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Abstract
The increasing prevalence of cancer drug resistance not only critically limits the efficiency of traditional therapies 
but also causes relapses or recurrences of cancer. Consequently, there remains an urgent need to address the 
intricate landscape of drug resistance beyond traditional cancer therapies. Recently, nanotechnology has played an 
important role in the field of various drug delivery systems for the treatment of cancer, especially therapy-resistant 
cancer. Among advanced nanomedicine technologies, lipid-based nanomaterials have emerged as effective drug 
carriers for cancer treatment, significantly improving therapeutic effects. Due to their biocompatibility, simplicity of 
preparation, and potential for functionalization, lipid-based nanomaterials are considered powerful competitors for 
resistant cancer. In this review, an overview of lipid-based nanomaterials for addressing cancer resistance is 
discussed. We summarize the recent progress in overcoming drug resistance in cancer by these lipid-based 
nanomaterials, and highlight their potential in future applications to reverse cancer resistance.
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INTRODUCTION
Cancer is one of the foremost causes of mortality globally. In 2023, the American Cancer Society estimated 
the number of new cancer cases as high as 1,958,310 in the U.S. and 609,820 cases would be accounted by 
cancer-related fatality, approximating 4 new cases and 1 death every minute[1]. Nowadays, combinations of 
surgery, radiation therapy, and chemotherapy are the standard regimen for cancer management. However, 
the success of the therapeutic approaches is known to be affected by off-target effects and severe drug 
resistance in many types of cancer such as breast cancer[2,3], lung cancer[4], colon cancer[5], and prostate 
cancer[6,7].

Drug resistance that the cancer cells withstand a wide range of treatments is a crucial problem in cancer 
management, and is associated with relapses or recurrences, significantly hindering the cure[8-12]. Based on 
the timing of drug resistance development, it can be divided into intrinsic resistance and acquired 
resistance. Intrinsic resistance exists before the beginning of therapy, which is possibly caused by tumor 
heterogeneity subpopulations, inherent genetic mutations, and activation of intrinsic detoxification 
pathways. Conversely, acquired resistance occurs after therapy, which results from post-treatment changes 
in tumor microenvironment (TME), activation of second proto-oncogenes or tumor suppressor genes, and 
mutations or alteration of drug target expression levels after treatment. Additionally, drug resistance can be 
clinically categorized based on specific mechanisms including tumor heterogeneity, increased efflux of 
drugs, enhanced DNA damage repair, altered drug target, epithelial-mesenchymal transition, and so 
on[12-21]. Theoretically, retaining cytotoxic agents within the cells, erasing reversible modifications, modifying 
the TME, and delivering combinations of cytotoxic drugs with different mechanisms to cancer cells are 
basic principles for circumventing cancer drug resistance. These approaches may re-sensitize the patients to 
the treatment[22,23].

To date, studies on treatment strategies to overcome drug resistance have been conducted for a better 
understanding of different resistance mechanisms. Nanotechnology-based therapy is typically referred to as 
medical treatments that utilize nanoscale materials and devices to diagnose, monitor, and treat disease. The 
products developed from this technology are referred to as nanomedicines and nanoformulations, which 
are materials systems consisting of appropriate nanocarriers and active pharmaceutical ingredients[24,25]. 
Consequently, the effective functioning of nanomedicines relies on the utilization of nanoparticles. 
Typically, nanoparticles are classified into three categories based on their compositions: (1) inorganic 
nanoparticles; (2) organic nanoparticles; and (3) hybrid nanoparticles [Figure 1A][26-29]. Numbers of studies 
have demonstrated the promising results of nanomaterials in nanoformulations to enhance efficiency and 
minimize the severe off-target effects[30-35]. The potential of nanotechnology-based therapy in anti-drug 
resistance strategies is attracting significant attention[23,36-39].

Nanoformulations are defined by the U.S. Food and Drug Administration (FDA) as products in 
combination with nanoparticles having one or more dimensions ranging from 1-100 nanometers (nm) or 
up to 1,000 nm if the size is engineered to show specific dimension-dependent properties or 
phenomena[40-43]. However, there is no universally recognized definition for nanoformulations[44]. The typical 
size preferred in nanomedicine applications is in the range of 100-200 nm due to its ability to cross 
microcapillaries and capacity to accommodate an adequate amount of active pharmaceutical agents[45]. 
Doxil®, the first nanoformulation of doxorubicin (DOX) encapsulated in 100 nm liposomes, was approved 
in 1995. It remains a first-line cancer treatment to the present. The lower cardiotoxicity and enhanced 
efficiency in killing tumor cells of Doxil® increase chemotherapy sensitivity and diminish the drug resistance 
over the free drug molecule[46]. The excellent therapeutic effects demonstrated by nanoformulations 
compared to free drug molecules, including improved pharmacokinetics, enhanced target specificity, and 
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Figure 1. Schematic presentation. (A) classification of nanomaterials; (B) classification of lipid-based nanomaterials: lamellar NPs 
include liposomes, LNPs, LNEs, SLNs, NLCs, and lipid polymer hybrid NPs; (C) non-lamellar NPs include hexosomes and cubosomes; (D) 
typical preparation methods of lipid-based nanomaterials. (A, B and D) are created by www.BioRender.com; (C) is quoted with 
permission from Tan et al.[29]. NPs: Nanoparticles; LNPs: lipid nanoparticles; LNEs: lipid nanoemulsions; SLNs: solid lipid nanoparticles; 
NLCs: nanostructured lipid carriers.

reduced systemic toxicity, have garnered significant interest in the development of anticancer drugs[47]. 
Subsequently, robust nanomedicines have been continuously developed and approved for cancer treatment 
[Table 1]. It is worth noting that among nanoformulations launched on the market for clinical cancer 
treatment, lipid-based nanomaterials are the frontrunners[48].

Lipid-based nanomaterials are nanoparticles whose structures are composed of lipids with good 
encapsulation potential, biocompatibility, and simplicity of preparation. They can be classified into two 
main types [Figure 1B and C]. First, lamellar lipid nanomaterials include liposomes, lipid nanoparticles 
(LNPs), lipid nanoemulsions (LNEs) or nanomicelles, solid lipid nanoparticles (SLNs), nanostructured lipid 
carriers (NLCs), and lipid polymer hybrid nanoparticles (LPHNPs)[60]. Second, non-lamellar lipid 
nanoparticles include nanostructured liquid crystalline particles such as cubosomes and hexosomes[60-64]. 
The compositions of lipid-based nanomaterials include cholesterol, phospholipids, polymers, and oils to 
form the structure of lipid-based nanomaterials; helper lipids and PEGylated lipids to enable long 
circulation inside the body and endosomal escape; and emulsifiers functioning as surfactants. Molecular 
structures of the lipid-based nanomaterials’ compositions and their limitations are shown in Figure 2 and 
Table 2. Nanoprecipitation, nonsolvent emulsification, thin film hydration, single/double emulsification, 
microfluidic mixing, and supercritical fluid techniques are typical synthesis methods [Figure 1D][61].

Besides good biocompatibility, lipid-based nanomedicines and their derivatives have shown promising 
results in addressing issues related to immunogenicity[60,69]. The flexibility of the cargo structure allows easy 
modifications to achieve desired properties. Surface functionalization, such as PEGylation and decoration 
with targeting ligands, including nucleic acid, peptides, aptamers, and antibodies, is one of the promising 
strategies to make lipid-based nanomaterials a powerful weapon against cancer drug resistance[27,71-75]. 

http://www.BioRender.com
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Table 1. List of approved nanomedicines for cancer treatment[23,26,47-59]

No. Description of carrier and its 
compositions

Product 
names Manufacturer Indication(s)

Approval 
agency 
(year)

Liposomes

1 PEGylated liposomal doxorubicin 
(MPEG-DSPE, HSPC, cholesterol)

Doxil®, Caelyx® Janssen AIDS-related Karposi sarcoma, 
ovarian cancer, multiple myeloma

FDA (1995, 
2005, 2008) 
EMA (1996)

2 Non-PEGylated liposomal daunorubicin  
(DSPC, cholesterol)

DaunoXome® Galen Advanced AIDS-related Kaposi’s 
sarcoma

FDA (1996)

3 Non-PEGylated liposomal cytarabine 
(DOPC, DPPG, cholesterol, triolein)

DepoCyt® DepoTech Corporation Intrathecal treatment of
lymphomatous meningitis

FDA (1999)

4 Non-PEGylated liposome doxorubicin 
(PC, cholesterol)

Myocet® Teva B.V. Metastatic breast cancer EMA (2000)

5 Non-PEGylated liposome paclitaxel Lipusu® Luye Pgarna Breast cancer, NSCLC, lung 
squamous cell carcinoma

NPMA, P.R. 
China (2003)

6 Non-PEGylated liposomal mifamurtide 
(POPC, OOPS)

Mepact® Takeda France SAS Non-metastatic osteosarcoma EMA (2009)

7 Non-PEGylated liposomal vincristine 
(SPH, cholesterol)

Marqibo® Talon Therapeutics Philadelphia chromosome-negative 
acute lymphoblastic leukemia 
(tertiary)

FDA (2012)

8 PEGylated liposome doxorubicin 
(HSPC, DSPE-PEG, cholesterol)

Lipodox® Sun Pharmaceutical 
Industries Ltd.

