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Abstract
Aim: This paper aims to advance autonomous surgical operations through imitation learning from video demonstra-
tions.

Methods: To address this objective, we propose two main contributions: (1) We introduce a new dataset of virtual
kidney tumor environments to train our model on. The dataset is composed of video demonstrations of tumor re-
moval from the kidney, executed in a virtual environment, and kinematic data of the robot tools; (2) We employed
an imitation learning architecture composed of vision transformers (ViT) to handle the frames extracted from the
videos and of a long short-term memory (LSTM) structure to process surgical motion sequences with a sliding win-
dow mechanism. This model processes video frames and prior poses to predict the poses for both robotic arms. A
self-generating sequence approach was implemented, where each predicted pose served as the latest element in
the sequence, subsequently used as input for the next prediction together with the current frame of the video. The
choice of architecture andmethodology was guided by the need to effectively model the sequential nature of surgical
operations.

Results: The model achieved promising results, exhibiting an average position error of 0.5 cm. The model was able
to execute correctly 70% of the test tasks. This highlights the sequence-based approach’s efficacy in capturing and
predicting surgical trajectories.

Conclusion: Our study supports imitation learning’s viability for acquiring task execution policies in surgical robotics.
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The sequence-based model, combining ViT and LSTM architectures, successfully handles surgical trajectories.

Keywords: Imitation learning, robot-assisted surgery, artificial intelligence

INTRODUCTION
Significant strides have been made in the field of autonomous surgical operations, with researchers exploring
various approaches to enhance the capabilities of surgical robots and improve patient outcomes [1–5]. However,
integrating autonomous procedures into surgical practice remains a formidable challenge [6,7]. While super-
vised learning approaches have seen widespread adoption in domains such as image recognition and natural
language processing, their application in surgical tasks remains limited. This limitation primarily stems from
the scarcity of high-quality datasets, either simulated or real-world, necessary for training and validating ma-
chine learning models for surgical applications. In surgical robotics, where precision, safety, and reliability are
of paramount importance, supervised learning poses unique challenges. Unlike tasks with well-defined goals
and abundant training data, surgical procedures involve intricate spatial-temporal interactions and anatomi-
cal complexities. Training models solely on labeled data often fails to capture the nuances of surgical tasks,
leading to sub-optimal performance and limited generalization capabilities. The majority of robot surgical
datasets are made for phase detection of procedures [8,9] or object (such as organs or tools) detection and seg-
mentation [10–12]. These datasets lack either kinematic data or task execution in environments with varying
morphologies, making generalization across different scenarios difficult.

The JIGSAWSdataset [13] is probably themost known in surgical robotics. This dataset includes 76-dimensional
kinematic data along with the video data of 101 trials of three elementary surgical tasks (suturing, knot-
tying, and needle-passing) performed by six surgeons using the da Vinci Research Kit (dVRK), but it does
not cover tasks performed in different scenarios. Similar considerations can be asserted for other works that
use dVRK [14]. To address these challenges, this paper proposes a model to learn task execution in unseen
environments. This necessitates learning a policy that dictates the agent’s behavior based on its observed state.
We achieve this by leveraging imitation learning [15], where agents learn by imitating expert demonstrations.
This approach is particularly valuable in surgical robotics, where purely vision-based or geometric approaches
for policy generalization across diverse environments are difficult, if not impossible.

By leveraging expert demonstrations, it empowers agents to learn complex tasks by mimicking skilled human
behavior.

In domains such as robotic manipulation, imitation learning has proven particularly effective for tasks such as
pick and place operations [16,17]. In pick and place tasks, the focus is often on learning the optimal picking and
placing poses rather than the entire trajectory. Another prominent application of imitation learning is in the
field of autonomous driving [18]. Here, agents learn to navigate complex road environments by imitating the
driving behavior of human experts. Unlike continuous control tasks, actions in autonomous driving are often
discrete, such as turning left or right, braking, or accelerating.

