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Abstract
Aim: This study aims to investigate and apply effective machine learning techniques for the early detection and 
precise diagnosis of breast cancer. The analysis is conducted using various breast cancer datasets, including Breast 
Cancer Wisconsin, Breast Cancer Diagnosis, NKI Breast Cancer, and SEER Breast Cancer datasets. The primary 
focus is on identifying key features and utilizing preprocessing methods to enhance classification accuracy.

Methods: The datasets undergo several preprocessing steps, such as label encoding for categorical variables, linear 
regression for handling missing values, and Robust scaler normalization for data standardization. To address class 
imbalance, Tomek Link SMOTE is employed to improve dataset representation. Significant features are selected 
through L2 Ridge regularization, helping to pinpoint the most important predictors of breast cancer. A range of 
machine learning models, including decision tree, random forest, support vector machine (SVM), neural network, 
K-nearest neighbor, naïve bayes, extreme gradient boost (XGBoost), and AdaBoost, are applied for classification 
tasks. The performance of these models is assessed using metrics such as accuracy, precision, recall, F1-score, and 
the Kappa statistic. Additionally, the models' effectiveness is further evaluated using the receiver operating 
characteristic curve and precision-recall curve.
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Results: The XGBoost model achieved the best performance on both the breast cancer Wisconsin and diagnosis 
datasets. The SVM model reached 100% accuracy on the NKI breast cancer dataset, while the random forest 
model performed optimally on the SEER breast cancer dataset. The feature selection process through L2 Ridge 
regularization was crucial in enhancing the performance of these models.

Conclusions: This work emphasizes the critical role of machine learning in improving breast cancer detection. By 
applying a combination of preprocessing techniques and classification models, the study successfully identifies 
significant features and boosts model performance. These findings contribute to the development of more accurate 
diagnostic tools, ultimately enhancing patient outcomes.

Keywords: Breast cancer, machine learning, feature selection, data preprocessing, Tomek Link SMOTE, L2 ridge 
regularization

INTRODUCTION
Breast cancer is a heterogeneous and multifactorial disease that typically begins in the milk ducts or lobules 
of the breast. Its development is driven by a combination of genetic alterations, hormonal imbalances, and 
environmental exposures, which lead to abnormal cell proliferation and the potential for malignant cells to 
spread to other organs. The capacity for metastasis makes early detection and intervention crucial for 
effective management. As one of the leading causes of death and disability globally, breast cancer places 
considerable pressure on healthcare systems. Despite progress in diagnostic methods and treatments, the 
disease's high prevalence and significant impact on patients' lives highlight the urgent need for novel 
approaches in both detection and therapy to improve patient outcomes and alleviate the burden on 
healthcare infrastructures.

Breast cancer is a significant global health concern, accounting for approximately 25% of all cancer cases 
among women and remaining one of the leading causes of cancer-related mortality worldwide. The 
increasing incidence of breast cancer necessitates improved screening methods, diagnostic techniques, and 
treatment options to enhance early detection and improve patient outcomes. Timely identification of breast 
cancer can substantially reduce mortality rates and increase the likelihood of successful treatment. The 
integration of machine learning (ML) techniques into breast cancer diagnosis presents a promising 
approach to address the challenges associated with traditional diagnostic methods. These techniques can 
analyze large and complex datasets, uncover patterns, and make predictions that may not be readily 
apparent through conventional statistical methods. Several publicly available breast cancer datasets, such as 
the Breast Cancer Wisconsin, Breast Cancer Diagnosis, NKI Breast Cancer, and SEER Breast Cancer 
Dataset, offer valuable resources for developing and validating ML models.

Effective preprocessing of these datasets is crucial for enhancing the performance of machine learning 
algorithms. This study employs various preprocessing techniques, including label encoding to convert 
categorical variables into numerical values, linear regression to handle missing data, and Robust scalar 
normalization for feature scaling. To mitigate class imbalance - a common issue in cancer datasets - Tomek 
Link SMOTE is applied, allowing for a more equitable representation of classes and improving model 
performance.

