 2018[2]. The environmental impact of batteries has been a hotspot across
academia, industry, and governmental organizations, particularly the European Union which enacted the
new EU Batteries Regulation recently[3]. This regulation enforces comprehensive sustainability requirements
to ensure lower lifecycle carbon emissions[4]. Thus, accurately estimating the lifecycle emissions of EV
batteries is critically important. Life cycle assessment (LCA), widely acknowledged as an environmental
management methodology, is the primary tool for such estimation[5].

The manufacturing stage has been identified as the most significant source of environmental impact for EV
batteries[6]. This study aims to address the critical challenge of accurately evaluating the environmental
impacts of EV battery production and mitigating inconsistencies in LCA results. The burgeoning efforts
have been made to investigate the environmental impacts of the EV battery production phase[7]. Amidst
these endeavors, many studies commonly adopt an approach grounded in the LCA framework, scrutinizing
and listing the life cycle inventory (LCI) of EV batteries. For example, Temporelli et al.[6] assessed the
ecological impacts of EV batteries throughout their life cycle, including material extraction, manufacturing,
use, and end-of-life phases, highlighting the substantial environmental burdens during the production stage.
However, the manufacturing phase of EV batteries is fraught with uncertainties. Although the general LCA
framework exists[8], studies on batteries of the same type show diverse or even contradictory results. For
instance, Hao et al.[9] and Shu et al.[10] reported 46.43 and 109.32 kg CO2 eq, respectively, when
manufacturing a 1 kWh lithium-iron-phosphate (LFP) battery. However, Marques et al.[11] stated a much
higher carbon emission during the production stage, with a value of 282.6 kg CO2 eq. Unsurprisingly, this
large variability stems from various uncertainties, such as parameter-related uncertainty (e.g., variations in
the energy sources used for manufacturing and the efficiency of material utilization[12,13]). Therefore,
integration of uncertainty analysis into LCA is non-trivial for a reliable environmental assessment of EV
batteries[14].

The absence of primary and reliable industry data necessitates several assumptions; for example, different
energy structures for battery manufacturing can lead to variations in life cycle impact assessment (LCIA)
results[15]. Current literature claims that uncertainty could influence the environmental burden significantly.
Kim et al.[16] discussed the variability in the environmental impacts due to different data sources and
assumptions, highlighting that cradle-to-gate emissions from lithium-ion battery (LiB) production could
range from 56 to 494 kg CO2-eq per kWh depending on the manufacturing scenario. Similarly, Hao et al.[9]

acknowledged the inherent uncertainties in the material sourcing and manufacturing processes of EV
batteries, noting that greenhouse gas emissions from LiB production in China can vary by as much as 30%
based on the regional energy mix and efficiency of manufacturing processes. Despite recognizing the
influence of uncertainty, their study lacks a systematic approach to quantify these uncertainties across
different stages of the battery lifecycle. This gap in comprehensive uncertainty analysis is a critical issue, as it
undermines the reliability and comparability of LCA results, ultimately affecting policy and decision-
making processes aimed at promoting sustainable practices in the EV industry. Thus, there is an urgent
need for more rigorous and standardized approaches to uncertainty analysis in LCA studies of EV batteries
to ensure more accurate and reliable environmental impact assessments.
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Common uncertainty analysis techniques have been applied to the LCA of batteries, such as scenario
analysis[17], sensitivity analysis[18], and probability modeling[19]. However, sensitivity analysis often
oversimplifies by changing one variable at a time, failing to capture the interplay between multiple
factors[20]. Scenario analysis, while useful for exploring different possibilities, does not provide probabilities
for the occurrence of each scenario, limiting its predictive power[21]. Probabilistic modeling, although more
sophisticated, can be computationally intensive and may still rely on uncertain input data, compounding the
uncertainty rather than clarifying it[22]. As a tool for probabilistic modeling, the Monte Carlo (MC)
simulation is commonly employed to conduct error propagation in model parameters[23]. Traditional MC
simulation methods often face limitations in handling parameter uncertainties due to their reliance on
frequentist probability distributions, which may not adequately represent real-world variability[24].