While imitation learning has proven successful in other domains, its application in surgery has been limited.
Although it has the potential to teach agents to perform surgical tasks by observing expert behavior, this poten-
tial has not been fully realized, primarily due to the scarcity of high-quality datasets and the unique challenges
posed by surgical environments. Although some datasets for surgical tasks do exist, they aremainly focused on
segmentation and phase recognition. In the context of surgical robotics, imitation learning offers a promising
avenue for teaching agents surgical procedures based on observed expert actions and circumvents the need for
explicit programming or manual specification of task rules, allowing agents to acquire skills through demon-
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stration and imitation. However, proposed models lack generalization across different scenarios [19] or use
different approaches and very simple tasks [20–22].

The main contribution of this paper is:

• We address the scarcity of high-quality data in surgical robotics by introducing a novel dataset of synthetic
kidney tumor environments. This dataset is generated by leveraging advanced 3D reconstruction tech-
niques, based on real patients’ computed tomography (CT) scans to create accurate kidney and tumor
models. These models are then imported into a simulation environment, enabling the simulation of sur-
gical tasks such as tumor removal. This approach provides a realistic and diverse set of environments for
training and testing autonomous surgical systems.

• We propose a novel neural network architecture specifically designed for imitation learning in surgical
robotics. This architecture combines the strengths of vision transformers (ViT) and long short-term mem-
ory (LSTM) networks. The ViT component effectively extracts spatial features from visual data, which is
crucial for tasks such as tumor segmentation in the kidney environment. Meanwhile, the LSTM compo-
nent excels at capturing temporal dependencies, which is essential for learning the sequential nature of
surgical procedures. By combining these capabilities, our model learns to execute tumor removal tasks
in new kidney tumor environments. Leveraging imitation learning techniques, the model learns from ex-
pert demonstrations in similar environments and adapts this knowledge to perform tasks autonomously
in previously unseen scenarios. This demonstrates the efficacy of policy learning for autonomous surgical
robotics.

METHODS
Creation of the kidney tumor dataset
In the realm of surgical robotics and automation, the development of algorithms capable of mimicking expert
surgeon actions is paramount. One approach to achieve this is through imitation learning, where algorithms
learn from human demonstrations. However, acquiring a dataset that accurately represents surgical scenarios
poses significant challenges. In this section, we detail the creation of a dataset for imitation learning focused on
tumor removal from the kidney, leveraging advanced simulation techniques and medical imaging technology.
While our study focused on the specific task of kidney tumor removal, the potential applications of imitation
learning in surgical robotics extend far beyond this single procedure. Indeed, its versatility and adaptability
make ourworkwell-suited for awide range of surgical tasks across various anatomical structures and organs. In
fact, we envision expanding our research to encompass a broader array of other organs and surgical procedures.

We utilized simulation open framework architecture (SOFA) (https://www.sofa-framework.org/) software be-
cause it can handle real-time deformation of soft objects, akin to human organs. The deformable nature of
organs, such as the kidney, presents a complex challenge for surgical simulations. By applying empirically de-
termined deformation parameters, including elasticity modulus, we could realistically simulate the behavior
of soft tissues during surgical manipulation. By default, SOFA framework uses YoungModule (𝐸) and Poisson
Coefficient (𝑣) as deformation parameters. Through empirical experimental tests [23], it has been demonstrated
that the elasticity modules of the kidneys are 𝐸=180.32 kPa e𝐺 = 95.64 kPa (tangential elasticity modulus),
which can be related by introducing the following formula:

𝐺 =
𝐸

2(1 + 𝜈) (1)

Therefore, we obtained 𝜈 = −0.057. The mechanical characteristics of renal tumors, as highlighted in the
research by Levillain et al., may vary considerably based on the type of tumor, but they are generally softer than
the renal tissue [24]. The following values were empirically identified, such as those that ensure biomechanical
behavior as realistic as possible: 𝐸= 5 kPa e𝜈=-0.8.
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The goal is to faithfully replicate the physical stresses that occur during actual surgery, including gravitational
forces, tissue deformations, and collisions between the instruments and the organs.