Feature selection is another vital aspect of this research, as identifying the most relevant features can lead to 
more accurate and interpretable models. L2 Ridge regularization is utilized to highlight the key predictors of 
breast cancer, providing insights that can inform clinical decision making.
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In this study, we explore a range of machine learning models, including decision trees, random forests, 
support vector machines (SVM), Neural networks, K-nearest neighbors (KNN), Naïve bayes, extreme 
gradient boosting (XGBoost), and AdaBoost. The performance of these models is evaluated using several 
metrics, including accuracy, precision, recall, F1-score, and kappa constant, alongside the ROC curve and 
Precision-Recall curve for a comprehensive assessment of their effectiveness.

The findings from this research aim to contribute to the ongoing efforts in breast cancer identification, 
ultimately fostering advancements in diagnostic technologies and improving patient outcomes through the 
application of machine learning.

Breast cancer is one of the most prevalent and harmful tumors affecting women, often arising from a 
combination of lifestyle choices, environmental factors, and genetic predispositions. Studies indicate that 
5%-10% of breast cancer cases are linked to hereditary genetic mutations associated with family history[1]. 
Despite advancements in diagnosis and treatment, breast cancer continues to pose a major health challenge, 
with approximately 30% of women in the USA affected annually. According to the 2024 Breast Cancer 
Statistics report, 1 in 8 women is likely to develop breast cancer during their lifetime, with about 61% of 
cases detected at localized stages and 70%-80% involving invasive ductal carcinoma. Triple-negative breast 
cancer remains common, accounting for 10%-15% of cases[2]. Symptoms include unexplained breast 
swelling, nipple discharge, and persistent discomfort. Non-invasive breast cancers, such as ductal carcinoma 
in situ (DCIS), involve abnormal cell growth within ducts, while invasive types like infiltrative ductal 
carcinoma spread into breast tissues and beyond[3].

Early detection of breast cancer is vital in reducing mortality rates and slowing the progression of carcinoma 
cells. Diagnostic methods such as biopsy, mammography, ultrasonography, and thermography are effective 
but often underutilized due to limited access and high costs in certain areas, leading to higher death rates in 
some communities[4]. Systematic analysis was introduced to classify cells as cancerous or non-cancerous, 
addressing these challenges.

In recent years, artificial intelligence has become increasingly important in the medical field, where accurate 
diagnosis is essential for effective treatment. Machine learning and deep learning techniques are critical for 
screening severe diseases such as breast cancer. Advances in molecular biotechnology and imaging have 
enabled reliable diagnostic methods, including deep learning with biomarkers from hematoxylin and eosin 
images to detect and localize tumor regions[5].

Another way to identify them is through medical imaging along with machine learning process. Medical 
imaging is instrumental in the detection of defects in various organs of the body, such as the lungs[6], 
brain[7], and stomach[8]. Through these images, it is significant to perform feature selection to optimize its 
performance and improve the diagnostic accuracy in mammograms[9]. Convolutional neural networks 
(CNN) have proven highly effective in analyzing medical images by filtering out noise, removing imaging 
artifacts, and enhancing low-contrast features.

Khan et al., (2020) introduced a CNN-based method, CNNI-BCC, achieving 90.5% accuracy in breast 
cancer classification using data from 221 patients[10]. This deep learning model operates without human 
intervention to classify cancer types. Similarly, Al-Antari et al. (2018) developed a CAD system employing a 
deep belief network (DBN) to assist radiologists in diagnosing breast cancer from digital mammography 
images[11]. The system uses two ROI extraction techniques - small ROIs from detected masses and whole 
mass ROIs - extracting 347 features for classification with methods such as quadratic and linear 
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discriminant analysis and neural networks. The DBN-based CAD system demonstrated superior accuracy, 
achieving 92.86% and 90.84% for the respective ROI approaches.

The research was carried out on the Wisconsin Breast Cancer Dataset, in which five machine learning 
algorithms were adopted: random forest algorithm (RF), SVM, logistic regression (LR), KNN, and C4.5 
decision tree. The main objective of this research was to predict and diagnose breast cancer with respect to 
accuracy, confusion matrix, and precision. Among these five ML algorithms, SVM outperformed well and 
obtained an accuracy of 97.2%[12].