Collectively, research issues that motivated the present study were: (1) accurately evaluating the
environmental impacts of EV battery production and (2) mitigating inconsistencies by quantifying
uncertainties in the assessment of EV battery production. To address these problems, this study performed
an LCA of LFP batteries under multiple uncertainties[25-27]. The system boundary was defined as "cradle-to-
gate", specifically, the battery production process. The foreground data stem from multiple relevant
literature on LFP production and the background data was rooted in Ecoinvent 3.0[28,29]. Then, the ReCiPe
method was adopted and 11 environmental indicators were selected. Additionally, Bayesian inference was
incorporated into the MC simulation, also referred to as the Bayesian Monte Carlo (BMC) method, for
quantifying the LCI uncertainties of the LFP production process. This leverages prior information and
updates our uncertainty estimates as more data becomes available, leading to more robust and accurate
quantifications of uncertainties. Further, a local sensitivity analysis was conducted to determine
environmentally sensitive parameters. The uncertainty analytics in this study not only reveals the variation
of environmental impacts of LFP battery production but also enhances the robustness and reliability of
assessment.

The rest of this article is organized as follows: Part 2 presents the methodology of LCA employed in this
study. Part 3 describes the final numerical results. Part 4 provides critical discussions, and Part 5 concludes
this study.

METHODS
LCA is a systematic and comprehensive methodology employed to evaluate the environmental impacts 
associated with a product, process, or system throughout its life cycle. In this study, the environmental 
assessment of one LFP battery pack is conducted using LCA methodology, following the guidelines of the 
International Organization for Standardization (ISO) 14040 (2006a) and ISO 1404 (2006b)[8,30].

Goal and scope definition
Goal of this study
The research object in this study is an LFP battery pack. According to Gaines et al.[31] and Ellingsen et al.[32], 
a single battery pack comprises several distinct components, including battery modules, a battery 
management system (BMS), a cooling system, and battery packaging. Within this framework, battery cells 
are consolidated into individual modules. Figure 1 illustrates the fundamental model of the battery pack, 
showcasing the pack level to modules and further down to individual cells. The goal of this study is to 
ascertain LCI data pertaining to an LFP battery, assess the environmental implications of LFP batteries 
within the manufacturing life cycle, and examine the influence of uncertainties in key parameters on 
environmental indicators for further environmental performance improvement. Meanwhile, these analysis 
results will furnish support for investigating the environmental impact of the subsequent use and recycling 
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Figure 1. EV battery compositions: from battery cell to pack. EV: Electric vehicles.

of LFP batteries in different scenarios.

Scope of this study
As a medium for energy storage and transfer, LFP battery plays a fundamental role in the power supply for 
EVs. Scrutinizing 241 EVs in China, Wang and Yu[33] found that the average weight of LiBs for these EVs 
approximates 298 kg. It is assumed that the average weight of the LFP battery pack in this study is 300 kg. 
Table 1 specifies the component ratios within a battery pack.

The functional unit (FU) serves as the basis for the calculation of every intake of raw materials, energy 
consumption, waste gas produced, and effluent emitted during the battery production process. The FU in 
this study is defined as "producing one complete LFP battery pack, with a weight of 300 kg, designed for an 
electric vehicle". As shown in Figure 2, the system boundary is in the form of “cradle-to-gate”, primarily 
covering the production stages of LFP batteries and including material preparation, transportation, 
assembly, manufacturing, and package phases. The LFP battery can be classified into eight main 
components, namely the positive electrode, negative electrode, separator, cell container, electrolyte, BMS, 
battery cooling system, and battery package. Of these main components, the manufacturing processes of 
four critical ones are depicted in Figure 3. The energy consumption, heat generation, transportation, 
atmospheric emissions, and effluents occurring within the system boundary were primarily considered, 
while the usage and end-of-life disposal phases are ignored due to the issue of data availability in practical 
situations.

Data cutoff criteria and data collection
In this study, foreground data are the primary concerns on the production of LFP batteries, encompassing 
information gathered from diverse literature databases. The background data for raw material extraction, 
transportation, assembly, and manufacturing processes stem from the Ecoinvent 3.0 database. A 0% cutoff 
criterion was employed in the LCA practice, allowing for a comprehensive consideration of all relevant 
factors in the assessment. For the foreground data on specific materials missing in the LCA databases, data 
from similar materials were directly employed for imputation. Specific inventory information regarding the 
material substitution is detailed in the following chapter.
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Table 1. Battery pack configurations

Components Mass (%)

Battery cell 60.1

Battery cooling system 4.1

BMS 3.7

Battery packaging 32.1

Life cycle inventory analysis
The LCI of the complete LFP battery pack was compiled in conjunction with data from various studies. 
Primary data on raw materials during the production of individual battery cells stemmed from the study of 
Notter et al.[34]. Energy consumption during assembly was obtained from Baars et al.[35], while inventories for 
battery packaging, cooling system, and the BMS were sourced from the research by Ellingsen et al.[32] and 
Crenna et al.[4]. The main components of these parts are detailed in Tables 1 and 2. Additionally, the 
Supplementary Materials provides a detailed summary of these tables, outlining the inventory for battery 
masses and the sources of the data. Our inventory employed Ecoinvent 3.0 as a background system.