The procedure considered as a use case involves the use of an instrument to remove the tumor from the sur-
rounding tissue and another tool to grab and remove it. We aim to reproduce every phase of this procedure
promptly, ensuring that instruments behave realistically and that the tumor is removed precisely. This makes
it possible to accurately emulate the removal of a renal tumor through the use of robotic surgery.

A fundamental aspect is the generation of a complete dataset that includes realistic variations in tumors and
organ conditions. This dataset will be used to train an imitation learning model, which will learn from video
recordings of demonstrations and tracking of kinematic data to autonomously perform the surgical procedure
on new scenarios.

Generation of 3D environments from patient CT scans
The creation of realistic 3D environments from patients’ CT scans is essential for accurate surgical simulations.
In this section, we detail the process of transforming CT scans into anatomically accurate 3D models of the
kidney and tumor, employing advanced AI methods and simulation software. The first step in the process
involves segmenting the kidney and tumor regions from the CT scans. To accomplish this, we employed a
state-of-the-art deep learning architecture known as U-Net [25]. The U-Net model is trained to perform se-
mantic segmentation, accurately delineating organ boundaries within medical images. By training the U-Net
on annotated CT scans, we obtained precise segmentation masks outlining the kidney and tumor regions [26].
With the segmented regions extracted, we proceeded to reconstruct 3Dmodels of the kidney and tumor. Each
segmented region was converted into a three-dimensional mesh representation using standard techniques.
The mesh generation process involved interpolating the segmented contours to create a continuous surface,
resulting in anatomically faithful 3D representations. Following mesh generation, we conducted refinement
and optimization procedures to enhance the quality of the 3D models. This included smoothing the mesh
surfaces to remove artifacts and irregularities introduced during the reconstruction process. Additionally, we
optimized the mesh topology to ensure computational efficiency and stability during simulation. The 3Dmod-
els are then refined and colorized, imported into the SOFA software environment, as shown in Figure 1. SOFA
facilitated the integration of the 3Dmodels into dynamic simulation scenarios, enabling real-time deformation
and interaction with surgical instruments. The anatomically accurate 3D environments created from patient
CT scans served as the foundation for realistic surgical simulations and were used to perform the task, i.e.,
tumor cutting and removal from the kidney. In our work, we generated a total of 53 distinct kidney tumor
environments, each characterized by unique variations in tumor morphology and relative spatial arrangement
since each of them corresponds to a different patient. To introduce diversity in surgical scenarios, we varied
the shape and size of tumors across different environments. This variation in tumor morphology influenced
the trajectories of surgical instruments, as surgeons navigated through different tissue structures and encoun-
tered varying degrees of resistance. Additionally, the size and shape variations ensured that each simulation
presented unique challenges, reflecting the heterogeneity observed in clinical scenarios. Another factor con-
tributing to the diversity of environments was the relative positioning of the tumor with respect to the kidney.
By manipulating the spatial relationship between the tumor and the kidney, we translated the trajectories of
surgical tools in space, simulating scenarios where tumors were located in different regions of the kidney. These
differences were carefully chosen to introduce variability in the trajectories of surgical tools and to create visu-
ally distinct environments for simulation purposes, so that the ViT-LSTM model can learn the tumor-kidney
spatial relationships and generalize across different scenarios. Despite these variations, the position of the
kidney remained consistent across all environments, centered at the origin of the SOFA environment.
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Figure 1. 3D reconstruction of the Kidney tumor environment imported into SOFA. SOFA: Simulation open framework architecture.