Bone marrow carcinomatosis is a rare complication of breast cancer. A case involved a woman in her 
seventies with stage IV estrogen receptor-positive invasive lobular carcinoma, whose hematologic 
abnormalities improved with letrozole treatment but later required a switch to palbociclib and fulvestrant 
due to disease progression[13].

Breast cancer, a leading cause of cancer mortality, has been linked to progranulin (PGRN) as a potential 
biomarker. Studies suggest PGRN’s role in increased cancer risk, clinicopathological features, and drug 
resistance. Targeting PGRN and related pathways, such as sortilin (SORT1), may offer innovative strategies 
for early detection and treatment[14].

A medical IoT-based diagnostic system[15] was proposed to effectively identify malignant and benign breast 
cancer cases. This method uses ANN and CNN with optimized hyperparameters for classification using 
particle swarm optimization (PSO), where SVMs and multi-layer perceptron (MLPs) act as baseline 
classifiers for comparison.  This achieved the highest accuracy of 98.5% using CNN and 99.2 % using ANN.

A study using the invasive ductal carcinoma (IDC) dataset evaluated various ML algorithms, including 
decision tree, random forest, and light gradient boosting (LGB). The LGB algorithm achieved the highest 
accuracy of 95%, with precision, recall, and F1 scores of 94.86%, 94.32%, and 94.57%, respectively. This 
method could assist healthcare providers in making better decisions, improving treatment, and enhancing 
outcomes for breast cancer patients[16].

Advancements in machine learning and deep learning have enabled early breast cancer diagnosis. A study 
using the SEER Database applied preprocessing techniques, handling missing values with random forest 
classifiers for categorical variables and random forest regressors for continuous variables. Significant 
features were selected using Variance Threshold and Principal Component Analysis. These features were 
then classified using decision tree (DT), Naïve Bayes, AdaBoost, gradient boosting classifier (GBC), and 
XGBoost, with metrics such as accuracy, recall, precision, F1 score, sensitivity, and specificity. Among all, 
the Decision Tree achieved the highest accuracy of 98%[17].

Although all these achievements toward breast cancer diagnosis resulted decently with good accuracy, they 
present potential limitations in terms of precision, recall and F1 score, kappa co-efficient, sensitivity, and 
specificity. This study addresses these challenges and analyzes various machine learning techniques by 
turning an imbalanced dataset into a balanced one using SMOTE technique. This helps to achieve superior 
performance in breast cancer detection.

Problem statement
Breast cancer continues to pose a significant threat to women's health globally, with rising incidence rates 
and associated mortality. Traditional diagnostic methods, including mammography and clinical 
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examinations, often suffer from limitations such as false positives, false negatives, and a lack of 
comprehensive analysis of individual risk factors. These challenges underscore the urgent need for more 
accurate, efficient, and accessible diagnostic tools.

Despite the availability of extensive datasets related to breast cancer, the effective utilization of these data for 
early diagnosis remains a formidable challenge. Many existing approaches do not fully leverage machine 
learning techniques to analyze complex datasets, which can lead to suboptimal identification of breast 
cancer cases. Additionally, issues such as class imbalance, missing values, and the need for robust feature 
selection further complicate the development of effective predictive models.

This work aims to address these challenges by employing advanced machine learning methodologies and 
rigorous data preprocessing techniques to enhance the identification of breast cancer. Specifically, we focus 
on improving the accuracy and reliability of predictive models through the integration of multiple machine 
learning algorithms, comprehensive feature selection, and effective handling of data inconsistencies. By 
tackling these issues, the study seeks to contribute to the development of a more reliable and effective 
diagnostic framework that can facilitate early detection of breast cancer and ultimately improve patient 
outcomes

Research contributions
This work makes several significant contributions to the field of breast cancer identification, aiming to 
enhance diagnostic accuracy and promote the use of machine learning techniques in clinical practice:

1. Comprehensive analysis of multiple datasets: by utilizing well-known breast cancer datasets such as 
Breast Cancer Wisconsin, Breast Cancer Diagnosis, NKI Breast Cancer, and SEER Breast Cancer Dataset, 
this research provides a thorough examination of diverse data sources. This allows for a more robust 
understanding of the factors influencing breast cancer diagnosis.