The cathode, a critical component of the LFP battery, consists of the positive electrode paste and the 
cathode current collector. The positive electrode paste is made from LFP as the primary material, with 
Polyvinylidene Fluoride (PVDF) as the binder, carbon black as the conductive agent, and N-methyl-2-
pyrrolidinone (NMP) as the solvent to impart a slurry texture to the mixture. The cathode current collector 
is primarily composed of aluminum foil, supplemented with a pre-treatment process using sulfuric acid 
(H2SO4) and sodium hydroxide (NaOH) to eliminate impurities and enhance corrosion resistance. The 
aluminum foil thickness ranges between 10 to 18 μm[35]. Due to the absence of an inventory for PVDF in 
both the Ecoinvent database and existing literature, Polyvinyl Fluoride (PVF) inventory from Ecoinvent is 
used as a substitute, a practice commonly adopted in related studies[35,36]. In this study, raw materials related 
to PVDF are substituted with PVF. The manufacturing of LFP follows the synthetic route proposed by 
Majeau-Bettez et al.[37]. The materials involved in this chemical reaction include FeSO4 with phosphoric acid 
(H3PO4) and lithium hydroxide (LiOH). The quantities of these materials can be estimated through 
stoichiometric calculations[35-37].

BMS: Battery management system.

Figure 2. System boundary of LCA. LCA: Life cycle assessment; BMS: Battery management system.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202412/20092201-SupplementaryMaterials.xlsx
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Table 2. Battery cell configurations

Components Mass (%)

Cathode electrode paste 22.8

Cathode current collector 2.9

Anode electrode paste 9.9

Anode current collector 13.3

Separator 1.3

Electrolyte 9.5

Battery cell container 0.4

Similar to the cathode, the anode comprises the negative electrode paste and anode current collector. The 
negative electrode paste uses carboxymethyl cellulose and styrene-butadiene rubber (SBR) as binders, 
graphite as the conductive carbon, and NMP as the solvent to provide a slurry texture to the mixture. 
Notably, non-metallic graphite serves as the primary component, exhibiting thermal and electrical 

Figure 3. The manufacturing process of main components: (A) cathode electrode; (B) anode electrode; (C) battery cooling system; and
(D) battery package. PVDF: Polyvinylidene fluoride; NMP: N-methyl-2-pyrrolidinone; SBR: Styrene-butadiene rubber; CMC:
Carboxymethyl cellulose.
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conductivity akin to metals. The production of SBR, modeled using the inventory suggested by Peters 
et al.[38], includes materials such as butadiene, styrene, soap, deionized water, cyclohexane, and sodium 
persulfate. The separator inventory, sourced from the work by Notter et al.[34], includes polyethylene, 
phthalic anhydride, hexafluoroethane (C3F6), polyvinyl fluoride, and silica sand, with C2F6 replacing C3F6 in 
some cases. The electrolyte commonly comprises a lithium salt dissolved in an organic solvent and includes 
additives[39]. Building on the study by Baars et al.[35], the model employs lithium hexafluorophosphate (LiFP6) 
as the conductive salt, with ethylene carbonate (EC) and dimethyl carbonate (DMC) as solvents, and vinyl 
carbonate (VC) as an additive. The inventory data on these solvents and additives are available in the 
Ecoinvent 3 database.

The cell container's composition involves materials such as polyethylene terephthalate (PET), aluminum, 
polypropylene, and copper[4]. Existing LCA studies[40] on the BMS were performed in various degrees. In this 
study, the environmental inventory of BMS was grounded in the Ecoinvent 3 framework, encompassing the 
integrated battery interface system (IBIS), high-voltage system, low-voltage system, battery module boards 
(BMB), and electronic components. The BMB and fasteners in BMS were approximated by printed wiring 
boards and low-alloyed steel in the Ecoivent database, respectively. The cooling system of the battery pack is 
composed of a radiator, manifolds, clamps and fasteners, pipe fittings, a thermal pad, and coolant. Among 
these six sub-components, the radiator stands out as the most critical element, being constructed from 
aluminum metal. The environmental profile of the cooling system has been investigated by Ellingsen 
et al.[32].