Video demonstrations execution
To capture surgical demonstrations for the imitation learning dataset, we employed a manual execution ap-
proach conducted by a single engineer, as our primary focus was testing the model across different environ-
ments rather than evaluating variability across different experts in the same environment. This approach en-
abled us to assess the model’s adaptability and robustness in diverse scenarios. The demonstrations were made
using specialized surgical tools within a simulated environment. The task of tumor removal from kidneys was
executed using two distinct instruments: a cauter for the cutting phase and a grasper for grasping and remov-
ing the tumor post-incision. These instruments were controlled manually via a console controller, allowing
for precise manipulation within the simulation environment. The integrated RGB-D camera is used as a stere-
oscope to capture videos of the demonstrations. The cauter, employed for the cutting phase, simulated the
use of electro-cautery to incise tissue. This instrument was responsible for executing precise incisions along
predetermined trajectories within the kidney tumor environment. Conversely, the grasper functioned as a
versatile tool for grasping and removing the dissected tumor fragments from the surgical site. Together, these
tools enabled the execution of a complete tumor removal procedure within the simulation. The execution of
surgical demonstrations was facilitated by a modified version of the tissue dissection application developed
within the SOFA_ENV framework, utilizing LapGym [27]. This application was tailored to our specific use
case, providing a specialized environment for executing kidney tumor removal procedures. By leveraging the
capabilities of LapGym, a laparoscopic surgery simulation module within SOFA_ENV, we were able to recre-
ate realistic surgical scenarios while enabling manual control of surgical instruments. The cutting procedure
starts from the left side of the tumor and proceeds clockwise along the visible perimeter. Once the cutting
edge has completed more than half of its trajectory and passed the gripping tool, positioned on the right side,
the latter approaches the tumor to grasp it and establish one secure grip, holding it in place for the final stage
of the procedure. Once all contact points are removed, the tumor is completely separated from the kidney
and must be excised from the surrounding healthy tissue: the task is considered complete when the tumor is
positioned at a safe distance from the organ. Some of these steps are shown in Figure 2. It is very important
to carry out all simulations, always respecting the same guidelines to ensure a certain consistency between
the dataset demonstrations: not only is it essential to carry out the task correctly, but it is equally crucial to
obtain a homogeneous dataset so that, during the training phase, the learning agent can recognize visual and
sequential patterns in the actions performed across different environments.

Dataset composition
The dataset for our imitation learning project is composed of multi-modal data captured during the execution
of surgical demonstrations within the simulated kidney tumor environments. Each demonstration is recorded
using an RGB-D camera, providing both visual and depth information essential for understanding the surgi-
cal scene. The primary component of the dataset consists of videos captured through RGB-D cameras, with
each demonstration recorded as a sequence of frames. These videos offer a detailed visual representation of
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Figure 2. Some steps of the execution of tumor cutting and removal from the kidney executed by the expert. The cauter (tool on the left)
cuts the tumor and the grasper (tool on the right) takes the tumor out of the kidney.

the surgical procedure, enabling the observation of tool manipulation and tissue interaction throughout the
task execution. In addition to RGB video frames, depth information is also captured for every frame of each
video using the same RGB-D camera. These depth data provide crucial spatial context, allowing for accurate
estimation of the 3D geometry of the surgical scene. Depth information is invaluable for understanding the
relative positions of surgical instruments, tissues, and anatomical structures within the environment. Along-
side video and depth data, the dataset includes precise 3D pose information for both the cauter and the grasper
instruments. The pose data comprises the XYZ position and unit quaternion for orientation of the tips of both
tools at each time step of the trajectory. These tool poses serve as ground truth data for our imitation learning
model, guiding the prediction of tool actions in subsequent time steps. Additionally, two more variables, one
for each tool, are provided, describing the state of the tools: for the cauter, a boolean variable is considered with
the value of 1 if the tool is cutting, 0 otherwise; for the grasper, the variable considered indicates the opening
angle of the tool. In conclusion, the creation of the dataset described herein was necessitated by the absence
of suitable resources for learning surgical tasks in the intended manner. Despite the growing interest in sur-
gical automation and imitation learning, existing datasets fail to adequately address the specific requirements
of our task. Real-world surgical datasets often lack the detail and precision required for effective imitation
learning. Obtaining annotated data from actual surgical procedures is challenging due to ethical and logisti-
cal constraints. Additionally, real surgical environments may exhibit variability that is difficult to control and
replicate consistently. A challenge for the future will be to have a good-quality dataset with real-world data.
On the other side, while simulation platforms would offer a controlled and safe environment and a convenient,
albeit preliminary, way for data collection, there are very few platforms where surgical environments can be
simulated, and the existing datasets within these platforms often lack the nuanced details necessary for accu-
rate imitation learning, such as realistic tissue deformation, instrument-tissue interaction dynamics, and the
kinematics data of the tools exploited. Furthermore, the specific task of tumor removal from kidneys presents
unique challenges that necessitate the creation of a tailored dataset.