AIDS-associated Kaposi’s sarcoma, 
metastatic ovarian cancer, multiple 
myeloma

FDA (2013)

9 PEGylated liposomal irinotecan 
(DSPC, MPEG-2000-DSPE, cholesterol)

Onivyde® Merrimack Advanced pancreatic cancer FDA (2015)

10 Non-PEGylated liposome 
cytarabine:daunorubicin (5:1 M ratio) 
(DSPC, DSPG, cholesterol)

Vyxeos® 
(CPX-351)

Jazz Pharmaceuticals Acute myeloid leukemia FDA (2017) 
EMA (2018)

11 PEGylated liposome doxorubicin 
(MPEG-2000-DSPE, HSPC, cholesterol)

Zolsketil® Accord Healthcare S.L.U. AIDS-associated Kaposi’s sarcoma, 
metastatic breast cancer, advanced 
ovarian cancer, multiple myeloma

EMA (2022)

Nanomicelles

12 Docetaxel 
(Polysorbate 80)

Taxotere® Sanofi-Aventis Advance/metastasis breast cancer FDA (1996)

13 Paclitaxel 
(NIPAM, VP)

Nanoxel® Samyang 
Biopharmaceuticals

Metastasis breast cancer, NSCLC, 
ovarian cancer

MFDS (2012)

14 Paclitaxel 
(N-(all-trans-retinoyl)-L-cysteic acid 
methyl ester sodium salt, N-(13-cis-
retinoyl)-L-cysteic acid methyl ester 
sodium salt)

Paclical® Oasmia Pharmaceuticals Ovarian cancer RFMPH 
(2015)

15 Micelles paclitaxel 
(N-(all-trans-retinoyl)-L-cysteic acid 
methyl ester sodium salt, N-(13-cis-
retinoyl)-L-cysteic acid methyl ester 
sodium salt)

Apealea® Inceptua AB Ovarian cancer, peritoneal cancer, 
fallopian tube cancer

EMA (2018, 
withdrawn in 
2024)

Protein-bound nanoparticles

16 Engineered protein combining IL-2 and 
diphtheria toxin

Ontak® Eisai Persistent or recurrent cutaneous 
T-cell lymphoma

FDA (1999)

17 Human albumin-bound paclitaxel NP Abraxane® 
(ABI-007)

Celgene Metastatic breast cancer, NSCLC, 
metastatic pancreatic cancer

FDA (2005, 
2012, 2013) 
EMA (2008)

18 Antibody-drug conjugate 
(trastuzumab, DM1)

Kadcyla® Roche Registration 
GmbH

Early breast cancer, metastatic 
breast cancer

FDA (2013) 
EMA (2013)

19 Human albumin-bound paclitaxel NP Pazenir® Ratiopharm GmbH Metastatic breast cancer, NSCLC EMA (2019)

Polymer nanoparticles: synthetic polymer particles

20 Polymer-protein conjugate PEGylated 
L-asparaginase (MPEG)

Oncaspar® Enzon 
Pharmaceuticals

ALL and hypersensitivity to 
asparaginase

FDA (1994, 
2006)

Leuprolide acetate and polymer 21 Eligard® Tolmar Advanced prostate cancer FDA (2002)
(PLGH or PLG)
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22 PEG-PLA polymeric micelle paclitaxel Genexol-PM®, 
Cynviloq®

Samyang 
Biopharmaceuticals

Metastasis breast cancer, NSCLC, 
ovarian cancer

MFDS (2007)

23 Nanodispersion of a taxane derivative; 
PICN

Bevetex® Sun Pharma Advanced 
Research Company 
Limited

Metastatic breast cancer India (N/A)

PEG: Polyethylene glycol; MPEG-DSPE: N-(carbonyl-methoxypolyethylene glycol 2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine 
sodium salt; HSPC: fully hydrogenated soy phosphatidylcholine; FDA: Food and Drug Administration; EMA: European Medicines Agency; DSPC: 
1,2-distearoyl-sn-glycero-3-phosphocholine or distearoylphosphatidylcholine; DOPC: 1,2-dioleoyl-sn-glycero-3-phosphocholine; DPPG: 1,2-
dipalmitoyl-sn-glycero-3-phosphoglycerol; PC: phosphatidylcholine; NSCLC: non-small cell lung cancer; NPMA: National Medical Products 
Administration of the P.R. China; POPC: palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; OOPS: 1,2-dioleoyl-sn-glycero-3-phospho-L-serine 
monosodium salt; SPH: sphingomyelin; DSPE-PEG: sodium methoxy PEG 40-carbonyl-distearoylphosphatidylethanolamine; MPEG-2000-DSPE: 
N-(carbonyl-methoxypolyethyleneglycol-2000)-1,2-distearoly-sn-glycero-3-hosphoethanolamine; DSPG: 1,2-distearoyl-sn-glycero-3-phospho-
(1’-rac-glycerol); NIPAM: N-isopropyl acrylamide; VP: vinyl pyrrolidone; MFDS: The Korean Ministry of Food and Drug Safety; RFMPH: Russian 
Federation: Ministry of Public Health; IL-2: interleukin-2; NP: nanoparticle; DM1: mertansine; ALL: acute lymphocytic leukemia; MPEG: 
monomethoxypolyethylene glycol; PLGH or PLG: poly (D,L-lactide-coglycolide); PLA: polylactic acid; PICN: paclitaxel injection concentrate for 
nanodispersion.

Furthermore, preparation methods, ingredient types and ratios, combination of biocompatible polymers, 
biomimetic engineering techniques, functional cancer cell-membranes integration, and physicochemical or 
biochemical trigger mechanisms are all utilized to design advanced lipid-based nanomaterials[70,76]. 
Combining these modification techniques can adjust lipid structural packing, characteristics, composition at 
the atomic level, morphology, encapsulation efficiency, biocompatibility, and delivery profile of lipid-based 
nanomaterials, resulting in improved therapeutic outcomes[50,77]. Following this, researchers and scientists 
are intensively studying multifunctional lipid-based nanomaterials mainly for the treatment of different 
cancer types.

Generally, delivering lipid-based nanomedicines to tumor sites is primarily achieved through passive 
targeting via the enhanced permeability and retention effect (EPR), which preferentially allows them to 
accumulate in tumors. Notably, nanocarriers can enter cells through three main routes: passive targeting, 
active targeting, and stimulus-sensitive structures. Firstly, passive targeting occurs when lipid-based 
nanomaterials penetrate the tumor cellular membranes based on their inherent physicochemical properties. 
Secondly, active targeting involves modifying the nanocarrier structures with specific moieties that 
selectively recognize and bind to tumor cells. Lastly, stimulus-sensitive structures regulate the delivery 
profile of anticancer drugs by responding to external or internal triggers such as pH, temperature, magnetic 
field, ray, ultrasound, and so on[76,78,79].

Through internalization mechanisms and the customizations of lipid-based nanomaterials, anticancer 
agents with lipid-based nanomaterials are showing promise in overcoming drug resistance due to their 
small size, enabling tissue penetration and deep accumulation in tumor tissues, specific targeting, extension 
of drug circulation in the body, the ability to contain agents with different anticancer mechanisms in one 
carrier, inhibition of reversible modifications, and alteration of the TME [Figure 3]. Moreover, lipid-based 
nanomaterials are also capable of co-administration with other treatments to improve therapeutic outcomes 
and have gained interest as a strategy to cope with drug resistance. Providing a valuable platform for cancer 
treatment, lipid-based nanomaterials offer material flexibility of their own[60,61].