Battery packaging is divided into three parts: module packaging, battery tray, and battery retention, with 
inventory data sourced from the work by Ellingsen et al.[32]. One battery pack comprises 12 modules, and 
one module consists of 30 cells. Each cell is encased in a protective cassette, featuring an outer and inner 
frame, with the outer frame made from nylon 66, and the inner frame is similarly constructed. The assembly 
needs steel fasteners (retention rods, bolts, nuts), nylon washers produced via injection molding, and 
busbars welded to cell tabs, all under a protective ABS plastic lid. The heat transfer plate is crafted from 
anodized aluminum. Bimetallic busbars, with 30% aluminum and 70% copper composition, and washers 
feature both aluminum and copper sides. Module components such as the busbar holder and end-busbar 
holder are made from ABS plastic through injection molding.

Within the framework of the model, the assembly phase encompasses the integration of anode material, 
cathode material, battery cells, battery modules, the battery cooling system, battery packaging, and the 
ultimate assembly of the battery pack itself. The energy consumption required for the assembly process is 
derived from the Ecoinvent 3 database and has been estimated based on data provided by Ellingsen et al.[32].

Analyzing the "cradle-to-gate" of EV batteries allows the identification of environmental hotspots within the 
production phase, which consistently constitutes the largest proportion of the overall environmental 
footprint. This approach facilitates early mitigation of resource usage, emissions, and environmental 
impacts during the product's life cycle[41,42]. Thus, transportation considerations are limited to the 
conveyance of raw materials to chemical plants and to factories where related components are 
manufactured, as well as the transportation of materials and prefabricated components to the battery 
production facilities. Given China's significant role in the production of raw materials for lithium 
batteries[43], it was assumed that the manufacturing phase occurs within the country. Consequently, the 
China Statistical Yearbook 2023 (Yearbook 2023) was referenced based on the assumptions made by the 
National Bureau of Statistics of China (NBSC)[44]. It was assumed that the raw materials and components are 
typically transported at an average distance of 180 km using diesel trucks with a capacity of over 32 metric 
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tons.

The foreground data (data identified in the LFP battery manufacturing process) and background data
(corresponding data in the LCA database) are integrated to prepare the LCIs in Table 3 based on the
processes and the components of each part within the system boundary described above.

Life cycle impact assessment
LCIA evaluates potential environmental impacts and resource consumption highlighted by an LCI.
According to the ISO standards, impact category selection, classification, and characterization are three
mandatory stages, while the normalization, grouping, and weighting steps are optional within the
framework[29]. The ReCiPe midpoint (H) model[45] was employed to evaluate the environmental footprint of
battery production. LCIA in this study covered a total of 11 impact categories, including global warming
potential (GWP), ozone depletion potential (ODP), ozone formation potential (OFP), fine particulate
matter formation (FPMF), acidification potential (AP), freshwater eutrophication (EP), marine
eutrophication (EP), marine ecotoxicity (ME), urban land use (LU), fossil resource scarcity (FRS), and water
consumption (WC). The excerpt of characterization factors related to these environmental impact
categories is listed in Table 4.

BMC-based uncertainty analysis
This study employs the BMC method to conduct a robust uncertainty analysis for the LCA of LFP battery
production[46]. The methodological framework [Figure 4] begins with defining a deterministic LCA model.
To capture the inherent uncertainties in the LCA, a sensitivity analysis was performed to identify critical
uncertain parameters.

The prior probability distributions of these parameters were determined based on literature and expert
judgment. An initial round of MC simulations is then conducted using these prior distributions,
transforming the deterministic LCA model into a probabilistic one and confidence intervals. This could
provide quantitative uncertainty of the environmental impact results. The subsequent phase involves
Bayesian updating, wherein observed data is used to update the prior distributions. This process integrates
observed data with prior distributions through Bayesian inference to produce posterior distributions,
reflecting refined uncertainty estimates. For a practical implementation, the integral evaluated is:

 =    f(x) p(x) dx                                                                            (1)

where x is the material input, f(x) is the function representing the input parameter and p(x) is the
probability density function (PDF) of x. BMC views the integral as a Bayesian inference problem, where      
is treated as a random variable. The process involves placing a Gaussian Process (GP) prior on f(x), enabling
a smooth interpolation of function values between observed data points. The joint distribution of the
function values under the GP prior is Gaussian, as given by:

f = (f(x1), f(x2),..., f(xn))T ~ N(0,K)                                                             (2)

where K is the covariance matrix defined by a covariance function, such as:

Kpq =  Cov (f(xp), f(xq)) = w0 exp (                             )                                                   (3)
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Table 3. Main resource consumption and emissions in the life cycle of LFP battery manufacturing

Pollution type Resources/emissions unit LFP battery manufacturing

Coal kg 177

Natural gas m3 382

Resource consumption 

Oil kg 178

Nitrate kg 2.26Water emission

Phosphate kg 9.78

CO2 kg 3154.67

CH4 kg 0.40

Atmospheric emission 

N2O kg 0.12

LFP: Lithium-iron-phosphate.

Table 4. Characterization factors of resources and emissions (excerpt)

Impact category Resources/Emissions Characterization factor Unit

CO2 1 kg CO2-eq/kg

CH4 34 kg CO2-eq/kg

CHCl3 20 kg CO2-eq/kg

Global Warming Potential

N2O 298 kg CO2-eq/kg

CFC-11 1 kg CFC-11 -eq/kg

Halon-1301 14.066 kg CFC-11 -eq/kg

Ozone depletion potential

CCl4 0.895 kg CFC-11 -eq/kg

NOx 1 kg NOx-eq/kgOzone formation potential

NMVOC 0.18 kg NOx-eq/kg

SO2 0.29 kg PM2.5-eq/kgFine particulate matter formation

PM2.5 1 kg PM2.5-eq/kg

NOx 0.36 kg SO2-eq/kg

NH3 1.96 kg SO2-eq/kg

Acidification potential

SO2 1.00 kg SO2-eq/kg

Freshwater eutrophication Phosphorus 1 kg P-eq/kg

Phosphate 0.33 kg P-eq/kg

Marine ecotoxicity 1,4-Dichlorobenzene 1 kg 1,4-DCB -eq/kg

Nickel 32 kg 1,4-DCB -eq/kg

Water consumption CF watershed median 6.04E-13 species·yr/m3

CF area-weighted country average 1.74E-12 species·yr/m3

Crude oil 0.457 kg USD2013/kg

Hard coal 0.034 kg USD2013/kg

Fossil resource scarcity

Natural gas 0.301 kg USD2013/kg

with hyperparameters w0 and wd. The posterior distribution over the function values, given the observed
data, is also Gaussian. The posterior mean and covariance are:

(x) = k(x, X)K-1f                                                                        (4)

CovD (f(x), f(x')) = k(x, x') - k(x, X) K-1k(X, x')                                             (5)

where k(X, x') is the covariance between new data points and observed data. The BMC estimate of the
integral       and its variance are then given by:
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Figure 4. BMC-based uncertainty analysis for LCA of LFP battery production. BMC: Bayesian Monte Carlo; LCA: Life cycle assessment;
LFP: Lithium iron phosphate.

Ef/D[    ] =   (x) p(x)dx                                                                        (6)

Vf/D[    ] =    CovD (f(x), f(x')) p(x) p(x')dxdx'                                            (7)

where     is the posterior mean function. These expressions capture the mean and variance of the integral,
providing a probabilistic description of the uncertainty. Following Bayesian updating, a second round of
MC simulations is performed using the posterior distributions. This simulation yields more reliable results
by incorporating updated uncertainty estimates, reflected in new confidence intervals and variances.

COMPUTATIONAL RESULTS AND DISCUSSION
Results
The LCA results for the production of the four major components comprising the battery pack across 
eleven environmental impact categories are detailed in Table 5. In this study, environmental indicators such 
as GWP, ODP, and OFP were primarily considered to present the main results of the environmental 
impacts. As indicated, the resources and energy consumption during the cradle-to-gate LCA of the LFP 
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battery are predominantly attributed to the production of battery cells, which consume the highest number 
of resources within a battery pack. Therefore, all the environmental impact categories associated with 
battery cell production significantly surpass those of other components’ production, accounting for more 
than 54% of the total value, respectively. Thus, Figure 5 illustrates the environmental impact of the more 
detailed breakdown of battery component production within a battery pack. The primary contributors to 
the total environmental impacts, as shown in Figure 5, are the cathode electrode paste production, which 
dominates GWP, ODP, OFP, EP, FRS, and WC (29.67%, 21.56%, 26.64%, 65.88%, 28.94%, and 36.53%, 
respectively). This is followed by the battery packaging, BMS, anode current collector, and anode electrode 
paste, which contribute in descending order to these impacts. For AP and EP, the anode current collector 
manufacturing has the highest impact (48.39% and 28.22%, respectively), followed by the cathode electrode 
paste, BMS, battery packaging, and other cell assembly processes.