2. Data preprocessing techniques: the application of rigorous preprocessing methods - including label 
encoding for categorical variables, linear regression for imputing missing values, Robust scalar 
normalization for feature scaling, and Tomek Link SMOTE for class imbalance - enhances the quality of the 
datasets and prepares them for effective machine learning modeling. These methodologies serve as a 
guideline for future research in handling similar data challenges.

3. Feature selection using L2 ridge regularization: the study employs L2 Ridge regularization for feature 
selection, facilitating the identification of critical predictors of breast cancer. This not only improves model 
interpretability but also offers valuable insights into the biological and clinical relevance of the identified 
features, which can inform further research and clinical practices.

4. Evaluation of multiple machine learning models: by comparing the performance of various machine 
learning algorithms - including Decision Trees, Random Forests, SVM, Neural Networks, KNN, XGBoost, 
and AdaBoost - this research contributes to the understanding of which models are most effective for breast 
cancer identification. The comprehensive evaluation using metrics such as accuracy, precision, recall, F1-
score, and Kappa constant provides a solid foundation for future studies.

5. Implementation of robust performance measures: the inclusion of ROC curves and precision-recall 
curves as additional performance metrics offers a more nuanced view of classifier performance, enabling 
better decision making in clinical settings. This holistic assessment supports the deployment of machine 
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learning models in real-world scenarios, where the trade-off between sensitivity and specificity is crucial.

6. Impact on clinical practice: ultimately, this research aims to bridge the gap between machine learning 
advancements and clinical application. By demonstrating the potential of machine learning techniques in 
enhancing breast cancer identification, the findings contribute to the development of more effective 
diagnostic tools that can lead to timely interventions and improved patient outcomes.

METHODS
Label encoder
A label encoder[17] is a preprocessing technique used to convert categorical data into numerical values, 
which are better suited for machine learning algorithms. Label encoding assigns a unique integer to each 
category or label in the dataset. This approach is useful when the categorical variables do not have an 
inherent order, but they still need to be transformed into a format that models can work with.

Replace the missing values by linear regression
Replacing missing values using linear regression[18] is an imputation technique where missing data in a 
dataset are estimated based on the linear relationship between the target feature and other predictor features 
in the dataset.

Normalization using robust scalar
Normalization using robust scaler[19] is a data preprocessing technique that helps transform features in a 
dataset so that they are centered around the median and have a specific range. This method is particularly 
useful for datasets with outliers, as it mitigates their influence on the scaling process.

Oversampling using Tomek links and SMOTE
Tomek links and synthetic minority over-sampling technique (SMOTE) are commonly used methods to 
address class imbalance issues in classification tasks. Their combination is widely applied to improve the 
balance in datasets by increasing minority class instances and eliminating unclear samples from the majority 
class.

SMOTE[20] creates new synthetic samples for the minority class by interpolating between existing data points 
within that class. Tomek links[21] identifies pairs of data points, one from the majority class and the other 
from the minority class, that are nearest neighbors to each other. These pairs are considered ambiguous or 
noisy and are often removed to clarify class boundaries.

Using both techniques together forms an effective preprocessing strategy:

• SMOTE first oversamples the minority class by generating synthetic data points.

• Tomek links is then applied to remove noisy or ambiguous points from the majority class.

This combined process, referred to as SMOTE + Tomek, involves:

1. Oversampling the minority class using SMOTE to increase its representation in the dataset.

2. Applying Tomek links to the oversampled dataset to eliminate overlapping and ambiguous samples from 
the majority class, resulting in cleaner class boundaries and a more balanced dataset.
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This approach helps improve model performance by addressing both class imbalance and boundary clarity
between the classes.

Feature selection using L2 ridge regularization
Ridge feature selection[21], also known as Ridge Regression or Tikhonov regularization, is a method that
helps to prevent overfitting in regression models by introducing a regularization term to the cost function.
Unlike traditional feature selection methods that directly remove features, Ridge Regression shrinks the
coefficients of less important features, reducing their impact but keeping all features in the model. This
technique is particularly useful when there is multicollinearity (correlation among predictor variables) in
the dataset.