In this review, the lipid-based nanocarriers including liposomes, LNPs, and nanomicelles are discussed due 
to their approved and long-standing usage in anticancer nanomedicines. The recent advances to overcome 
cancer drug resistance using lipid-based nanomedicines and related strategies are summarized. However, 
the mechanisms of cytotoxic agents are not discussed in this review.

No. Description of carrier and its 
compositions

Product 
names Manufacturer Indication(s)

Approval 
agency 
(year)
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Table 2. Compositions of different lipid-based nanomaterials and their limitations[60,65-70]

Types Compositions Advantages Limitations Status

Lamellar lipid nanomaterials

Liposomes Phospholipids (e.g., PC, PS, PE, PG) and 
cholesterol

Simplicity of preparation 
Enhanced solubility 
Biocompatibility 
Biodegradability 
Non-immunogenicity 
Low toxicity

Drug leakage 
Short half�life 
Low reproducibility 
Possible oxidation 
and hydrolysis

Commercial 
products and under 
clinical trials

LNPs Phospholipids, cholesterol, helper lipids (e.g., 
DSPC, DPPC, DOPE) and PEGylated lipids (e.g., 
ALC-0159, DMG-PEG2000, DSPE-PEG2000)

High drug loading 
Long half-life 
Biocompatibility 
Biodegradability 
Non-immunogenicity 
Low toxicity

High cost 
Require specific 
storage conditions

Preclinical studies

LNEs or nanomicelles Oils (e.g., triglycerides, vegetable oil) and 
surfactants (e.g., Tween 80)

Self-assembly 
High reproducibility 
High penetration to 
biological membranes

Cytotoxicity due to 
surfactant 
Possibility of phase 
separation

Commercial 
products and under 
clinical trials

SLNs Solid lipids (triglycerides, fatty acids, waxes) 
and emulsifiers, surfactants or polymers

High stability 
Biocompatibility 
Free-organic solvents 
(green synthesis) 
Reproducibility 
Ease of scale-up process

Moderate 
encapsulation 
efficiency 
Crystallization 
Polymorphic 
transitions 
High drug 
expulsion 
Short shelf-life

Preclinical studies

NLCs Solid lipids, liquid lipids (e.g., glyceryl 
tricaprylate, ethyl oleate, isopropyl myristate, 
and glyceryl dioleate) and emulsifiers

Increasing drug loading 
Low drug expulsion 
Improving permeability 
Increasing half-life

High operating 
tempurature 
Moderate drug 
loading 
Low stability

Preclinical studies

LPHNPs Lipids and polymer (PCL, PLGA, PLA, PbAE, and 
chitosan)

Flexibility for surface 
modification 
High stability 
Long half-life 
Control released profile

High cost 
Difficult to scale up

Preclinical studies

Non-lamellar lipid nanoparticles

Hexosomes (2D 
structure), cubosomes 
(3D structure)

Amphiphilic lipids (monoolein, diolein, 
phytantriol, phospholipids) and polymeric 
stabilizer

Highly curved membrane 
High surface area 
High loading efficiency 
(peptides and protein-
based drugs)

Early stage of 
development

Preclinical studies

PC: Phosphatidylcholine; PS: phosphatidylserines; PE: phosphatidylethanolamines; PG: phosphatidylglycerols; LNPs: lipid nanoparticles; DSPC: 1,2-
distearoyl-sn-glycero-3-phosphocholine or distearoylphosphatidylcholine; DPPC: 1,2-dipalmitoylphosphatidylcholine; DOPE: 1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine; PEG: polyethylene glycol; ALC-0159: 2-[(polyethylene glycol)-2000]-N,N-ditetradecylacetamide; DMG-
PEG2000: 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000; DSPE-PEG: sodium methoxy PEG 40-carbonyl-
distearoylphosphatidylethanolamine; LNEs: lipid nanoemulsions; SLNs: solid lipid nanoparticles; NLCs: nanostructured lipid carriers; LPHNPs: lipid 
polymer hybrid nanoparticles; PCL: polycaprolactone; PLGA: poly(lactic-co-glycolic acid); PLA: polylactic acid; PbAE: poly β-amino ester.

LIPID-BASED NANOMATERIALS FOR CANCER RESISTANCE
Liposomes
Liposomes, classical nanocarriers based on lipid materials, were initially identified in 1965 by Bangham 
et al.[80]. Structurally, they are spontaneously self-assembling small sphere artificial closed vesicles with sizes 
varying from 20 to 1,000 nm[36,60,81]. Typical components of liposomes include phospholipids, such as 
phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylglycerols (PG), and 
phosphatidylserines (PS), along with stabilizers such as cholesterol[60]. Nowadays, several nano-delivery 
systems have been incorporated into clinically used medicines for cancer treatment, including lipid-based 
nanoparticles, protein-bound nanoparticles, and polymer nanoparticles [Table 1]. Of those, liposomes are 
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Figure 2. Molecular structures of common components used in lipid-based nanomedicines for cancer drug research. Group (A) 
representative lipid-based nanomaterials for cancer drug research include liposomes, LNPs, and nanomicelles (from left to right); group 
(B) cholesterol; group (C) phospholipids such as HSPC, DSPC, POPC, DOPC, DOPS, DPPG, DSPG, sphingomyelin, and triolein; group (D) 
ionizable lipids such as ALC-0315 and SM-102; group (E) PEGylated lipids such as MPEG-2000-DSPE, PEG-DMG, and ALC-0159; group 
(F) oils such as triglyceride, N-(13-cis-retinoyl)-L-cysteic acid methyl ester sodium salt, and N-(all-trans-retinoyl)-L-cysteic acid methyl 
ester sodium salt; group (G) emulsifiers such as Tween 80; and group (H) polymers such as NIPAM, polyethylene glycol monomethyl 
ether, poly (DL-lactide-co-glycolide), and poly (DL-lactide). (A) is created by www.Biorender.com, and all chemical structures are 

http://www.Biorender.com
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generated by ChemDraw Software. LNPs: Lipid nanoparticles; HSPC: fully hydrogenated soy phosphatidylcholine; DSPC: 1,2-distearoyl-
sn-glycero-3-phosphocholine or distearoylphosphatidylcholine; POPC: palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; DOPC: 1,2-
dioleoyl-sn-glycero-3-phosphocholine; DOPS: 1,2-dioleoyl-sn-glycero-3-phospho-l-serine; DPPG: 1,2-dipalmitoyl-sn-glycero-3-
phosphoglycerol; DSPG: 1,2-distearoyl-sn-glycero-3-phospho-(1’-rac-glycerol); ALC-0315: (4-hydroxybutyl)azanediyl)bis(hexane-6,1-
diyl)bis(2-hexyldecanoate); SM-102: (heptadecan-9-yl8-((2-hydroxyethyl)[6-oxo-6(undecyloxy)hexyl]amino)octanoate); PEG: 
polyethylene glycol; MPEG-2000-DSPE: N-(carbonyl-methoxypolyethyleneglycol-2000)-1,2-distearoly-sn-glycero-3-
hosphoethanolamine; PEG-DMG: 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol; ALC-0159: 2-[(polyethylene glycol)-
2000]-N,N-ditetradecylacetamide; NIPAM: N-isopropyl acrylamide.

Figure 3. Illustration of the tactics employed in combatting drug-resistant cancer through the utilization of lipid-based nanomaterials. 
(A) remodeling of TME; (B) efflux pump inhibition; (C) knockdown or downregulation of anti-apoptotic protein expression pathway; (D) 
knockdown gene; (E) enhanced drug accumulation; (F) specific targeted drug delivery; and (G) co-delivery systems. Created by www.
BioRender.com. TME: Tumor microenvironment.

particularly promising platforms because of their loading capacity with different hydrophilicity, their 
superior membrane fusion abilities, and their ease of modifiable properties. In addition, the cell membrane-
like structure and components enable liposomes to deliver drugs into cells through membrane fusion and 
endocytosis, thereby improving the accumulation of drugs in the cytoplasm[78].