Imitation learning model
Problem formulation
At its core, imitation learning seeks to train an agent to replicate expert actions based on observed demonstra-
tions, without requiring explicit task specification or reward design. One common formulation of imitation
learning is behavioral cloning from observation [28], where an agent learns to imitate expert behavior by di-
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rectly mapping observed states to corresponding actions. In this paradigm, the agent aims to replicate the
demonstrated behavior without explicitly understanding the underlying task dynamics. Instead, it learns a
mapping from state observations to actions through supervised learning techniques. Central to the success of
imitation learning is the notion of policy learning. A policy represents the strategy or decision-making func-
tion employed by an agent to select actions based on its observations of the environment. In our particular
context, we employ behavioral cloning to train an agent for performing surgical tasks, such as tumor removal
from kidneys. At each step of the task execution, the agent must decide on an action based on the current state
of the environment and past states. This involves finding a policy - a function of the current visual observation
and the state of the surgical tools (e.g., kinematic data) - that dictates the agent’s actions to achieve the desired
surgical outcome, i.e., the state the tools have to assume in the next time step. We can formulate our problem
as follows: let 𝑠𝑡 denote the current state of the environment at time step 𝑡, and 𝑎𝑡 represent the action taken by
the agent in response to 𝑠𝑡 , and the agent learns a mapping from states to actions, represented by a policy 𝜋(𝑠).
This mapping is learned from a dataset of expert demonstrations {(𝑠1, 𝑎1), (𝑠2, 𝑎2), . . . , (𝑠𝑁 , 𝑎𝑁 )}, where 𝑁

is the number of demonstrations. The goal of policy learning is to find an optimal policy 𝜋∗ that minimizes
the discrepancy between the agent’s actions and the expert actions. In the case of supervised learning, this
discrepancy is typically measured using a loss function 𝐿 (𝜋(𝑠), 𝑎).

𝜋∗ = arg min
𝜋

𝑁∑
𝑖=1

𝐿 (𝜋(𝑠𝑖), 𝑎𝑖) (2)

where 𝑠𝑖 and 𝑎𝑖 are the states and actions from the expert demonstrations, respectively.

In our context, the agent’s action at each time step is determined by a policy 𝜋(𝑠𝑡 , 𝜃), parameterized by 𝜃.
The policy is learned to mimic the expert behavior observed in the demonstrations, where 𝜃 is optimized to
minimize the loss between the agent’s actions and the expert actions, as follows

𝜃∗ = arg min
𝜃

𝑁∑
𝑖=1

𝐿 (𝜋(𝑠𝑖 , 𝜃), 𝑎𝑖) (3)

where 𝑁 is the number of demonstrations. The state 𝑠𝑡 is composed of the observation and the robot tools’
state (their kinematic data), denoted as 𝑠𝑡 = (𝑜𝑡 , tools𝑡). Additionally, the parameter 𝜃 depends on past states,
reflecting the sequential nature of policy learning in imitation learning tasks.

Let 𝑠𝑡 denote the state of the environment at time step 𝑡, consisting of the observation and the predicted action
at time 𝑡. Additionally, let 𝑤 represent the size of the window of past states, including both past observations
and past predicted actions.

The action at time step 𝑡+1, denoted as 𝑎𝑡+1, is obtained based on the application of the policy function 𝜋(𝑠𝑡 , 𝜃)
to the current state 𝑠𝑡 , along with a window 𝑤 of past states 𝑠𝑡−𝑤+1, 𝑠𝑡−𝑤+2, . . . , 𝑠𝑡 :

𝑎𝑡+1 = 𝜋(𝑠𝑡 , 𝑠𝑡−1, . . . , 𝑠𝑡−𝑤) (4)

where 𝜋(𝑠𝑡) is the policy function that takes the current state 𝑠𝑡 as input and predicts the action 𝑎𝑡+1 to be taken
at the next time step.