Overall, the cathode electrode paste energy requirements are the biggest contributor to the impacts of GWP, 
ODP, marine eutrophication, Photochemical Ozone Creation Potential (POCP), water depletion, and fossil 
depletion, whereas the anode current collector is the biggest contributor to the impacts of AP, EP, 
Particulate matter formation, Human Toxicity Potential (HTP), freshwater ecotoxicity, ME, LU and metal 
depletion [Figure 5].

Since the environmental burdens of LFP battery production are largely driven by energy consumption[42], 
the energy consumption during the production procedure is further quantified. Figure 6 shows the cradle-
to-gate energy consumption data expressed in mega joules (MJ) per production step, wherein nearly 40,800 
MJ of energy is utilized in the manufacturing process of an LFP battery pack. The highest electricity 
consumption occurs during the production of cathode electrode paste, accounting for approximately 11,822 
MJ, followed by the manufacturing of the BMS at approximately 8,387 MJ, and battery packaging at 
approximately 9,065 MJ. This characteristic of the LCA findings is consistent with observations made in 
other EV battery analyses[4]. Conversely, the battery container and separator production processes require 
the least amount of energy.

Sensitivity analysis and uncertainty analysis
To exemplify the uncertainty analysis conducted on the environmental impacts of LFP battery production, 
the MC simulation results for GWP were focused on. Figure 7 presents the distribution of GWP and closely 
resembles a Gaussian distribution. Statistical examination reveals that both the mean and median values 

Table 5. LCA results for per LFP battery pack [ReCiPe Midpoint (H)/World Recipe H]

Impact category Unit Battery cell Battery cooling system BMS Battery packaging Total

Global warming potential kg CO2 eq 1.86E+03 1.77E+02 7.89E+02 8.54E+02 3.68E+03

Ozone depletion potential kg CFC-11 eq 8.04E-04 4.37E-05 4.06E-04 3.40E-04 1.59E-03

Ozone formation potential kg NOx eq 6.35E+00 4.59E-01 2.72E+00 2.13E+00 1.17E+01

Fine particulate matter formation kg PM2.5 eq 8.81E+00 3.52E-01 2.30E+00 1.80E+00 1.33E + 01

Acidification potential kg SO2 eq 2.50E+01 7.87E-01 5.22E+00 4.23E+00 3.52E+ 01

Freshwater eutrophication kg P eq 2.58E+00 7.42E-02 1.20E+00 4.17E-01 4.27E+00

Marine eutrophication kg N eq 3.71E-01 4.26E-03 4.30E-02 5.56E-02 4.74E-01

Marine ecotoxicity kg 1,4-DCB 1.39E+03 1.81E+01 7.42E+02 1.45E+02 2.30E+03

Land use m2a crop eq 1.03E+02 2.49E+00 4.56E+01 1.72E+01 1.68E+02

Fossil resource scarcity kg oil eq 5.16E+02 3.86E+01 1.97E+02 2.11E+02 9.63E+02

Water consumption m3 4.36E+01 2.38E+00 8.10E+00 8.81E+00 6.29E+01

LCA: Life cycle assessment; LFP: Lithium-iron-phosphate; BMS: Battery management system.
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Figure 5. Relative contributions per LFP battery pack. LFP: Lithium-iron-phosphate.

Figure 6. Energy consumption for each production in MJ per LFP battery pack. MJ: Mega joules; LFP: Lithium-iron-phosphate.
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Figure 7. Output distribution of 10,000 MC runs for GWP; top diagram: box plot diagram; bottom diagram: histogram with red bars that
indicate the 95% confidence interval. MC: Monte Carlo; GWP: Global warming potential.

stand at around 3,675 kg and 3,662 kg CO2 eq. per LFP battery pack, respectively, with negligible deviation 
from the deterministic LCA final value. The standard deviation is approximately 194 kg CO2 eq., with a 
coefficient of variability of 5.27%. The 95% confidence interval spans from 3,338 to 4,092 kg CO2 eq. per 
battery pack, as depicted by red bars in the visualization. Additionally, the box plot presents percentiles at 
2.5%, 25%, 75%, and 97.5%. Further statistical details are provided in Table 6.