Various techniques, including PEGylation and specific ligand attachment, have been employed to enhance 
the stability and selectivity of liposomes in vivo, thus reducing the occurrence of drug resistance[36,60,73,81]. To 
increase the accumulation in tumor cells and enhance therapeutic outcomes, liposomes are decorated with 
surface-attached ligands designed to recognize the specific receptors overexpressed on the surface of various 
drug-resistant tumor cells. For instance, folate ligands target folate receptor[82-84], transferrin ligands target 
transferrin receptor[85,86], epidermal growth factor (EGF) protein[87], epidermal growth factor receptor 

http://www.BioRender.com
http://www.BioRender.com
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(EGFR) antibody[88], and cetuximab[89,90] target EGFR, and prostate-specific peptide[91] and prostate-specific 
antigen gene[92] target prostate-specific membrane antigen (PSMA). Additionally, single-stranded DNA 
aptamer[93] targets forkhead box M1 (FOXM1), biotin[94-97] and fructose[96] target biotin receptor, and 
humanized anti-human epidermal growth factor receptor 2 (HER2) antibody[98], engineered peptide[99], and 
bispecific antibody[100] target HER2 receptor. Liposomes can also be designed for controlled release drug 
delivery to combat cancer drug resistance when exposed to physicochemical or biochemical stimuli, e.g., 
changes in pH[82,101,102], specific enzymes[103,104], ultrasound[105,106], and so on. Upon exposure to these stimuli, 
liposomes undergo phase transition, increase membrane permeability, and release loaded active 
pharmaceutical ingredients at target sites.

In recent years, liposomes have shown their great potential as a delivery tool for combating cancer 
resistance, because they play a significant role not only in monotherapy by boosting cellular uptake and 
drug accumulation[107], but also in combination therapy involving multi-treatments through their co-
delivery abilities[30,103,108-116]. For example, the furoxans-gemcitabine co-loaded liposome modified with 
targeted ligands can target the glioblastoma multiforme (GBM) tumor and synergize the radiotherapy (RT) 
efficacy. Sun et al. developed a reduction-sensitive NO donor conjugate of furoxans-gemcitabine (a RAD51 
inhibitor) to serve as a radio-sensitizer for overcoming RT resistance [Figure 4A][112]. The presence of 
transmembrane efflux pumps is a pivotal challenge for the chemotherapy treatment of multidrug-resistant 
(MDR) cancers. Previous studies have paid much attention to both monotherapy[117,118] and combination 
therapy of chemotherapy and transporter inhibitors[103] or siRNA[102,109,119]. As the monotherapy, Bai et al. 
developed pemetrexed-loaded D-alpha tocopheryl PEG1000 succinate liposome as a highly appealing 
strategy to overcome MDR mediated by ABCC5, greatly improving the therapeutic efficacy of pemetrexed 
in breast cancer[117]. A lipidation strategy using phospholipid-conjugation of porphyrin, a photosensitizing 
drug used in photodynamic treatment, to create benzoporphyrin derivatives has been very informative in 
evading both P-glycoprotein (P-gp) and ABCG2-mediated transporter in photodynamic treatment-resistant 
breast cancer. In this study, the authors not only demonstrated the utility of drug-lipid conjugation, but also 
showed the potential of the lipid material itself to overcome cancer resistance[118]. When it comes to 
combination therapy, Saw et al. proposed liposomes conjugated with an extra-domain B-specific aptide to 
simultaneously deliver MDR1 siRNA and DOX to drug-resistant breast tumors. The silencing of MDR-1 
increased the intracellular retention of DOX, leading to appreciable tumor growth inhibition in DOX-
resistant MCF7/ADR orthotropic model[119]. Furthermore, a TPGS-coated cationic liposome decorated with 
Bcl-2 siRNA-corona was studied for loading DOX in hepatocellular carcinoma (HCC) for MDR-dual 
suppression of drug resistance. The system significantly contributed to the inhibition of P-gp efflux and 
internalization of DOX, thus increasing the in vivo antitumor efficacy[109]. Similarly, an MDR1-siRNA and 
DOX co-loaded multifunctional liposome with an antibody-conjugated pH-sensitive system was 
successfully designed to fight P-gp-related MDR by downregulation of P-gp expression and improving 
DOX antitumor efficiency[102]. Conversely, liposome decorated with PEG and EMC peptide was employed to 
co-encapsulate DOX and tariquidar, a P-gp inhibitor, to treat triple-negative breast cancer (TNBC). With 
efficient targeting delivery and a stimuli-responsive system, the liposome has demonstrated superior 
capability to kill drug-resistant TNBC[103].

To target the tumor sites, specific ligand modification is a promising tool against drug resistance. 
Ginsenosides Rg3, containing a hydrophilic domain with two glucosyl groups, can be recognized by glucose 
transporter-1 (GLUT-1) on tumor cells. Substitution of cholesterol with the ginsenosides Rg3, a unique 
Rg3-based liposome loaded with paclitaxel (PTX), was formulated to target cancer cells and remodel the 
TME. Rg3 showed great potential to reverse drug resistance not only mediated by proteins including P-gp 
and programmed cell death ligand-1 (PD-L1), but also mediated by immune cells in TME. Hence, Rg3 itself 
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Figure 4. Modulation of liposomal delivery system for overcoming cancer drug resistance. (A) Bioluminescence imaging of brain tissues 
was conducted at specific time intervals. Kaplan–Meier survival curves were complemented to show the treatment outcomes in mouse 
models. This figure is quoted with permission from Sun et al.[112]; (B) Illustration of how ginsenosides Rg3-PTX-LPs reversed cancer drug 
resistance by remodeling TME and downregulating the expression of P-gp and reduce the efflux of PTX from the cell. This figure is 
quoted with permission from Zhu et al.[114]; and (C) Illustration depicting how PFH@LSLP facilitated synergistic antitumor therapy by 
modulating the hypoxic and immunosuppressive microenvironment for sorafenib-resistant tumor treatment. This figure is quoted with 
permission from Wang et al.[113]. RT: Radiotherapy; PFH: perfluorohexane; LSLP: the combination of LFC131 peptides, sorafenib, and 
PLX3397.

is expected to endow liposomes with potent capability to target tumor sites, prevent PTX efflux, and 
increase the damage to MDR cancer cells [Figure 4B][114]. Additionally, a perfluorohexane (PFH)-cored 
liposome modified with LFC131 peptides, a CXCR4 antagonist, can successfully block the SDF-1α/CXCR4 
axis through the reversion of the immunosuppressive microenvironment and restoration of the drug 
sensitivity of tumor cells, thus re-sensitizing the HCC cells to sorafenib [Figure 4C][113].

In summary, various liposome-based approaches are carried out for multifunctional liposomes and 
combination therapy to enhance tumor targeting and drug accumulation, thus overcoming drug resistance 
in different types of cancer and improving therapeutic outcomes.

LNPs
The delivery of nucleic acids based on non-viral vectors is a rapidly emerging gene-based therapy that safely 
reprograms the expression of resistance-associated genes against cancer resistance[120]. From the decades of 
liposomal development, LNPs have emerged within the pharmaceutical field as potentiate cargoes to carry a 
wide range of therapeutic agents[69]. LNPs have stemmed from liposomal technology. It has been developed 
as a four-component formulation that fundamentally contains phospholipids, cholesterol, ionizable lipids, 
and PEGylated lipids[68]. During the global outbreak of COVID-19, Comirnaty® and Spikevax® are mRNA-
encapsulated LNPs for COVID-19 vaccination with FDA approvals in 2020 and 2021, respectively. 
mRESVIA (mRNA-1345), an mRNA respiratory syncytial virus (RSV) vaccine based on the Spikevax® 
platform, is also approved by the U.S. FDA in 2024[121,122]. LNPs have rapidly drawn robust attention as an 
effective tool for transporting and protecting genetic materials into cells[60,123,124]. Interestingly, as a 
representative milestone, the RNA-LNPs systems of anticancer drugs were examined and administrated to 
patients with cancer before the massive attention of the RNA-LNPs-based COVID-19 vaccines[125]. Owing to 
these benefits, the LNPs are further exploited for biomedical applications, particularly for addressing drug 
resistance issues in cancer therapy. The LNP systems used for delivering anticancer drugs serve to protect 
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TME[126].

