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Abstract
Aluminum (Al) alloys with both high strength and thermal conductivity (TC) are promising structural materials for 
wide application across different industries. Yet, design of such alloys is challenging, since strength and TC often 
share a trade-off. In this paper, we build prediction models for TC and ultimate tensile strength (UTS) of Al alloys 
using eXtreme gradient boosting (XGBoost) and support vector machine (SVM) algorithms, respectively. The 
models take physical descriptors from the alloy composition into account. Lasso and Gini Impurity algorithms were 
adopted for feature engineering. Guided by the models, an Al-2.64Si-0.43Mg-0.10Zn-0.03Cu alloy with TC over 
190 W·m-1·K-1 and UTS over 220 MPa was designed. The alloy was fabricated and tested by experiment, and its UTS 
and TC are close to the model prediction. Microstructure characterization suggests that the fragmented and 
spherical Si phase, along with a few non-spherical Si phases, may be a key reason for the improved properties.

Keywords: Aluminum alloys, strength, thermal conductivity, machine learning

INTRODUCTION
Aluminum (Al) alloys are widely used in automobile[1], aerospace[2] and marine[3] industries for their high 
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specific strength, thermal conductivity (TC) and recyclability. In most Al alloys, an increase in strength is 
often accompanied by a decrease in TC. This occurs because the lattice distortion and secondary phases 
introduced by alloying not only contribute to solution and precipitation strengthening but also significantly 
scatter electrons and phonons, thereby reducing TC.

Due to the differences in valence state[4], atomic radius[5], and solid solubility[6] between alloying elements 
and the Al matrix, the degree of lattice distortion caused by these elements varies, leading to different effects 
on TC. Alloying elements with greater difference in valence state have a more pronounced impact on TC. 
This difference in valence state alters the Brillouin zone of the matrix, either expanding or compressing it, 
which disrupts the periodic lattice structure, increases lattice distortion, and subsequently reduces TC[7]. The 
mismatch of Al and other atoms caused by difference in atom radii also disrupts the periodicity of the 
lattice, thus increasing the scattering of electrons[8]. The addition of Ce (atom radius = 0.183 nm), which has 
a larger atomic radius than Al (atom radius = 0.143 nm), can reduce the lattice distortion caused by the 
addition of Fe (atom radius = 0.127 nm) and Si (atom radius = 0.134 nm). This reduction in lattice 
distortion can create more paths for electron transition, thus improving the TC[9]. In addition, the content 
and morphology of secondary phases significantly affect the TC and strength of Al alloys. Highly 
continuous secondary phases impede electron transfer, thereby reducing the mean free path of electron 
migration and resulting in lower TC[10,11].

The lattice distortion and formation of secondary phases introduced by alloying elements can cause solid 
solution strengthening and precipitation strengthening in Al alloys. An additive model is commonly used to 
evaluate the contributions of individual elements to solid solution strengthening[12]: σ = ∑kiCi

2/3, where ki is 
the scale coefficient of the ith alloying element and Ci represents its mass fraction. The scale coefficients of 
alloying elements are different[10,11], such as kZn = 3 MPa/wt.%-2/3, kMg = 29 MPa/wt.%-2/3, and kSi = 
66.3 MPa/wt.%-2/3. In Al-Si alloys, fragmentation of the secondary phase reduces the size of eutectic silicon, 
enhancing its precipitation strengthening effect in the alloy[13]. Additionally, the spherical Si phase reduces 
stress concentration and prolongs the path of crack propagation, thereby enhancing the strength of Al 
alloys[14]. Considering the synergetic effects on TC and UTS caused by alloying elements, designing Al alloys 
with both high UTS and high TC through a bottom-up approach remains a significant challenge.