In ordinary least squares (OLS) regression, the coefficients the β are obtained by minimizing the sum of
squared residuals. The solution is given by:

β = (XTX)-1XTy                                                                              (1)

where X is the matrix of input features, y is the vector of target values, and β is the vector of coefficients
(including βj).

In Ridge Regression, the cost function is modified to include a penalty term proportional to the square of
the coefficients:

where yi is the actual value, βj is the coefficient for feature j, λ the regularization parameter (the higher λ, the 
more significant the regularization effect), and p is the number of features.

In Ridge Regression (L2 regularization), feature selection is performed implicitly by shrinking the 
coefficients of less important features, but it does not set them exactly to zero.

Steps to rank features in Ridge Regression:

1. Train the Ridge Regression model with your dataset.

2. Extract the coefficients of the model (βj)

3. Sort the coefficients by their absolute values (after standardization of features)

4. Rank the features based on the magnitude of their coefficients.

The features are not explicitly selected in the traditional sense because Ridge does not shrink coefficients to 
zero, unlike Lasso regression. Instead, Ridge penalizes the size of the coefficients, shrinking them toward 
zero but retaining all features in the model. This means that all variables remain part of the model, albeit 
with reduced influence depending on the penalty term. If a selection of features is needed using Ridge, an 
additional step is required. In this work, the features are ranked based on the magnitude of their 
coefficients. Features with larger absolute coefficients are typically considered more important.
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RESULTS
This section presents the results obtained from the various machine learning models applied to breast 
cancer datasets, along with a comprehensive analysis of their performance. The preprocessing steps, 
including label encoding, missing value imputation via linear regression, Robust scalar normalization, and 
the application of Tomek Link SMOTE for balancing the classes, were critical in ensuring the quality of the 
data. Following these preprocessing techniques, we trained and evaluated multiple machine learning 
algorithms - decision tree, random forest, SVM, neural network, KNN, XGBoost, and AdaBoost. Each 
model's performance was assessed using key metrics, including accuracy, precision, recall, F1-score, and the 
Kappa constant, as well as additional measures such as the ROC curve and Precision-Recall curve. The 
analysis highlights the strengths and weaknesses of each model, providing insights into their applicability 
for breast cancer identification. These results not only validate the effectiveness of machine learning 
approaches in this context but also emphasize the importance of robust preprocessing and feature selection 
in achieving optimal performance. Table 1 shows the datasets used in the present work.

Correlation matrix
The correlation matrix is a valuable tool for identifying relationships between different attributes (or 
features) in a dataset. It quantifies how the values of two variables move together. In the context of breast 
cancer identification, a correlation matrix can help understand the relationships between clinical or 
genomic attributes and how these correlations might influence the outcomes predicted by machine learning 
models.

A correlation matrix is a table where each element represents the correlation coefficient between two 
variables. The value of the correlation coefficient ranges from -1 to 1:

• 1 indicates a perfect positive correlation: as one attribute increases, the other increases proportionally.

• -1 indicates a perfect negative correlation: as one attribute increases, the other decreases proportionally.

• 0 indicates no correlation: changes in one attribute do not affect the other.

For example, a visual correlation matrix for a breast cancer dataset includes attributes such as tumor size, 
cell texture, compactness, symmetry, and fractal dimension. The matrix would be color-coded, with shades 
of blue representing negative correlations, shades of red indicating positive correlations, and white or light 
hues denoting near-zero correlation. The diagonal of the matrix will have a correlation of 1, as each variable 
is perfectly correlated with itself.

Machine learning models
The machine learning models utilized in this study are Decision Tree[22], Random Forest[23] Support Vector 
Machine[24], Neural Networks[25], K-Nearest Neighbor[26], Naïve Bayes[27] Extreme Gradient Boosting 
(XGBoost)[28], and AdaBoost[29].