For drug resistance in cancer, numerous studies have demonstrated the potential of LNP composition for 
targeted gene silencing in combination treatment with chemotherapy nanoformulations[31-33,127-135]. For 
example, transforming growth factor beta-1 (TGFβ-1) siRNAs encapsulated in LNPs were used as a 
combination treatment with cabazitaxel (CTX)-conjugated human serum albumin nanoparticles to treat 
PTX-resistant non-small cell lung cancer (NSCLC) both in vivo and in vitro. The cytoplasmic TGFβ-1 
mRNA could be silenced by TGFβ-1 siRNA LNPs, thus reversing acquired drug resistance, restoring PTX 
sensitivity, and synergistically improving anticancer efficacy in PTX-resistant NSCLC [Figures 5A and B][32]. 
Moreover, LNPs co-encapsulating the selected onco-suppressors miRNAs, miR-199-5p, and miR-204-5p 
were introduced to evaluate the tumor growth inhibition in combination with targeted therapy. By 
leveraging the potential antitumor efficacy of mitogen-activated protein kinase inhibitor (MAPKi) therapy 
and suppressing the development of drug resistance, the miRNA-delivered LNPs could block drug 
resistance development in BRAF-mutated metastatic melanoma models. These findings strongly suggested 
the use of RNA-encapsulated LNPs as new combination therapies for metastatic melanoma patients 
[Figure 5C][128].

In addition, there is a study about size-controlled LNPs incorporating a highly-selective targeting peptide, a 
pH-sensitive lipid, and a diversity of phospholipids for selective co-administration of sorafenib and siRNA 
against the Midkine gene in sorafenib-resistant HCC mice model [Figure 5D]. Results demonstrated that 
the LNPs showed high tumor accumulation and tissue penetration, and specific gene silencing of Midkine 
both in vitro and in vivo[33,129]. Another study also showed the potential of targeted LNPs for CRISPR-Cas9 
genome editing in two aggressive cancer cell lines. Their LNPs improved the gene editing efficiency of Cas9. 
Following single local intracerebral administration of this targeted LNPs, Cas9 mRNA and 
polo-like kinase 1 (PLK1), also known as single-guide RNA (sgRNA), were successfully co-delivered into 
tumor cells, consequently producing potent tumor growth inhibition and increasing survival in aggressive 
orthotopic glioblastoma mice[131].

Furthermore, the pH-sensitive LNPs loaded with stimulators of interferon gene (STING) agonists and anti-
PD-1 were reported to circumvent the anti-PD-1 resistance in melanoma lung metastasis mouse model. The 
developed LNPs can protect STING agonists from predegradation and block the PD-1 on NK cells at tumor 
sites. After entering the cytoplasm, the agonist would stimulate NK cell activation and efficiently induce a 
synergistic antitumor activity [Figure 5E][134].

Collectively, the excellent properties of LNPs for protecting and delivering genetic materials into cells 
endow them with potent capabilities against drug-resistant tumors. They provide efficient platforms for 
regulating the oncogene expression and improving the efficacy of gene therapy. Importantly, further in-
depth explosion is necessary for the safe and efficient clinical application of LNP-based nanomedicines.

Nanomicelles
Nanomicelles are nanosized colloidal constructs formed by self-assembling of amphiphilic molecules 
stabilized by emulsifiers with a hydrophobic core and hydrophilic shell in aqueous media. They are usually 
spherical in shape with a diameter size from 5 to 100 nm. Various oils used as lipid phase in nanomicelles 
include vegetable oils, glycerides, long-chain unsaturated fatty acids, medium-chain triglycerides, and 
polyalcohol esters of medium-chain fatty acids. Indeed, different types of emulsifiers, such as phospholipids 
(e.g., soy lecithin), proteins (e.g., caseinate), surfactants (e.g., Tween 80, sodium dodecyl sulfate), 
polysaccharides (e.g., modified starch), or polymers [e.g., poly(vinyl alcohol), PEG], are applied to stabilize 

and transport genetic materials into cancerous cells, either to erase some reversible modifications or to alter 



Page 12 of Dechbumroong et al. Cancer Drug Resist 2024;7:24 https://dx.doi.org/10.20517/cdr.2024.1924

Figure 5. Modulation of LNP carriers for overcoming cancer drug resistance. (A) The use of combination therapy of CTX-HSA-NPs and 
TGFβ-1 siRNA LNPs in PTX-resistant NSCLC. This figure is quoted with permission from Tan et al.[32]; (B) The transmission electron 
microscopy (TEM) and scanning electron microscopy (SEM) images of CTX-HSA-NPs at ratios 6:1, 8:1, and 10:1. This figure is quoted 
with permission from Tan et al.[32]; (C) LNP-miRs enhanced the efficacy of MAPKi therapy in xenograft melanoma models. The 
percentage of tumor reduction was determined relative to the initial volumes in mice injected with A375 or M14 from the groups treated 
with LNP-Scr + MAPKi or LNP-miRs + MAPKi. This figure is quoted with permission from Fattore et al.[128]; (D) A versatile lipid-based 
nanoplatform for precise co-delivery of sorafenib and Midkine siRNA to hepatic cancer cells. This figure is quoted with permission from 
Younis et al.[33]; and (E) Overview of mitigating anti-PD-1 resistance through STING-LNP. This figure is quoted with permission from 
Nakamura et al.[134].

the interfacial surface to avoid aggregation by steric effects or electrostatic interactions, hydration, and 
thermal fluctuations[67]. Nanomicelles can encapsulate various drug molecules through their delivery 
systems, such as water-in-oil emulsion (regular micelles), oil-in-water emulsion (reverse micelles), or water-
in-oil-in-water emulsion prepared through various techniques, thus increasing the solubility of the drug[136].

Nanomicelles can also be modified with specific ligands or triggered by selective stimuli to improve efficacy 
and drug release profile[104,137,138]. Since 1996, Taxotere®, a docetaxel nanomicelle, is the only FDA-approved 
nanomicelle formulation launched on the market for locally advanced or metastatic breast cancer after the 
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Figure 6. Modulation of lipid nanomicellar delivery system for overcoming cancer drug resistance. (A) In vitro cellular uptake of RGD-
DTX-M by MDA-MB-231 cells. **P < 0.01; ****P < 0.0001. This figure is quoted with permission from Chen et al.[138]; (B) Diagram depicting 
the biodegradable pH-sensitive micellar systems and elucidation of the in vivo tumor targeting and mechanisms underlying the anti-
MDR effect. This figure is quoted with permission from Gao et al.[137]; (C) The alteration in zeta potential observed in various 
formulations of pH-responsive PHIS-PEG2000 and DSPE-PEG2000 hybrid micelles. This figure is quoted with permission from Gao 
et al.[137]; and (D) Schematic representation of multifaced lipid and micelle formulation employed in HCC. This figure is quoted with 
permission from Wu et al.[116]. RGD: (Arg-Gly-Asp) peptides; DTX: docetaxel; MDA-MB-231: human triple negative breast cancer cell 
line; MDR: multidrug-resistant; HCC: hepatocellular carcinoma.

ineffectiveness of previous chemotherapy [Table 1]. Nowadays, the gradually increasing drug resistance in 
various types of tumors provides opportunities for nanomicelles to be developed and evaluated in 
preclinical trials.

Targeted nanomicellar systems were developed to challenge drug resistance in cancer. A PEGylated lipid-
core nanomicelle decorated with Arg-Gly-Asp peptides (RGD) peptides was engineered to enhance the 
active targeting of docetaxel (DTX) on TNBC. This delivery system showed high drug loading, long drug 
retention time in the circulation system, sustained release profile, and reduced side effects of DTX after 
intravenous administration in MDA-MB-231 xenograft mice model [Figure 6A][138]. Based on lipid-
nanomicelles, many combination therapies for cancer resistance have been widely developed[104,138]. 
PEGylated nanomicelles consisting of DSPE-PEG2000 were developed to co-encapsulate PTX and Zos 
bound with a redox-responsive disulfide linkage. The results suggested that nanomicelles improved 
intracellular drug accumulation in tumor cells and simultaneously inhibited the MDR tumor growth 
without systemic toxicity[104].

Similar to liposomes and LNPs, nanomicelles can also be modified with specific receptors or designed to 
response to stimuli to enhance the therapeutic outcomes[137]. For example, as a targeted pH-sensitive 
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nanomicellar system for MDR breast cancer, the DOX-loaded nanomicelle conjugated with PEGylated and 
transferrin receptor ligand-modified lipid can significantly enhance the cellular uptake and the capacity to 
damage cancer cells [Figure 6B and C][137].