Machine learning (ML) has become popular in materials science research[15,16]; in particular, ML has been 
utilized for property prediction[17-19] and alloy design[20-22] of Al alloys. By using ML techniques, researchers 
can accelerate the process of predicting critical material properties, such as fracture toughness[23], corrosion 
resistance[24], and wear behaviour[25], with high accuracy and efficiency. Various ML algorithms such as 
support vector machine (SVM), tree ensembles and neural networks are used to establish separate models 
for predicting the performance of Al alloys with high precision[21]. Composition design and process 
parameter optimization based on the separate ML predicting models has proven to be an effective strategy 
for enhancing the performance of cast Al alloys across multiple dimensions, including hardness, strength, 
and modulus[26-29]. This approach enables the simultaneous optimization of multiple properties, thereby 
pushing the boundaries of alloy design toward higher application requirements. In addition, multi-objective 
optimization can also achieve a trade-off between conflicting performances. However, multi-objective 
optimization requires a large amount of data and accurate performance prediction models on a certain alloy 
series[18,21,30]. Insufficient data scale or quality can result in inaccurate outcomes during multi-objective 
optimization[31]. Regarding the input features, feature expansion and selection play crucial roles in 
incorporating physical parameters into prediction models and identifying the most significant features. 
Various atomic descriptors, such as atomic radius, electronegativity, modulus, and melting point, are 
commonly employed to enhance input features, thereby improving model interpretability[32]. Feature 
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Figure 1. Procedure of Al alloys design by ML. ML: Machine learning.

selection methods, including Lasso, Gini impurity, and correlation coefficients, are essential for identifying 
the most important features from an extensive set of expanded features. This process reduces model 
complexity and minimizes prediction errors[33].

This paper aims to use ML to design cast Al alloys with both high TC and ultimate tensile strength (UTS). 
Physical descriptors of the composition were added to the input feature list, followed by feature engineering 
to determine the optimal feature sets. ML models for predicting UTS and TC were developed separately. 
Guided by these models, a new Al alloy was designed, fabricated, and tested. The strength and TC closely 
align with the model predictions, and the underlying mechanisms are analyzed.

METHODS
We performed data collection, feature calculation, feature selection, prediction model development, new 
alloy design and validation [Figure 1]. Firstly, 277 as-cast Al alloys were collected from published papers one 
by one manually to ensure no mistakes occurred during data collection to establish an initial dataset [
Supplementary Materials]. Data were only collected for cast Al alloys with no other processing techniques 
such as wrought or coating. The dataset included information about alloy composition, processing 
parameters of solution treatment and aging (i.e., time and temperature), TC, and UTS values. Table 1 shows 
a few sample data[34-36]. The alloy composition includes 22 elements (Si, Fe, Cu, B, Bi, Pb, Zn, Mn, Mg, Sn, Ti, 
V, Mo, Ni, Ce, Co, Cr, La, Sc, Sr, Zr, and Al) and their contents are given in wt.%. The processing 
parameters include the solution temperature [denoted as sol_T (oC)], solution time [denoted as sol_time 
(h)], quench temperature [denoted as quench_T (oC)], aging temperature [denoted as aging_T (oC)], and 
aging time [denoted as aging_time (h)]. Data format for the columns is all numeric and consistent. No 
outliers are identified from the dataset and no data were deleted. The missing values of processing 
parameters were replaced by -1. Figure 2 shows the distribution of UTS and TC of the dataset. The UTS 
values range from 50 to 350 MPa; the TC values range from 100 to 220 W·m-1·K-1.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202411/jmi4021-SupplementaryMaterials.xlsx
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Table 1. Sample data in the dataset

Composition sol_T 
(°C)

sol_time 
(h)

quench_T 
(°C)

aging_T 
(°C)

aging_time 
(h)

UTS 
(MPa)

TC 
(W·m-1·K-1) Ref.

Al-8Si-0.512Mg-0.55Fe-0.08Sr-0.01Cu 535 0.5 50 170 3 304 171 [34]

Al-8Si-0.512Mg-0.55Fe-0.08Sr-0.01Cu 535 4 50 170 3 294 163 [34]

Al-5Si-2Cu-2Mg 500 6.5 85 250 4 249 169 [35]

Al-5Si-2Cu-2Mg-0.05Zr 500 6.5 85 250 4 228 163 [35]

Al-5Si-2Cu-2Mg-0.1Zr 500 6.5 85 250 4 226 167 [35]

Al-5Si-2Cu-2Mg-0.12Zr 500 6.5 85 250 4 230 171 [35]

Al-5Si-2Cu-2Mg-0.19Zr 500 6.5 85 250 4 210 165 [35]

Al-10.5Si-1.75Cu-0.76Zn-0.23Mg 490 0.25 50 220 1 312 155 [36]

Al-10.5Si-2.43Cu-0.76Zn-0.24Mg 490 0.25 50 220 0.5 349 152 [36]

UTS: Ultimate tensile strength; TC: thermal conductivity.