Each state 𝑠𝑡 in the window is composed of both past observations and past predicted actions:

𝑠𝑡 = (𝑜𝑡 , 𝑎𝑡) (5)

where 𝑜𝑡 represents the observation at time step 𝑡, and 𝑎𝑡 represents the predicted action at time step 𝑡.
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Proposed architecture
The imitation learning model employed in our study leverages a hybrid architecture comprising a ViT [29], pre-
trained on ImageNet, and a LSTM network as shown in Figure 3. This architecture is designed to effectively
handle the multi-modal nature of the dataset, integrating both visual information from RGB-D frames and
temporal sequences of tool poses. The model takes, as input, sequences of RGB-D frames along with past pre-
dictions iteratively to predict the actions that the surgical tools should take in the next time step, i.e., the poses
every tool has to assume in the next step. By iteratively refining its predictions based on past observations
and ground truth tool poses, the model learns to mimic the expert demonstrations and perform surgical tasks
autonomously in new kidney tumor environments. The ViT serves as the backbone of our model, specifically
configured with 16 patches and a resolution of 224 pixels, and is responsible for processing the visual infor-
mation extracted from RGB-D frames. By employing self-attention mechanisms, the ViT can capture spatial
relationships and long-range dependencies within the video data, enabling effective feature extraction from
each frame. This allows the model to encode rich visual representations of the surgical scene.

In our model, the LSTM network is a sequence-to-one architecture, where it takes a sequence of input features
and predicts a single output value. It plays a crucial role in processing sequences of features extracted by the
ViT: it is responsible for capturing temporal dependencies and learning the dynamics of the surgical task over
time. We consider the trajectories of surgical tools as sequences of steps, where the action at time step t is
influenced by both the preceding steps and the current state of the environment. This approach enables us
to effectively model the long-term dynamic of the trajectories in surgical operations. We opted for an LSTM
network instead of a traditional deep network because LSTMs are specifically designed to handle sequential
data, such as the trajectories in our study. The LSTM’s ability to retain information over time and capture
dependencies between time steps allows it tomodel the sequential nature of surgical operationsmore effectively.
This approach resulted in better performance andmore accurate predictions compared to using a standard deep
network. Moreover, an attention mechanism is incorporated within the LSTM architecture to enhance the
model’s ability to focus on relevant parts of the input sequence. The LSTM layer processes the input sequence,
which consists of features extracted by the ViT at time step 𝑡 and the previous 𝑤 features, along with the
corresponding predicted actions of the robot tools. This sequence is fed into the LSTM, allowing the model to
capture long-term dependencies and temporal dynamics.

Following the LSTM layer, an attention mechanism is employed to dynamically weigh the importance of each
input feature in the sequence. The attentionmechanism computes attention weights using a linear layer applied
to the LSTM outputs. These weights reflect the relevance of each feature in the sequence, allowing the model
to focus more on informative features while attenuating the impact of less relevant ones. The attention weights
computed by the linear layer are used to compute a weighted sum of the LSTM outputs, yielding an attended
input representation. This attended input is then passed through another linear layer to produce the final out-
put, which represents the action the robot tools are expected to take at the next time step. The integration
of the attention mechanism within the LSTM architecture enhances the model’s performance by enabling it
to selectively focus on relevant information in the input sequence, thereby improving its predictive capabilities.

Training of the model
During each training cycle, the model processes a single RGB-D frame and corresponding data from previous
time steps to predict the actions of the surgical tool. The process unfolds as follows: (1) The RGB-D frame
at time 𝑡 is divided into patches and passed through the ViT and a multilayer perceptron (MLP) to extract
high-dimensional features capturing spatial and temporal information; (2) The features extracted at time 𝑡 are
combined with features from previous time steps 𝑡 − 1 to 𝑡 − 𝑤, where 𝑤 is the window size of past states
considered in the input sequence. Additionally, past predicted actions from time 𝑡 to 𝑡 − 𝑤 are included in
the fusion process. This temporal fusion mechanism enables the model to leverage historical information
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Figure 3. Cycle to predict an action for a single step of the trajectory.