Moreover, the combination of lipid nanosystems was also introduced to treat resistant cancer. A 
multifunctional DOX-loaded nanomicelle, alongside capsaicin and telmisartan co-loaded liposome, was 
developed to prevent drug resistance development in tumor cells. This combinational therapy can inhibit 
the cross-talk between tumor cells and cancer-associated fibroblasts in TME, thus reducing the deposition 
of extracellular matrix and reversing the epithelial-mesenchymal transition (EMT) of tumor cells. The 
synergistic anti-HCC efficacy with good biocompatibility and safety makes this combinational therapy a 
potential tool for combating cancer resistance [Figure 6D][116]. These findings provide crucial insights for 
further strategies in clinical interventions against cancer drug resistance.

LIPID-BASED NANOMEDICINES FOR DRUG-RESISTANT CANCER THERAPY IN CLINICAL 
TRIALS
During the last decade, lipid-based nanomedicines have been examined in numerous clinical trials to 
investigate new standard regimens as monotherapy and combination therapy with other approaches for 
drug-resistant cancer. Table 3 shows the clinical trials of lipid-based nanomedicines to cope with cancer 
drug resistance from 2017 to the present.

LIMITATIONS OF LIPID-BASED NANOMEDICINES DEVELOPMENT
Advancements in lipid-based nanomedicines have been driven by innovative drug delivery systems, 
targeted therapies, and related modern technologies[50,53]. Although lipid-based nanomedicines show 
promising therapeutic advantages, the preparation method and manufacturing at a large scale with 
reproducibility are still challenging, especially for complex lipid nanocarriers[53]. The selection of the 
synthesis method is crucial to determining their therapeutic applications. Different preparation techniques 
exhibit different drawbacks, which can affect the properties of both nanocarriers and active pharmaceutical 
ingredients[61]. For example, the degradation of drugs during the manufacturing process occurs due to the 
heat and force from high-pressurized homogenization and ultrasonication. Non-uniformity in size, zeta 
potential, and PDI is also observed due to inconsistent synthesis processes such as variations in 
temperature, mixing speed, and extrusion force from batch to batch[61]. Numbers of parameters can 
significantly affect the physicochemical characteristics of nanoparticles. Precise process control of each 
parameter and condition is necessary to ensure uniformity and minimize the variation among batches[61]. 
Automated machines, such as microfluidic mixer, can be utilized for this purpose[139]. Sterilization of 
finished products is of particular concern, especially during testing in clinical trials[140]. Concerns are also 
raised regarding the toxicity of residual organic solvents in certain preparation methods[141].

Challenges are also presented in the clinical trial process. Pharmacodynamics and pharmacokinetics are 
influenced by biological environments and remain significant issues for efficacy and safety in both the 
short-term and long-term outcomes. Specific storage conditions, such as extremely low temperature 
requirements, contribute to the complexity of logistics and expenses, as well as impacting therapeutic 
outcomes. The occurrence of chemical degradation, e.g., lipid oxidation and hydrolysis, can affect their shelf 
life and efficacy. In addition, stringent regulatory requirements for conducting clinical trials and approval 
processes are complex and costly[50,53,57,142].
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Table 3. Lipid-based nanomedicines for the development of drug-resistant cancer treatments, selected from phase I, II, and III 
clinical trials

ClinicalTrials.gov 
identifiers Sponsor Medication Study title

Phase I

NCT04718376 (phase I, 
terminated, 2024)

CSPC ZhongQi 
Pharmaceutical 
Technology Co., Ltd.

1. Mitoxantrone 
hydrochloride liposome

A multicenter, open-label, single-arm, phase Ib study to evaluate the 
safety and efficacy of mitoxantrone hydrochloride liposome injection 
in subjects with platinum-resistant or platinum-refractory relapsed 
ovarian cancer

NCT05483933 (phase I, 
active, not recruiting, 
2024)

Shattuck Labs, Inc. 1. PLD + SL-172154 (SIRP
α-Fc-CD40L) 
2. Mirvetuximab + SL-
172154

An open-label, phase 1b study of SL-172154 (SIRPα-Fc-CD40L) 
administered with either pegylated liposomal doxorubicin or 
mirvetuximab soravtansine in subjects with platinum-resistant 
ovarian cancers

NCT02751918 (phase I, 
completed, 2019)

Bayer 1. Anetumab ravtansine 
(BAY94-9343) + PLD

An open-label phase Ib dose escalation study to evaluate the safety, 
tolerability, pharmacokinetics, immunogenicity, and maximum 
tolerated dose of anetumab ravtansine in combination with pegylated 
liposomal doxorubicin 30 mg/m2 given every 3 weeks in subjects 
with mesothelin-expressing platinum-resistant recurrent ovarian, 
fallopian tube, or primary peritoneal cancer

NCT03591276 (phase I, 
unknown, 2020)

Shaare Zedek 
Medical Center

1. Pembrolizumab + PLD A phase 1b study of combination chemoimmunotherapy with 
pegylated liposomal doxorubicin (Doxil/Caelyx) and pembrolizumab 
(Keytruda) in metastatic endocrine-resistant breast cancer

NCT05261490 (phase I, 
terminated, 2024)

Pfizer 1. Maplirpacept (PF-
07901801) + PLD

A phase I/II study of TTI-622 in combination with pegylated 
liposomal doxorubicin in patients with platinum-resistant ovarian 
cancer

NCT03639246 (phase I, 
completed, 2023)

Aravive, Inc. 1. AVB-S6-500 + PLD 
2. AVB-S6-500 + PTX 
3. Placebo + PLD 
4. Placebo + PTX

A phase 1b/2 randomized, controlled study of AVB-S6-500 in 
combination with PLD or Pac in patients with platinum-resistant 
recurrent ovarian cancer

NCT03596281 (phase I, 
active, not recruiting, 
2023)

Gustave Roussy, 
Cancer Campus, 
Grand Paris

1. Pembrolizumab + PLD 
2. Pembrolizumab + 
bevacizumab

An open-label phase 1 of pembrolizumab in combination with 
bevacizumab and pegylated liposomal doxorubicin in patients with 
platinum-resistant epithelial ovarian cancer

NCT03480750 (phase 
I, completed, 2020)

National Cheng-
Kung University 
Hospital

1. Trientine + PLD + 
carboplatin

Phase I trial of copper chelator in conjunction with pegylated 
liposomal doxorubicin and carboplatin in patients with platinum-
resistant/refractory epithelial ovarian cancer, tubal cancer, and 
primary peritoneal cancer

NCT01035658 (phase I, 
terminated, 2021)

SCRI Development 
Innovations, LLC

1. Pazopanib + Doxil® A phase I/II study of the combination of pazopanib and liposomal 
doxorubicin (Doxil) in patients with advanced relapsed platinum-
sensitive or platinum-resistant ovarian, fallopian tube, or primary 
peritoneal adenocarcinoma

NCT02431559 (phase I, 
completed, 2022)

Ludwig Institute for 
Cancer Research

1. Durvalumab + PLD Phase 1/2 study of chemoimmunotherapy with toll-like receptor 8 
agonist motolimod (VTX-2337) + anti-PD-L1 antibody MEDI4736 in 
subjects with recurrent, platinum-resistant ovarian cancer for whom 
pegylated liposomal doxorubicin is indicated

NCT04092270 (phase 
I, recruiting, 2024)

NCI 1. peposertib + PLD A phase I/Ib dose escalation study of PLD with peposertib (M3814) 
in platinum-resistant or ineligible ovarian and related cancers with 
planned expansions in HGSOC and LGSOC

NCT05271318 (phase I, 
recruiting, 2024)

TILT Biotherapeutics 
Ltd.