To further identify key substances affecting the GWP, we employed a stepwise tracing approach to identify 
key material parameters generating environmental impacts. In this study, the sensitivity analysis was carried 
out by changing ± 5% material input, and the results are shown in Figure 8.

Figure 8A highlights significant variations in GWP impacts during the battery pack manufacturing process, 
particularly in the fabrication of the cathode electrode paste, cathode current collector, and the battery 
cooling system. The respective GWP changes for these components range from -17.62% to -14.15%, -25.63% 
to 1.62%, and -14.41% to 8.87%. A focused analysis reveals that in the production of cathode electrode paste, 
the materials PVDF and LiFP4 exhibit notable GWP shifts of -15.70% to 15.7% and -13.16% to 13.16%, as 
detailed in Figure 8B). Further scrutiny of LiFP4 production material impacts reveals a notable influence 
from LiOH, with GWP variations of -14.90% to 14.9%, as detailed in Figure 8C. Similarly, the 
manufacturing of the cathode current collector shows significant GWP impacts from aluminum and NaOH 
with changes of -13.90% to 13.9% and -3.49% to -6.51%, as presented in Figure 8D. Further examination in 
Figure 8E indicates that during the battery cooling system manufacturing, the thermal pads and cooling 
manifolds lead to GWP shifts of -28.08% to 28.08% and -19.92% to 19.92%, respectively. The analysis 
extends to the specific materials used in the production of these components. For instance, silicon in the 
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Table 6. Statistical evaluation of GWP impacts distribution

Values Unit

Trials 10000 -

Base case 3682.03 kg CO2 eq

Mean 3675.68 kg CO2 eq

Median 3661.69 kg CO2 eq

Standard deviation 193.86 kg CO2 eq

2.5% percentile 3338.04 kg CO2 eq

97.5% percentile 4091.80 kg CO2 eq

Coefficient of variability 5.27 %

Minimum 3016.40 kg CO2 eq

Maximum 4705.72 kg CO2 eq

GWP: Global warming potential.

Figure 8. Sensitivity analysis of GWP impacts of (A) Battery pack; (B) Cathode electrode paste; (C) LiFP4; (D) Cathode current
collector; (E) Battery cooling system; (F) Battery cooling thermal pad; (G) Battery cooling manifolds with respective parameters. GWP:
Global warming potential; LiFP4: Lithium iron phosphate.

thermal pad manufacturing processes emerges as the most impactful material, with a GWP change range 
from -78.40% to 0.82%, as shown in Figure 8F. Moreover, aluminum used in the cooling manifold 
fabrications maintains a consistent GWP influence of -13.90% to 13.9%, as illustrated in Figure 8G. This 
analysis underscores the substantial GWP impacts of specific LFP EV battery manufacturing materials and 
processes. It becomes evident that key variables such as PVDF, LiOH, aluminum, and silicon play critical 
roles in shaping the environmental footprint of battery pack production.

In this study, the prior distributions used for estimating environmental impact in LCA were based on the 
Global EV Outlook provided by International Energy Agency (IEA)[2] and were subsequently updated using 
the likelihood distributions resulting from the results of the MC analysis. Table 7 shows the mean values 
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Table 7. Summary of prior, likelihood, and posterior distributions for impact categories and the changes in CV values

Prior Likelihood Posterior
Parameters

Mean CV Mean CV Mean CV
%change in CV

LiOH 30 0.096 24.34 0.0222 24.53 0.021 -78.13%

Aluminum 8 0.125 1.1 0.019 1.105 0.019 -84.8%

Silicon 0.2 2.236 0.22 0.18 0.22 0.18 -91.95%

CV: Coefficients of variation; LiOH: Lithium hydroxide.

and coefficients of variation (CV) for both the prior and refined (posterior) parameter distributions relevant 
to the inventory and impact assessment phases. The reduced CV values in the posterior distributions 
demonstrate that incorporating more precise likelihood information effectively decreased uncertainty. For 
example, the CV of the posterior probability distribution for LiOH was reduced to less than a quarter of its 
initial value (0.021), and similar reductions were observed for aluminum and silicon. The posterior 
distributions of these three key parameters were significantly shaped by the likelihood distributions due to 
their higher precision compared to the initial distributions.