Figure 2. The UTS and TC of the 277 data in the dataset. UTS: Ultimate tensile strength; TC: thermal conductivity.

To explore the composition information, physical descriptors must be added[37,38] to expand the feature list. 
A total of 42 physical parameters of elements were exported from the Materials Project[39], which are listed 
in Table 2. From the alloy composition, the average and variance of each parameter were then used as input 
features:

(1)

(2)
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Table 2. 42 physical parameters of elements

Name Definition

a Cell parameter (pm)

b Cell parameter (pm)

c Cell parameter (pm)

AN Atomic number

AR Atomic radius (pm)

B Bulk modulus (GPa)

BIPT Block in periodic table

BP Boiling point (K)

C Specific heat (J/K*mol)

CR Covalent radius (pm)

DS Density of solid (g/cm3)

E Young’s modulus (GPa)

E0 The change in enthalpy of a substance from 0 to 298 K (kJ/mol)

EA Electron affinity (kJ/mol)

ENA Enthalpy of atomization (kJ/mol)

ENF Enthalpy of fusion (kJ/mol)

ENV Enthalpy of vaporization (kJ/mol)

FIE First ionization energies (kJ/mol)

G Shear modulus (GPa)

GIPT Group in periodic table

L Angular quantum number

M Magnetic quantum number

MP Melting point (K)

MV Molar volume (cm3)

N Principal quantum number

PE Pauling electronegativity

PIPT Period in periodic table

PR Poisson ratio

RAM Relative atomic mass

S0 Standard entropy (J/K*mol)

SE Sanderson electronegativity

SIE Second ionization energies (kJ/mol)

SOL Solid solubility in Al (wt.%)

TIE Third ionization energies (kJ/mol)

VE Number of valence electrons

VED Number of valence electrons in the d orbital

VEF Number of valence electrons in the f orbital

VEP Number of valence electrons in the p orbital

VES Number of valence electrons in the s orbital

VR Van der Waals radius (pm)

VS Valence state

WF Work function (eV)

where ci is the content of the element (wt.%) and the pi is the physical parameter of the element. The initial 
list contains 111 features, including 22 composition features, 84 physical descriptors and five processing 
features.
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Subsequently, two feature selection methods based on Lasso and Gini impurity were employed to identify 
the optimal feature list for building ML models. Tree ensemble and SVM algorithms were used to predict 
TC and UTS, with a training-testing split ratio of 85% to 15%. The R2 and root mean square error (RMSE) 
metrics are used to evaluate the accuracy of the ML models:

where n is the number of data in the training/test set, yi is the actual value of the ith data, yi is the predicted 
value and yi is the average of the actual values, respectively. The better prediction tends to have lower root 
mean squared error (RMSE) and higher R2. Finally, a new alloy with improved properties was designed 
based on the prediction models and validated through experiments.

RESULTS AND DISCUSSION
Feature engineering and ML
Choosing the appropriate features is necessary to establish reliable ML models, especially for a dataset with 
only 277 data. The removal of unimportant features can reduce the calculation complexity and enhance the 
prediction accuracy. The Lasso and Gini impurity selection are popular methods for feature selection. The 
Lasso algorithm[40] adds the L1 regularization term into the loss function of linear regression:

where yi is the actual value of the ith data, yi is the predicted value, α is the penalty coefficient and |w| is the 
sum of the absolute values of the feature coefficients. Feature coefficient refers to the coefficient assigned to 
each feature in linear regression. Features having larger coefficients tend to be more important. In the 
process of minimizing the loss function, the coefficients of irrelevant features will shrink to 0. As the penalty 
coefficient α increases, more feature coefficients are reduced to zero, minimizing |w|. This process retains 
important features with non-zero coefficients while eliminating unimportant ones. In Figure 3, the number 
of features with non-zero coefficients, indicating their importance, gradually decreases with increasing α. 
For the TC prediction, α = 0.0133 was selected, and for the UTS prediction, α = 0.0447 was chosen, leaving 
56 features. This threshold, where half of the features are retained, is commonly used in feature selection. 
These 56 features with non-zero coefficients are ultimately selected for further analysis[41,42].