and past predictions for context-aware action prediction; (3) The temporally fused features are passed into an
Attention LSTM block, which comprises three main components: an LSTM layer, an attention mechanism,
and a MLP. The LSTM layer processes the temporally fused features, capturing temporal dependencies and
dynamics across the input sequence.The attention mechanism computes attention weights using a linear layer
applied to the LSTM outputs. These weights reflect the relevance of each feature in the sequence, allowing the
model to focus more on informative features while attenuating the impact of less relevant ones. The output of
the attention mechanism is then passed through the MLP to produce the final prediction. The MLP outputs
a 16-element vector comprising the xyz positions, unit quaternions of the two surgical tools, the cutting/not-
cutting boolean variable for the cauter, and the opening angle of the grasper. This process is repeated for each
point in the trajectory and for every trajectory in the dataset (i.e., every video of the dataset), allowing the
model to learn and generalize across diverse surgical scenarios.

For training the model, we employed Adam optimizer, with an initial learning rate of 10−5, which is reduced if
the loss does not improve for 5 consecutive epochs (best results obtained to 10−6). This adaptive learning rate
schedule helps the model to converge more effectively and avoid getting stuck in local minima. We empirically
determined that a window parameter of 10 elements in the input sequence provides a good balance between
capturing temporal dependencies and computational efficiency. This window size allows themodel to consider
relevant past states and actions while avoiding excessive computational overhead. The model was trained for
50 epochs. Through experimentation, we observed that training beyond this point did not lead to significant
improvements in performance, indicating that the model had converged to a stable solution. A custom loss
function, which we call Temporal Loss, is introduced to address the challenge of mispredictions in later time
steps. This loss function is designed to penalize errors more heavily as the predicted actions deviate further
from the ground truth over time. By assigning higher weights to errors in later time steps, the Temporal
Loss encourages the model to prioritize accurate predictions for actions in the immediate future while still
considering the overall trajectory of the surgical task, since, due to the complex and dynamic nature of surgical
procedures, themodelmay encounter difficulties in accurately predicting actions in later stages of the task. This
is often exacerbated by accumulated errors and uncertainties as the task progresses. The dataset was split into
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training and testing sets using an 85/15 ratio. This division ensures that the model is trained on a sufficiently
large portion of the data while still reserving a separate subset for evaluating its generalization performance
on unseen examples.

RESULTS
In our study, we utilized two tools to predict trajectories: a grasper and a cauter. The grasper presented a
relatively straightforward challenge, as both the trajectory and the task were simple and easy to model. For
this reason, the successful rate was 100% for the grasping part of the task. However, the cauter posed a more
significant challenge due to the complexity of its trajectory and the precision required for the task. Predicting
accurate trajectories for the cauter is crucial, as it directly impacts the effectiveness and safety of the surgical
procedure. Consequently, the results section primarily focuses on the performance of the model with the
cauter, as it represents the more demanding aspect of our work.

During training, we monitored the Mean Absolute Error on positions, achieving an average result of 0.5 cm.
This metric quantifies the average discrepancy between the predicted and ground truth positions of the robot
tools, providing insight into the model’s accuracy in mimicking expert behavior.

Following the training part, we evaluated themodel’s performance in previously unseen environments to assess
its generalization capabilities and effectiveness in simulated scenarios. The trained model demonstrated a
commendable success rate, correctly executing the surgical task in 70% of new environments (7 out of 10
total tests). This achievement underscores the model’s ability to generalize from training data to unseen test
environments and effectively replicate expert behavior in diverse surgical settings.

In some scenarios, themodel generated trajectories that surpassed the quality of the target trajectories observed
in expert demonstrations, as shown in the example in Figure 4. These trajectories exhibited smoother and
more continuousmotion, effectively avoiding uncertainties, shakings, and corrections typically associated with
manual execution. This indicates the model’s potential to enhance the precision and efficiency of surgical
procedures by minimizing unnecessary movements and ensuring consistent tool manipulation.