Confusion matrix
A confusion matrix is a fundamental tool in machine learning for evaluating the performance of 
classification models. It provides a tabular representation of the actual versus predicted classifications, 
allowing for the visualization of the model's performance across different classes. In a binary classification 
scenario, the confusion matrix typically consists of four components:
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Table 1. Dataset description

S. no. Dataset No. of 
instances

No. of 
features

No. of categorical 
features No. of class labels

No. of features 
selected through 
RIDGE

Dataset link 
details

1 Breast cancer 
Wisconsin

569 32 1 Malignant, benign 11 Kaggle dataset

2 Breast cancer 
diagnosis

286 13 6 No-recurrence-event, 
recurrence-events

3 UCI

3 NKI breast 
cancer

272 1,568 0 Alive, dead 653 Data world

4 SEER breast 
cancer dataset

4,023 16 10 Alive, dead 6 Kaggle

• True positives (TP): the number of instances correctly predicted as positive.

• True negatives (TN): the number of instances correctly predicted as negative.

• False positives (FP): the number of instances incorrectly predicted as positive instances (Type I error).

• False negatives (FN): the number of instances incorrectly predicted as negative instances (Type II error).

Figure 1 depicts the confusion matrix for binary classes.

From this matrix, the following important performance metrics are derived:

Accuracy: This metric indicates the overall correctness of the model's predictions and is calculated as:

Accuracy provides a general sense of how well the model performs, but it may not be sufficient for 
imbalanced datasets where one class is more prevalent than the other.

Precision: Also known as positive predictive value, precision measures the proportion of true positive 
predictions among all positive predictions. It is defined as:

High precision indicates a low false positive rate, which is crucial in scenarios where the cost of false 
positives is high.

Recall: Also referred to as sensitivity or true positive rate, recall measures the proportion of actual positive 
instances that were correctly identified. It is calculated as:



Page 20 Kandhasamy et al. J Transl Genet Genom. 2025;9:11-34 https://dx.doi.org/10.20517/jtgg.2024.82

Figure 1. Confusion matrix.

High recall is important in contexts where missing positive cases is critical, such as in medical diagnoses.

F1-Score: The F1-score is the harmonic mean of precision and recall, providing a single metric that balances 
both concerns. It is particularly useful in situations where there is an uneven class distribution. The F1-score 
is given by:

This metric is beneficial when both precision and recall need to be optimized.

Kappa Constant (Cohen’s Kappa): This statistic measures the agreement between predicted and actual 
classifications, accounting for chance agreement. It is calculated as:

where p0 is the observed accuracy and pe is the expected accuracy by chance. Kappa values range from -1 to 
1, with values closer to 1 indicating strong agreement.

Receiver Operating Characteristic (ROC) Curve: The ROC curve is a graphical representation that 
illustrates the diagnostic ability of a binary classifier as its discrimination threshold is varied. The curve plots 
the True Positive Rate (TPR or Recall) against the false positive rate at various threshold settings. The area 
under the ROC curve (AUC-ROC) quantifies the overall performance of the model, with a value of 1 
indicating perfect classification and a value of 0.5 representing no discriminative power.

Precision-Recall Curve: This curve is another important tool for evaluating the performance of a classifier, 
particularly in imbalanced datasets. It plots precision against recall for different threshold values, providing 
a more informative view of the trade-offs between these two metrics.

These metrics, derived from the confusion matrix, provide a comprehensive evaluation of the model's 
performance in breast cancer identification, enabling a deeper understanding of its strengths and limitations 
in clinical contexts.
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Breast cancer Wisconsin dataset
Figure 2 presents the correlation matrix for the Breast Cancer Wisconsin dataset. Figure 3A and B display 
the dataset before and after applying Tomek-link SMOTE sampling, respectively. Figure 4 illustrates the 
selected features along with their corresponding coefficients ranked by importance. The top features 
selected - radius_worst, area_worst, compactness_mean, radius_se, concavity_mean, perimeter_mean, 
texture_worst, area_mean, concave_point_mean, concave_points_worst and radius_mean - are applied to 
machine learning models. Figures 5-7 depict the performance metrics, ROC curve, and precision-recall 
curve, respectively. For this dataset, XGBoost surpasses the other machine learning models, achieving an 
accuracy of 96% and an area under the curve (AUC) value of 1.