Gini impurity[43], which reflects the uncertainty reduction after branching in tree models, is a common index 
to measure the feature importance in the prediction using tree algorithms. The feature will be more 
important when the prediction uncertainty reduces more after its inclusion. Three different tree algorithms 
including random forest (RF), eXtreme gradient boosting (XGBoost) and gradient boosting decision tree 
(GBDT) are used to calculate the Gini impurity of every feature. The average of feature importance 
calculated by these three algorithms is ranked in Figure 4, with the 26 most important features remaining as 
the input of performance prediction.

(3)

(4)

(5)
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Figure 3. The number of features with non-zero coefficient decreases with the increase of α in the (A) TC dataset and (B) UTS dataset. 
TC: Thermal conductivity; UTS: ultimate tensile strength.

Figure 4. The feature importance ranking of (A) the TC features and (B) the UTS features. TC: Thermal conductivity; UTS: ultimate 
tensile strength.

Normalization was applied before the UTS prediction but not for the TC prediction:

where X is the normalized data, X is the raw data, μ is the average value of the raw data and σ is the standard 
variance of the raw data. In tree ensemble algorithms, normalization does not affect the division of branch 
nodes, as the information gain is independent of data distribution. However, for the SVM algorithm, 
variations in the scale of different variables can significantly influence the calculation results and reduce 
prediction accuracy.

To prove the necessity of feature expansion and selection, the model accuracy adopting different features is 
compared. The XGBoost algorithm is used to predict TC and the SVM algorithm is used to predict UTS, 
with four types of features as the input. As shown in Figures 5-7, when only composition information 
containing 22 elements is used as the model input, the prediction has the lowest accuracy. The accuracy of 

(6)
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Figure 5. The comparison of predicted and actual TC using XGBoost algorithm and input of (A) composition information, (B) 
composition and processing parameter information, (C) composition and processing parameter information with feature expansion (D) 
composition and processing parameter information with feature expansion and selection. TC: Thermal conductivity; XGBoost: eXtreme 
gradient boosting.

TC and UTS prediction improves substantially from 0.68 (composition only) to 0.82 (composition + 
processing). The prediction accuracy further increases after feature expansion. After feature selection by 
Lasso and Gini impurity algorithm, the R2 of TC and UTS prediction are both above 0.9.

Considering two performance prediction models have been established, the optimization of the as-cast Al 
alloy composition is necessary. Because the processing parameters have numerous missing values in the 
dataset, the following heat treatment parameters are used: solution treatment at 500 °C for 6 h and aging at 
250 °C for 4 h, which is the most frequently used heat treatment condition in the dataset. Since Si, Mg, Zn, 
and Cu are the most common alloying elements, 800 virtual Al-Si-Mg-Zn-Cu alloy compositions are 
generated randomly, and TC and UTS values are predicted by the models. As shown in Figure 8, among the 
800 virtual samples, a sample with the composition of Al-2.64Cu-0.43Mg-0.10Zn-0.03Si has high predicted 
values for both TC and UTS.

Experiment validation
According to the recommended composition, the alloy was fabricated by commercial-purity Al (99.95%), 
Mg (99.95%), Zn (99.95%), Mg-10 wt.% Si, and Mg-10 wt.% Cu master alloys. The raw materials were 
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Figure 6. The comparison of predicted and actual UTS using SVM algorithm and input of (A) composition information, (B) composition 
and processing parameter information, (C) composition and processing parameter information with feature expansion, (D) composition 
and processing parameter information with feature expansion and selection. UTS: Ultimate tensile strength; SVM: support vector 
machine.

melted in an electric resistance furnace at 720 °C. The molten alloy was stirred manually and held for 
homogenization, and then cast into a cylinder ingot with Φ = 60 mm. The ingots were solution-treated at 
500 °C for 6 h and aged at 250 °C for 4 h.