The results of our study indicate that there are no significant differences in performance between right and
left tumors. Additionally, the translation of the tumor in space - meaning the position of the tumor relative
to the kidney - does not have a substantial impact on the outcomes. This suggests that our model is robust to
variations in tumor location and side, maintaining consistent performance regardless of these factors.

Despite its overall success, the model encountered difficulties in environments where the tumor shape and size
deviated significantly from the norm. In such cases, characterized by unusually shaped tumors or exceptionally
large sizes, the model exhibited reduced performance and struggled to execute the task accurately, i.e., the
trajectory generated by the model deviates significantly from the target trajectory. As a result, the tumor may
not be fully removed from the kidney, or the surgical margins may be excessive, leading to the removal of more
kidney tissue than necessary. These outliers present unique challenges for the model, highlighting the need
for further refinement of the model to ensure precise and accurate surgical outcomes and the importance of
robustness and adaptability in real-world applications. The accompanying video clip shows the results in the
virtual environment.

DISCUSSION
The project described in this work demonstrates the potential of imitation learning for automating surgical
tasks. By leveraging synthetic environments and expert demonstrations, the trained model exhibits promising
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Figure 4. Two examples of successful tasks executed generating the trajectory using our model. In the picture, the target trajectory is
highlighted in green while the generated trajectory is in blue. In the first case, we can notice that the generated trajectory is smoother and
more accurate than the target trajectory.

capabilities in executing complex surgical procedures autonomously.

While direct comparisons with other works are challenging due to the differences in tasks, methods, and en-
vironments, we can still highlight some key distinctions. Unlike our study, which emphasizes the model’s
performance across different scenarios and environments, most existing works focus on variations in expert
execution within the same environment. Furthermore, the tasks addressed in other studies often differ in
complexity and objectives, making it difficult to draw straightforward parallels. Despite these differences, our
work contributes uniquely by exploring the adaptability of the model across varying conditions, which is less
commonly addressed in the current literature. In particular, the creation of the dataset and the development
of the model represent significant contributions to the field of surgical robotics and automation. The creation
of the dataset described in this paper fills a critical gap in the field of surgical imitation learning by providing
a comprehensive training resource. Successful imitation learning relies on exposure to diverse environments.
By creating a dataset encompassing a variety of kidney tumor scenarios, we ensure that our model learns to
adapt to different anatomical configurations and surgical challenges. While the results are promising, chal-
lenges remain in handling outlier scenarios, since, when the tumor shape or size is significantly different from
the norm, the model is not always able to execute the task, emphasizing the need for continued refinement
and adaptation of the model to ensure robust performance in diverse surgical settings. Additionally, one of
the primary challenges moving forward is the development of more realistic surgical environments. Current
synthetic environments, while useful for training and initial testing, may lack the complexity and variability of
real-world surgical settings. Future efforts should focus on enhancing the fidelity of simulated environments
by incorporating more realistic texture of the tissues, adding other organs to vary the executed trajectories,
and including elements such as blood and fat in the scene.

Furthermore, the tasks we modeled were simplified and not fully reflective of the complexity of real surgical
procedures. While they are useful for initial experimentation, they do not capture the full range of challenges
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encountered in real-world surgical tasks.

Transitioning from synthetic to real-world environments, both in-silico or real organs, presents a significant
challenge in autonomous surgical systems. Real-world environments introduce a multitude of complexities,
including variability in patient anatomy, tissue characteristics, intraoperative conditions, and robot control,
which can lead to less accurate execution. Acquiring high-quality real-world datasets that capture this variabil-
ity is essential for training models that can generalize effectively across diverse surgical scenarios.

While our research has primarily focused on automating specific surgical tasks such as tumor removal from
kidneys so far, there is a need to expand the scope to encompass a broader range of surgical procedures, such
as suturing and blood suction.

As the field of surgical robotics and automation continues to advance, addressing these future challenges will
be paramount to the development of robust and versatile autonomous systems. By leveraging advances in
machine learning, computer vision, and robotics, researchers can overcome these obstacles and pave the way
for safer, more efficient, and more accessible surgical interventions.
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