Figure 9 illustrates the comparison of the prior and posterior probability density distribution (PDFs) for 
LiOH [Figure 9A], aluminum [Figure 9B], and silicon [Figure 9C]. It is shown that the posterior 
distribution is narrower than the prior distribution. The uncertainty associated with the parameters had 
been reduced due to the incorporation of more accurate observed data.

Figure 10 presents the PDFs of the GWP in both prior and posterior distributions, represented by the blue 
and yellow lines, respectively. The mean, 2.5%, and 97.5% percentile values show minimal differences 
between the prior and posterior distributions. However, the posterior distribution is narrower, with a 
smaller standard deviation. Incorporating observed data into the prior probability distribution in this study 
effectively reduces uncertainty, enhancing the reliability of the GWP estimations.

Discussion
In this study, we analyzed the environmental impacts associated with LFP EV battery production, placing 
particular emphasis on data precision and inventory reliability. The findings reveal that the cathode 
electrode paste and anode current collector emerge as the primary contributors to emissions and resource 
utilization, primarily due to energy demands in battery cell manufacturing. This energy-intensive 
production phase accounts for 58.99% and 12.91% of total energy use, respectively, underscoring the CO2 
reduction potential through optimizations in these components. Our result aligns with previous literature 
on LIBs, which similarly highlights energy consumption in cell manufacturing as a substantial factor in 
overall emissions[47].

For sensitivity analysis, key materials influencing the GWP were identified. Specifically, PVDF, LiOH, 
aluminum, and silicon demonstrated significant influence over GWP. PVDF and LiFePO4, integral to 
cathode paste, showed notable GWP variability, with LiOH prominently affecting GWP in LiFePO4 
production. Aluminum’s impact spans cathode collectors and cooling manifold components, while silicon 
significantly contributes to the GWP variation within battery thermal pads. These findings corroborate 
previous environmental impact assessments and further elucidate the roles of specific materials in shaping 
the environmental footprint of battery production.
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Figure 9. Comparison of prior and posterior distributions of the mass of (A) LiOH; (B) Aluminium; and (C) Silicon. LiOH: Lithium
hydroxide.

Moreover, the BMC method, applied to evaluate uncertainty, effectively reduced the CV values for GWP, 
validating its practicality for handling uncertainties in LCA studies. However, this analysis encountered 
limitations due to missing data, which constrained correlation assessments among input parameters. Future 
studies may benefit from physical process models that incorporate variable interactions, thereby allowing 
for enhanced assumptions in uncertainty analysis and improving the LCA's robustness and accuracy for 
LFP EV batterie[48,49].

CONCLUSIONS
In this study, a BMC-based uncertainty analysis method for LCA of LFP battery production was developed. 
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Figure 10. Comparison of prior and posterior distributions of GWP. GWP: Global warming potential.

The results show that the production of battery cells has the largest environmental impact. Consistent with 
the energy consumption analysis of the various components of LFP batteries, the production of the cathode 
electrode paste consumes the most electricity and exerts the greatest environmental impact. Sensitivity 
analysis reveals that the GWP is most sensitive to the production of the cathode electrode paste, the cathode 
current collector, and the battery cooling system. The key parameters influencing GWP are identified as 
LiOH, aluminum, and silicon. By incorporating observational data for these key parameters into the 
corresponding prior distributions, the CV for their posterior distributions was significantly reduced. As a 
result, the posterior distribution of GWP became notably narrower compared to the prior distribution, 
enhancing the overall reliability of the LCA results.

However, the limitation of this paper is that the potential for recycling and reuse of several raw materials 
used in LFP batteries was not considered. Follow-up studies can extend this “cradle-to-gate” case to “cradle-
to-grave” assessment that incorporates the usage and end-of-life stages of an LFP battery pack. The results 
of this LCA could benefit LFP battery manufacturers by pinpointing the hotspots to mitigate environmental 
impacts across diverse manufacturing processes. Additionally, it is important to note that other types of 
uncertainty need to be considered, such as the scenario uncertainties that include market demand, 
fluctuations in raw material prices, changes in policies and regulations, and variations in recycling rates to 
obtain relatively accurate environmental assessment results. The EV batteries are still constantly developing 
and evolving. Their environmental impact and cost assessment will remain subjects of great concern to 
support sustainable production.
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