Three dog-bone-shaped tensile specimens with dimensions of 18 (L) mm × 3.4 (W) mm × 2 (T) mm were 
cut from the ingots. Tensile tests were conducted using a Zwick-100 kN instrument with a BT2-
EXMACWD at a constant strain rate of 1.0 × 10-4·s-1. The TC λ was calculated by λ = ραCp

[44] where ρ is the 
density of Al (2.7 g·cm-3), α is the thermal diffusivity, Cp is the specific heat capacity of Al (0.88 kJ·kg-1·K-1). 
The thermal diffusivity α was measured three times for each specimen (Ф 12.7 × H 2.0 mm) at room 
temperature (25 °C) using the laser transient TC meter (LFA467HT, Netzsch).

The predicted and actual values obtained by strength and TC tests are listed in Table 3 and the tensile stress-
strain curve is shown in Figure 9. The relative errors for TC and UTS predictions are 5.9% and 5.1%, 
respectively. As shown in Figure 10[45-48], compared to other as-cast alloys reported in the literature, the Al-
2.64Si-0.43Mg-0.10Zn-0.03Cu alloy has TC > 190 W·m-1·K-1 and UTS > 220 MPa, making it a good 
candidate material when both strength and TC are required.
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Table 3. The predicted and actual values of TC and UTS of the Al-2.64Si-0.43Mg-0.10Zn-0.03Cu alloy

Predicted value Actual value Relative error

TC 179.7 W·m-1·K-1 191.0 W·m-1·K-1 5.9%

UTS 209.8 MPa 221.0 MPa 5.1%

TC: Thermal conductivity; UTS: ultimate tensile strength.

Figure 7. The R2 and RMSE of (A) TC and (B) UTS using different features as input. RMSE: Root mean squared error; TC: thermal 
conductivity; UTS: ultimate tensile strength.

Figure 8. Predicted TC and UTS values of 800 virtual samples generated by two models. TC: Thermal conductivity; UTS: ultimate 
tensile strength.
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Figure 9. The tensile stress-strain curve of Al-2.64Si-0.43Mg-0.10Zn-0.03Cu alloy.

Figure 10. TC and UTS values of Al-2.64Si-0.43Mg-0.10Zn-0.03Cu compared with other alloys in the literature[45-48]. TC: Thermal 
conductivity; UTS: ultimate tensile strength.

X-ray diffraction (XRD) analysis was conducted for the Al-2.64Si-0.43Mg-0.10Zn-0.03Cu alloy to determine 
the phase composition. As shown in Figure 11A, apart from Al peaks, only diffraction peaks of Si are 
present in the alloy. Figure 11B and C shows the optical micrograph (OM) and scanning electron 
microscopy (SEM) of the Al-2.64Si-0.43 Mg-0.10Zn-0.03Cu alloy. The microstructure of the alloy consists 
of primary α-Al cells, with spherical Si particles along with a few non-spherical Si particles. The energy-
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Figure 11. (A) XRD patterns (B) OM (C) SEM micrograph (D) EDS maps of the Al-2.64Si-0.43Mg-0.10Zn-0.03Cu alloy. XRD: X-ray 
diffraction; OM: optical micrograph; SEM: scanning electron microscopy; EDS: energy-dispersive X-ray spectroscopy.

dispersive X-ray spectroscopy (EDS) results also confirm the XRD results. As shown in Figure 11D, Cu, Zn 
and Mg elements exist as solutes in Al, while the Si element is found in the secondary phase.

The formation of Si secondary phase reduces the Si solute concentration in Al lattice. Because of the 
significant atomic radius difference between the Al atom (RAl = 118 pm) and the Si atom (RSi = 143 pm), Si 
solutes significantly reduce TC of Al alloys[49]. The precipitation of Si reduces the amount of Si solutes in the 
Al matrix, resulting in higher TC[50].