1. TILT-123 + 
pembrolizumab 
2. TILT-123 + 
pembrolizumab + PLD

A two-part, phase I/Ib, open-label, dose-escalation trial of tumor 
necrosis factor alpha and interleukin-2 coding oncolytic adenovirus 
(TILT-123) in combination with pembrolizumab (phase i part) and 
pembrolizumab and pegylated liposomal doxorubicin (phase ib part) 
in patients with platinum-resistant or refractory ovarian cancer

Phase II

NCT00913835 (phase 
II, completed, 2019)

Eli Lilly and 
Company

1. Olaratumab + PLD 
2. PLD or olaratumab 
monotherapy

Randomized phase 2 trial investigating liposomal doxorubicin with or 
without anti-PDGFRα monoclonal antibody IMC-3G3 in patients with 
platinum-refractory or platinum-resistant advanced ovarian cancer

NCT03161132 (phase II, 
completed, 2023)

Grupo Español de 
Investigación en Cá
ncer de Ovario

1. Olaparib 
2. PLD

Multicentric single-arm phase II clinical trial to evaluate the safety 
and efficacy of the combination of olaparib and PLD for platinum-
resistant ovarian primary peritoneal carcinoma, and fallopian tube 
cancer patients

NCT03335241 (phase II, 
unknown status, 2017)

Sun Yat-sen 
University

1. Fludarabine + PLD 
2. PLD

An open-label, randomized phase II study of fludarabine with 
pegylated liposomal doxorubicin vs. pegylated liposomal doxorubicin 
alone in patients with platinum-resistant/refractory ovarian cancer

NCT03509246 (phase Seoul National A phase II trial to evaluate the efficacy of bortezomib and pegylated 1. PLD + bortezomib
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II, unknown status, 
2020)

University Hospital liposomal doxorubicin in patients with BRCA wild-type platinum-
resistant recurrent ovarian cancer

NCT04753216 (phase II, 
completed, 2023)

Northwestern 
University

1. Bevacizumab + 
irinotecan liposome

A phase II trial of irinotecan liposome and bevacizumab in women 
with platinum-resistant ovarian, fallopian tube, or primary peritoneal 
cancer

NCT03071926 (phase 
II, unknown status, 
2022)

Fudan University 1. PLD Efficacy and safety of metronomic pegylated liposomal doxorubicin in 
patients with primary endocrine-resistant advanced breast cancer

NCT02865811 (phase II, 
completed, 2022)

Dana-Farber Cancer 
Institute

1. Pembrolizumab + PLD A phase II study of pembrolizumab combined with PLD for recurrent 
platinum-resistant ovarian, fallopian tube, or peritoneal cancer

NCT03591276 (phase 
1b, unknown status, 
2020)

Shaare Zedek 
Medical Center

1. Pembrolizumab + PLD A phase 1b study of combination chemoimmunotherapy with 
pegylated liposomal doxorubicin (Doxil/Caelyx) and pembrolizumab 
(Keytruda) in metastatic endocrine-resistant breast cancer

NCT05261490 (phase 
II, terminated, 2024)

Pfizer 1. Maplirpacept (PF-
07901801) + PLD

A phase I/II study of TTI-622 in combination with pegylated 
liposomal doxorubicin in patients with platinum-resistant ovarian 
cancer

NCT01991210 (phase II, 
terminated, 2017)

Genentech, Inc. 1. DNIB0600A 
2. PLD

A randomized, open-label, multicenter, phase II trial evaluating the 
safety and activity of DNIB0600A compared to pegylated liposomal 
doxorubicin administered intravenously to patients with platinum-
resistant ovarian cancer

NCT05467670 (phase 
II, recruiting, 2023)

Haider Mahdi 1. ALX148 + PLD + 
pembrolizumab

Safety and efficacy of anti-CD47, ALX148 in combination with 
liposomal doxorubicin and pembrolizumab in patients with recurrent 
platinum-resistant ovarian cancer: phase II study

NCT03480750 (phase 
II, completed, 2020)

National Cheng-
Kung University 
Hospital

1. Trientine + PLD + 
carboplatin

Phase I trial of copper chelator in conjunction with pegylated 
liposomal doxorubicin and carboplatin in patients with platinum-
resistant/refractory epithelial ovarian cancer, tubal cancer, and 
primary peritoneal cancer

NCT01035658 (phase 
II, terminated, 2021)

SCRI Development 
Innovations, LLC

1. Pazopanib + Doxil® A phase I/II study of the combination of pazopanib and liposomal 
doxorubicin (Doxil®) in patients with advanced relapsed platinum-
sensitive or platinum-resistant ovarian, fallopian tube, or primary 
peritoneal adenocarcinoma

NCT02431559 (phase II, 
completed, 2022)

Ludwig Institute for 
Cancer Research

1. Durvalumab + PLD A phase 1/2 study of chemoimmunotherapy with toll-like receptor 8 
agonist motolimod (VTX-2337) + anti-PD-L1 antibody MEDI4736 in 
subjects with recurrent, platinum-resistant ovarian cancer, for whom 
pegylated liposomal doxorubicin is indicated

NCT03268382 (phase 
II, completed, 2024)

Aprea Therapeutics 1. APR-246 + PLD PiSARRO-R: p53 suppressor activation in platinum-resistant high-
grade serous ovarian cancer, a phase II study of systemic pegylated 
liposomal doxorubicin chemotherapy with APR-246

NCT06014528 (phase 
II, recruiting, 2023)

InxMed (Shanghai) 
Co., Ltd.

1. IN10018 + PLD 
2. Placebo + PLD

A multicenter, randomized, double-blind, phase II clinical study of 
IN10018 in combination with PLD vs. placebo in combination with 
PLD for the treatment of platinum-resistant recurrent ovarian cancer

NCT03804866 (phase 
II, completed, 2019)

AGC Biologics S.p.A. 1. NGR-hTNF + PLD 
2. PLD

NGR018: randomized phase II study of NGR-hTNF plus an 
anthracycline vs. an anthracycline alone in platinum-resistant ovarian 
cancer

NCT01358071 (phase II, 
completed, 2018)

AGC Biologics S.p.A. 1. NGR-hTNF + PLD 
2. PLD

NGR018: randomized phase II study of NGR-hTNF plus an 
anthracycline vs. an anthracycline alone in platinum-resistant ovarian 
cancer

NCT02839707 (phase 
II, active, not recruiting, 
2023)

NCI 1. PLD + atezolizumab 
2. PLD + bevacizumab + 
atezolizumab 
3. PLD + bevacizumab

A randomized, phase II/III study of pegylated liposomal doxorubicin 
and CTEP-supplied atezolizumab vs. pegylated liposomal 
doxorubicin, CTEP-supplied bevacizumab and CTEP-supplied 
atezolizumab vs. pegylated liposomal doxorubicin and CTEP-supplied 
bevacizumab in platinum-resistant ovarian cancer

NCT01593488 (phase 
II, active, not recruiting, 
2023)

NCI, Naples 1. Liposomal cytarabine Multicentered phase II study evaluating the activity and toxicity of 
liposomal cytarabine in the treatment of children and adolescents 
with acute lymphoblastic leukemia with resistant or relapsed central 
nervous system involvement

NCT00466960 (phase 
II, completed, 2017)

University of 
Washington

1. Sargramostim + 
paclitaxel albumin-
stabilized nanoparticle 
formulation

A phase II trial of GM-CSF with weekly protein-bound paclitaxel 
(Abraxane™) as chemoimmunotherapy for platinum-
refractory/resistant epithelial ovarian, primary peritoneal, and 
fallopian tube cancer

NCT00499252 (phase 
II, completed, 2022)

Gynecologic 
Oncology Group

1. Paclitaxel albumin-
stabilized nanoparticle 
formulation

A phase II evaluation of Abraxane® in the treatment of recurrent or 
persistent platinum-resistant ovarian, fallopian tube, or primary 
peritoneal cancer

A single-arm phase II study combining CRLX101, a nanoparticle 
camptothecin, with enzalutamide in patients with progressive 
metastatic castration-resistant prostate cancer following prior 

NCT03531827 (phase II, 
terminated, 2022)

NCI 1. Enzalutamide + 
CRLX101

enzalutamide treatment

ClinicalTrials.gov 
identifiers Sponsor Medication Study title
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Phase III

NCT02580058 (phase 
III, completed, 2023)

Pfizer 1. Avelumab 
2. Avelumab + PLD

A phase 3, multicenter, randomized, open-label study of avelumab 
(MSB0010718C) alone or in combination with pegylated liposomal 
doxorubicin vs. pegylated liposomal doxorubicin alone in patients 
with platinum-resistant/refractory ovarian cancer

NCT02421588 (phase 
III, completed, 2020)

PharmaMar 1. Lurbinectedin 
(PM01183) 
2. PLD + topotecan

Phase III randomized clinical trial of lurbinectedin (PM01183) vs. 
pegylated liposomal doxorubicin or topotecan in patients with 
platinum-resistant ovarian cancer (CORAIL trial)

NCT01170650 (phase 
III, terminated, 2021)

Endocyte 1. EC145 + PLD 
(Doxil®/Caelyx®) 
2. Placebo + PLD 
(Doxil®/Caelyx®)

A randomized, double-blind phase 3 trial comparing EC145 and 
pegylated liposomal doxorubicin (PLD/Doxil®/Caelyx®) in 
combination vs. PLD alone in participants with platinum-resistant 
ovarian cancer