Breast cancer diagnosis dataset
Figure 8 presents the correlation matrix for the Breast Cancer Wisconsin dataset. Figure 9A and B show the 
dataset before and after applying Tomek-link SMOTE sampling, respectively. Figure 10 displays the selected 
features, ranked by importance, along with their coefficients. The top features identified are deg_malig, 
node_caps, and menopause, which were utilized in machine learning models for classification. 
Figures 11-13 provide visualizations of the performance metrics, ROC curve, and precision-recall curve, 
respectively. Among the models applied, XGBoost achieved the best results, with an accuracy of 72% and an 
AUC of 0.83.

NKI breast cancer data
Figure 14 illustrates the dataset before and after sampling using Tomek-link SMOTE. Figures 15-18 display 
the performance metrics, ROC curve, and precision-recall curve, respectively. Among the models tested, 
SVM outperformed the others, achieving 100% accuracy.

SEER breast cancer dataset
Figure 18 shows the correlation matrix for the Breast Cancer Wisconsin dataset. Figure 19A and B illustrate 
the dataset before and after applying Tomek-link SMOTE sampling, respectively. Figure 20 highlights the 
selected features, ranked by importance, along with their corresponding coefficients. The most significant 
features identified are progesterone status, N Stage, 6th stage, Race, A Stage, and Grade, which were used for 
classification in the machine learning models. Figures 21-23 provide visual representations of the 
performance metrics, ROC curve, and precision-recall curve, respectively. Of the models tested, Random 
Forest delivered the highest performance, achieving 92% accuracy and an AUC of 0.98.

Incorporating confidence intervals (CIs) into the analysis involves estimating a range within which the true 
value of a metric, such as accuracy or mean squared error, is likely to fall, typically with a 95% confidence 
level. Cross-validation is used to measure confidence intervals.  The steps to measure CI using cross-
validation are

1. Perform k-fold cross-validation.

2. Calculate the metric for each fold.

3. Compute the standard deviation of the metrics and use it to derive the CI using the formula:  

where  is the mean of the metric, σ is the standard deviation, n is the sample size, and Z corresponds to the 
confidence level (1.96% for 95%).

Table 2 provides the confidence intervals (CIs) for all classifier models across the four datasets.
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Figure 2. Correlation matrix.

Figure 3. Breast cancer Wisconsin dataset before and after sampling.
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Figure 4. Features selected with their coefficients.

Figure 5. Performance measures.

DISCUSSIONS
This work successfully demonstrates the potential of machine learning techniques for improving the 
identification of breast cancer through the analysis of multiple datasets. By employing advanced 
preprocessing methods, including label encoding, linear regression for missing values, Robust scalar 
normalization, and Tomek Link SMOTE for class imbalance, we established a robust foundation for 
effective model training.
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Table 2. Measuring confidence interval with cross entropy

Dataset Measures Decision 
tree

Random 
forest SVM XGB AdaBoost Neural 

networks k-NN Naïve 
bayes

Mean CV 
score:

0.9366 0.9662 0.9704 0.9732 0.3913 0.9634 0.9676 0.9451

Standard 
deviation:

0.0154 0.0150 0.0113 0.0103 0.0179 0.0053 0.0072 0.0163

Breast cancer 
Wisconsin

95% 
confidence 
interval

(0.9231, 
0.9501)

(0.9530, 
0.9794)

(0.9605, 
0.9803)

(0.9642, 
0.9823)

(0.9598, 
0.9783)

(0.9588, 
0.9680)

(0.9613, 
0.9739)

(0.9308, 
0.9594)

Mean CV 
score:

0.6994 0.7279 0.6591 0.7359 0.7042 0.6672 0.6646 0.6328

Standard 
deviation:

0.0962 0.0957 0.1501 0.0966 0.0883 0.0890 0.0772 0.1433

Breast cancer 
diagnosis

95% 
confidence 
interval

(0.6150, 
0.7837)

(0.6440, 
0.8118)

(0.5275, 
0.7907)

(0.6512, 
0.8206)