The morphology of the secondary phase also influences TC. Continuous secondary phases reduce the 
average free path of electrons[51], an effect that becomes more pronounced as the size of the secondary phase 
increases[52]. In the current alloy, the Si particles are predominantly spherical and exhibit discontinuous 
interfaces, allowing electrons to travel longer distances within the Al matrix[53]. As a result, TC is less 
adversely impacted[54].

The yield strength, σy, of Al-2.64Si-0.43Mg-0.10Zn-0.03Cu alloy can be expressed as:
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where σ0 is the yield stress of pure Al (35 MPa[55]), σss is the solid-solution strengthening, σgs is the grain size 
strengthening, and σPPT is the precipitation strengthening.

Solid-solution strengthening, σss, can be calculated as the sum of the individual effects of each alloying 
element on strength enhancement, which is expressed by:

where ki is the contributing factor of alloying element (kSi = 9.3 MPa/at.%, kCu = 16.2 MPa/at.%, kMg = 
17.2 MPa/at.%[56] and kZn = 2.9 MPa/at.%[57]). Due to the low solid solubility of Si in Al, the σss value is 
approximately 6.9 MPa.

The strength contribution from grain size strengthening σgs was calculated using the Hall–Petch equation[58]:

where k is a constant (0.06 MPa·m-1/2 for Al alloys[59]) and d is the grain size. The σgb value of Al-2.64Si-
0.43Mg-0.10Zn-0.03Cu alloy is 6.7 MPa based on the average grain size (~80 μm).

Considering the yield stress of ~183 MPa in the Al-2.64Si-0.43Mg-0.10Zn-0.03Cu alloy, precipitation 
strengthening is likely to be important. The fragmented eutectic Si particles provide only a limited 
contribution to overall strengthening. It has been reported that eutectic Si particles with a radius of ~2 μm 
and a volume fraction of ~6% contribute around 4 MPa to the strength[60]. In contrast, Si nanoprecipitates 
and solute clusters formed during the aging process can significantly enhance the strength[60,61]. It has been 
shown that nanoscale Si particles and clusters, with radii ranging from 1 to 10 nm, provide strong Orowan 
strengthening, exceeding 100 MPa[62]. Additionally, nanoscale Si particles can act as dislocation pinning 
sites, leading to dislocation accumulation and further contributing to dislocation strengthening[63].

Key factors affecting TC and UTS
The three most important alloying elements affecting TC and UTS are listed in Table 4, in which Mg, Si, 
and Fe have the greatest impact on TC and Mn, and Cu and Zn have the greatest impact on UTS. Influence 
levels of alloying elements on TC of Al alloys depend on the physical parameters of these elements, such as 
valence electrons, atom radius difference, and so on[64]. Due to the high solid solubility of Mg in Al 
(15.9 wt.%), Mg elements generally exist as solutes in Al alloys, avoiding the weakening of TC caused by the 
formation of secondary phases. Compared to Mg (3s2) atoms, there are vacancies in the valence electron 
configuration of Fe (3d64s2) and Si (3s23p2) atoms, allowing them to more readily absorb free electrons 
during heat transfer and reduce the TC[65]. Due to the low solubility of Si and Fe at room temperature, 
almost all Fe and Si are precipitated as Al13Fe4 and eutectic Si. The thickness of Al13Fe4 precipitates in Al–Fe 
alloys is significantly smaller than that of Si precipitates in Al–Si alloys[66], resulting in a greater impact on 
TC with the addition of Si.

Mn usually exists as Al6Mn phases, which can improve the strength of the alloy by stabilizing the 
precipitation phases[67]. Cu acts as solution atom and forms Al2Cu phase, which can generate both solid 
solution strengthening and precipitation strengthening. In Al-Zn-Mg alloys, when the Cu content is below 
3 wt.%, both hardness and strength exhibit an increase with rising Cu concentration[68]. Due to the small 

(7)

(8)

(9)
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Table 4. The three most important alloying elements affecting TC and UTS

TC UTS

Mg Mn

Si Cu

Fe Zn

TC: Thermal conductivity; UTS: ultimate tensile strength.

difference in atomic radius between Zn (R = 0.139 nm) and Al (R = 0.143 nm), the solid solution 
strengthening effect contributed by the addition of Zn is insignificant. Zn is commonly added with Mg to 
form MgZn2 or T-Mg32(Al,Zn)49, which contributes to precipitation strengthening[69]. A higher Zn/Mg ratio 
leads to the formation of smaller and denser the precipitates during the aging process, enhancing the 
mechanical properties of the alloy[70].