NCT01281254 (phase 
III, terminated, 2017)

Amgen 1. AMG386 + PLD 
2. Placebo + PLD

A phase 3, randomized, double-blind trial of PLD plus AMG386 or 
placebo in women with recurrent partially platinum-sensitive or 
-resistant epithelial ovarian, primary peritoneal, or fallopian tube 
cancer

NCT00262990 (phase 
III, completed, 2020)

Novartis 
Pharmaceuticals

1. Patupilone 
2. PLD

A randomized, parallel group, open-label, active controlled, 
multicenter phase III trial of patupilone (EPO906) vs. pegylated 
liposomal doxorubicin in taxane-/platinum-refractory/resistant 
patients with recurrent epithelial ovarian, primary fallopian, or 
primary peritoneal cancer

NCT02839707 (phase 
III, active, not recruiting, 
2023)

NCI 1. PLD + atezolizumab 
2. PLD + bevacizumab + 
atezolizumab 
3. PLD + bevacizumab

A randomized, phase II/III study of pegylated liposomal doxorubicin 
and CTEP-supplied atezolizumab vs. pegylated liposomal 
doxorubicin, CTEP-supplied bevacizumab and CTEP-supplied 
atezolizumab vs. pegylated liposomal doxorubicin and CTEP-supplied 
bevacizumab in platinum-resistant ovarian cancer

NCT04729387 (phase 
III, active, not recruiting, 
2024)

Novartis 
Pharmaceuticals

1. Alpelisib + olaparib 
2. PTX or PLD

EPIK-O: a phase III, multicenter, randomized (1:1), open-label, active-
controlled study to assess the efficacy and safety of alpelisib 
(BYL719) in combination with olaparib as compared to single-agent 
cytotoxic chemotherapy, in participants with no germline BRCA 
mutation detected, platinum-resistant or refractory, high-grade 
serous ovarian cancer

Data retrieved from https://clinicaltrials.gov/. PLD: Pegylated liposomal doxorubicin; PTX: paclitaxel; Pac: paclitaxel; PD-L1: programmed cell 
death ligand-1; NCI: National Cancer Institute; HGSOC: high-grade serous ovarian cancer; LGSOC: low-grade serous ovarian cancer; PDGFRα: 
platelet derived growth factor receptor-alpha; GM-CSF: granulocyte-macrophage colony-stimulating factor; BRCA: BReast CAncer gene; NGR-
hTNF: asparagine-glycine-arginine-human tumour necrosis factor; CTEP: Cancer Therapy Evaluation Program; ALX148: a code name of 
evorpacept; APR-246: a code name of eprenetapopt; AMG386: a code name of trebananib; CRLX101: a name of nanomedicine composed of a 
camptothecin conjugated to a cyclodextrin-polyethylene glycol co-polymer; SL-172154 (SIRPα-Fc-CD40L): a bi-functional fusion protein 
consisting of the extracellular domains (ECDs) of human signal-regulatory protein alpha (SIRPalpha; SIRPa; CD172a) and CD40 ligand (CD40L; 
CD154; TRAP; TNFSF5) linked via a human Fc domain; MEDI4736: durvalumab; TTI-622: a fusion protein consisting of the CD47-binding domain 
of human SIRPα linked to the Fc region of human IgG4; AVB-S6-500: batiraxcept; APR-246: eprenetapopt or PRIMA-1MET; DNIB0600A: 
lifastuzumab vedotin or LIFA; IN10018: ifebemtinib; EC145: vintafolide.

PERSPECTIVES
To overcome the challenges, the research direction should focus on developing more stable and scalable 
lipid-based nanomedicines. Method validation and quality control are crucial but compromise cost-effective 
manufacturing. Investigating the use of novel ligands for targeted delivery and exploring the potential of 
combination therapies could provide new insights. Long-term preclinical trials are also important for 
understanding the pharmacokinetics and pharmacodynamics of these systems.

Robust studies confirm the significant progress of lipid-based nanomaterials in improving drug delivery, 
synergizing therapeutic effects, and overcoming drug resistance. Lipid-based nanomaterials can unlock the 
advanced applications of potent anticancer agents derived from various natural substances by delivering the 
phytochemicals, which are often restricted to their limited solubility, to the targeted organs[143]. Lipid-based 
nanomaterials enable additional administration routes to increase therapeutic effects and enhance patient 
compliance, thereby enabling personalized treatment options. Besides investigating novel cytotoxic agents, 
there is considerable focus on the identification of new indications for existing clinically approved drugs or 

ClinicalTrials.gov 
identifiers Sponsor Medication Study title

https://clinicaltrials.gov/
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repurposing them for cancer therapy. Theoretically, repurposed drugs may help shorten the time required 
for the research and development process and significantly reduce resistance to current therapeutic 
regimens[61,144]. Utilization of lipid-based nanomaterials will make the repurposed drug more efficient and 
safe. In the meantime, there is an urgent need for a rapid, high-accuracy tool for lipid-based theranostics to 
address cancer resistance[145,146]. NanoBodipy, a nitroreductase-responsive dye, was recently invented as a 
smart optical nanoprobe for non-invasive and real-time tumor-targeted imaging. This innovation can 
accumulate in tumors via the EPR effect, which is beneficial for tumor resection surgery guidance as a 
theranostic agent to achieve complete tumor removal, thereby reducing the prevalence of drug resistance in 
remaining cancerous cells[147].

Artificial intelligence (AI) technology is increasingly playing important roles in areas such as lipid 
nanotechnology design and cancer drug resistance modeling, by gathering existing data and creating 
excellent algorithms[148]. EVONANO, an AI platform, has recently been developed as a simulation platform 
to design nanomedicines according to the optimized treatment parameters for cancer treatment. This in 
silico model simulates virtual tumor growth and tissue-scale dynamics, integrating machine learning to 
identify the most effective anticancer nanomedicines[149]. It could save both time and cost in lipid-based 
nanomaterials development and significantly advance the field of nanomedicine.

To the best of our knowledge, technological advancements and the integration of modern technology have 
remarkably revolutionized cancer research, diagnosis, therapy, and cancer management. Their applications 
have the potential to transform the administration of various therapeutic agents, including gene therapy and 
vaccines, thereby significantly impacting clinical practices. Addressing these issues requires 
multidisciplinary collaboration, innovative engineering solutions, comprehensive preclinical and clinical 
studies, and well-rounded development of regulations.

CONCLUSION
The development of cancer drug resistance often limits the effectiveness of treatment regimens and leads to 
relapse, recurrence, and fatality. The development of lipid-based nanomaterials, stemmed from natural 
vesicles of human body, presents promising avenues for cancer treatment. These nanomaterials, due to their 
nano-scale size, biocompatibility, flexibility for surface modification, and production techniques, are 
currently being investigated for the development of new formulations and modifications of existing 
anticancer agents to offer viable solutions to combat cancer drug resistance. The progress of nanomedicines 
based on lipid-based nanomaterials is poised to alleviate global burden and improve human health.

To date, robust studies have shown that lipid-based nanotechnology plays a significant role in overcoming 
drug resistance in cancer treatment. Integrating various anticancer agents and genetic materials into lipid-
based nanomaterials can enhance drug tolerability, reduce drug-induced toxicity, reverse some resistant-
related mechanisms, and alter the TME. The superiority of these nanomaterials results in the enhancement 
and synergy of therapeutic effects of anticancer drugs while reducing the occurrence of cancer drug 
resistance, ultimately improving sensitivity to traditional drugs and survival rates.

In addition to pharmacogenomics, proteomics, and metabolomics, there is considerable potential for 
leveraging AI technology in computational modeling, mathematical modeling, and machine learning. These 
avenues hold promise for developing novel tools to predict disease progression and cancer resistance, 
thereby advancing personalized medicine. To achieve this ambitious goal, it is imperative to gather and 
analyze the clinical data of patients suffering from resistant cancer using AI algorithms. Predictive models 
for the most likely outcomes and progressions of cancer could lead to significant improvement in cancer 
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management. However, the implementation of these new methods in clinical care necessitates extensive 
studies and time investment. Accelerating the translation of these modern technologies to support cancer 
treatment requires robust collaborations and networking among researchers, clinicians, hospitals, and 
industry stakeholders, as well as many relative efforts. Interdisciplinary partnerships play a pivotal role in 
addressing the complex challenges and harnessing the full potential of lipid-based nanomedicines.
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