(0.6268, 
0.7817)

(0.5891, 
0.7452)

(0.5969, 
0.7323)

(0.5072, 
0.7584)

Mean CV 
score:

0.8795 0.9154 0.9667 0.9256 0.9231 0.9077 0.6821 0.6974

Standard 
deviation:

0.0224 0.0310 0.0192 0.0297 0.0363 0.0274 0.0971 0.1002

NKI_cleaned

95% 
confidence 
interval

(0.8599, 
0.8991)

(0.8882, 
0.9425)

(0.9498, 
0.9835)

(0.8996, 
0.9517)

(0.8913, 
0.9549)

(0.8837, 
0.9317)

(0.5969, 
0.7672)

(0.6096, 
0.7852)

Mean CV 
score:

0.4533 0.4696 0.7391 0.4448 0.3913 0.6702 0.5650 0.7059

Standard 
deviation:

0.0433 0.0514 0.1793 0.0399 0.0179 0.1691 0.1564 0.1574

SEER

95% 
confidence 
interval

(0.4154, 
0.4913)

(0.4246, 
0.5146)

(0.5819, 
0.8963)

(0.4098, 
0.4797)

(0.3757, 
0.4070)

(0.5219, 
0.8184)

(0.4279, 
0.7021)

(0.5679, 
0.8438)

Figure 6. ROC curve.
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Figure 7. Precision recall curve.

Figure 8. Correlation matrix.

The application of L2 Ridge regularization for feature selection allowed us to identify key predictors 
associated with breast cancer, providing valuable insights that could inform both clinical practice and future 
research. Our evaluation of various machine learning models - such as Decision Trees, Random Forests, 
Support Vector Machines, Neural Networks, K-Nearest Neighbors, Naïve Bayes, Extreme Gradient 
Boosting, and AdaBoost - yielded valuable performance metrics, including accuracy, precision, recall, F1-
score, and Kappa constant. The additional assessment through ROC and Precision-Recall curves further 
elucidated the strengths and weaknesses of each model in clinical contexts.
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Figure 9. Breast cancer Wisconsin dataset before and after sampling.

Figure 10. Selected features of breast cancer diagnosis dataset.

Figure 11. Performance measures.
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Figure 12. ROC curve.

Figure 13. Precision recall curve.
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Figure 14. Dateset before and after sampling using Tomek-link SMOTE.

Figure 15. Performance measures.

The findings of this research emphasize the importance of integrating machine learning methodologies into 
the diagnostic process for breast cancer, showcasing their ability to enhance early detection and treatment 
outcomes. As the field continues to evolve, the approaches and insights generated from this study can serve 
as a roadmap for future investigations aimed at refining diagnostic tools and ultimately improving patient 
care.

XGBoost yielded the best results for the Breast Cancer Wisconsin and Diagnosis datasets, while SVM 
achieved 100% accuracy for the NKI Breast Cancer dataset, and Random Forest performed optimally for the 
SEER breast cancer dataset when using the selected features identified by L2 Ridge regularization. No single 
machine learning algorithm consistently outperformed across all datasets. The accuracy of each model is 
influenced by factors such as the number of features, the size of the dataset, hyperparameters, overfitting 
and generalization, and the feature importance.
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Figure 16. ROC curve.

Figure 17. Precision recall curve.

The development of customized methodologies and the exploration of unique features not only enhance 
diagnostic accuracy in breast cancer but also hold the promise of transforming clinical practice, paving the 
way for more effective and personalized healthcare solutions.
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Figure 18. Correlation matrix.

Figure 19. The dataset before and after Tomek-link SMOTE sampling.



Kandhasamy et al. J Transl Genet Genom. 2025;9:11-34 https://dx.doi.org/10.20517/jtgg.2024.82 Page 31

Figure 20. Selected features.

Figure 21. Confusion matrix for (a) Decision Tree, (b) Random forest, (c) SVM, (d) Neural Network, (e) K-nearest neighbor, (f) Naïve 
Bayes, (g) XGBoost, and (h) AdaBoost.
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Figure 22. ROC curve.

Figure 23. Precision recall curve.
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