CONCLUSIONS
In this work, we established ML models for predicting TC and UTS of as-cast Al alloys. The feature 
expansion and feature selection using Lasso and Gini impurity took more physical and chemical factors into 
consideration and significantly improve the prediction accuracy. The R2 for the prediction of TC and UTS 
are above 0.9. An alloy with the composition of Al-2.64Cu-0.43Mg-0.10Zn-0.03Si alloy is recommended by 
the models. The alloy was fabricated, and it exhibits TC > 190 W·m-1·K-1 and UTS > 220 MPa, which are 
consistent with the model prediction. The microstructure analysis indicates that the alloy contains 
fragmented and spherical precipitates which reduce the electron scattering and offer precipitates 
strengthening, thereby improving the TC and UTS.

DECLARATIONS
Authors’ contributions
Writing - original draft, methodology, software, validation, formal analysis: Lu Z
Writing - review and editing, supervision, conceptualization: Kapoor I
Investigation: Li Y
Methodology: Liu Y
Supervision, resources, project administration: Zeng X
Writing - review and editing, supervision, conceptualization: Wang L

Availability of data and materials
The original data is provided in the Supplementary Materials.

Financial support and sponsorship
This work was supported by SJTU-Warwick Joint Seed Fund 2023/24 (SJTU2308), Shenzhen Science and 
Technology Program (KJZD20231023092902005), and UK Engineering and Physical Sciences Research 
Council Impact Acceleration Account (G.ESWM.0730.EXP).

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202411/jmi4021-SupplementaryMaterials.xlsx


Page 15 of Lu et al. J Mater Inf 2024;4:19 https://dx.doi.org/10.20517/jmi.2024.21 17

Consent for publication
Not applicable.

Copyright
© The Author(s) 2024.

REFERENCES
Hirsch J. Recent development in aluminium for automotive applications. T Nonferr Metal Soc 2014;24:1995-2002.  DOI1.     
Williams JC, Starke EA. Progress in structural materials for aerospace systems. Acta Mater 2003;51:5775-99.  DOI2.     
Ertuğ B, Kumruoğlu LC. 5083 type Al-Mg and 6082 type Al-Mg-Si alloys for ship building Am J Eng Res 2015. pp. 146-50. 
Available from: https://www.ajer.org/papers/v4(03)/T04301460150.pdf. [Last accessed on 2 Nov 2024]

3.     

Zhang A, Li Y. Thermal conductivity of aluminum alloys - a review. Materials 2023;16:2972.  DOI4.     
Klemens PG, Williams RK. Thermal conductivity of metals and alloys. Int Metal Rev 1986;31:197-215.  DOI5.     
Pan H, Pan F, Yang R, et al. Thermal and electrical conductivity of binary magnesium alloys. J Mater Sci 2014;49:3107-24.  DOI6.     
Schindler AI, Salkovitz EI. Brillouin zone investigation of Mg alloys. I. Hall Effect and conductivity. Phys Rev 1953;91:1320-2.  DOI7.     
Zhou Y, Zhang X, Zhong G, et al. Elucidating thermal conductivity mechanism of Al-9Si based alloys with trace transition elements 
(Mn, Cr, V). J Alloys Compd 2022;907:164446.  DOI

8.     

Luo G, Zhou X, Li C, Du J, Huang Z. Design and preparation of Al-Fe-Ce ternary aluminum alloys with high thermal conductivity. T 
Nonferr Metal Soc 2022;32:1781-94.  DOI

9.     

Choi S, Cho H, Kumai S. Effect of the precipitation of secondary phases on the thermal diffusivity and thermal conductivity of 
Al-4.5Cu alloy. J Alloys Compd 2016;688:897-902.  DOI

10.     

Lee W, Lee J, Kyoung W, Lee H, Lee H, Kim D. Effect of inhomogeneous composition on the thermal conductivity of an Al alloy 
during the precipitation-hardening process. J Mater Res Technol 2020;9:10139-47.  DOI

11.     

Esmaeili S, Lloyd D, Poole W. A yield strength model for the Al-Mg-Si-Cu alloy AA6111. Acta Mater 2003;51:2243-57.  DOI12.     
Lin B, Fan T, Li H, Zhao Y, Zhang W, Liu K. Microstructure and high temperature tensile properties of Al–Si–Cu–Mn–Fe alloys 
prepared by semi-solid thixoforming. T Nonferr Metal Soc 2021;31:2232-49.  DOI

13.     

Chen ZQ. Combining effect of Er and Sr on microstructure and mechanical properties of As-carted A356 alloy. Rare Metal Mat Eng 
2020;49:3388-94.  DOI

14.     

Fang Z, Roy K, Xu J, Dai Y, Paul B, Lim JB. A novel machine learning method to investigate the web crippling behaviour of 
perforated roll-formed aluminium alloy unlipped channels under interior-two flange loading. J Build Eng 2022;51:104261.  DOI

15.     

Dai Y, Roy K, Fang Z, Chen B, Raftery GM, Lim JB. A novel machine learning model to predict the moment capacity of cold-formed 
steel channel beams with edge-stiffened and un-stiffened web holes. J Build Eng 2022;53:104592.  DOI

16.     

Juan Y, Niu G, Yang Y, Dai Y, Yang J, Zhang J. Machine learning-based identification method of new strengthening element and the 
study on Al-Zn-Mg-Cu-Zr-Hf alloy. Maters Today Commun 2024;38:108359.  DOI

17.     

Juan Y, Niu G, Yang Y, et al. Accelerated design of Al−Zn−Mg−Cu alloys via machine learning. T Nonferr Metal Soc 2024;34:709-
23.  DOI

18.     

Jain S, Jain R, Dewangan S, Bhowmik A. A machine learning perspective on hardness prediction in multicomponent Al-Mg based 
lightweight alloys. Mater Lett 2024;365:136473.  DOI

19.     

Motamedi M, Nikzad MH, Nasri MR. Mixture design optimization and machine learning-based prediction of Al-Mg alloy composite 
reinforced by Zn nanoparticles: a molecular dynamics study. Mater Today Commun 2023;37:107473.  DOI

20.     

Shen Q, Yin Q, Zhao H, et al. Inversely optimized design of Al-Mg-Si alloys using machine learning methods. Comput Mater Sci 
2024;242:113107.  DOI

21.     

Xue D, Wei W, Shi W, et al. Optimization of stabilized annealing of Al-Mg alloys utilizing machine learning algorithms. Mater Today 
Commun 2023;35:106177.  DOI

22.     

Fatriansyah JF, Satrio MRR, Federico A, Suhariadi I, Dhaneswara D, Gascoin N. Machine learning-based forward and inverse designs 
for prediction and optimization of fracture toughness of aluminum alloy. Results Eng 2024;23:102717.  DOI

23.     

Jiang L, Fu H, Zhang Z, et al. Synchronously enhancing the strength, toughness, and stress corrosion resistance of high-end aluminum 
alloys via interpretable machine learning. Acta Mater 2024;270:119873.  DOI

24.     

Santhosh N, Praveena B, Jain R, et al. Analysis of friction and wear of aluminium AA 5083/WC composites for building applications 
using advanced machine learning models. Ain Shams Eng J 2023;14:102090.  DOI

25.     

Jiang L, Wang C, Fu H, Shen J, Zhang Z, Xie J. Discovery of aluminum alloys with ultra-strength and high-toughness via a property-
oriented design strategy. J Mater Sci Technol 2022;98:33-43.  DOI

26.     

Li H, Li X, Li Y, et al. Machine learning assisted design of aluminum-lithium alloy with high specific modulus and specific strength. 
Mater Design 2023;225:111483.  DOI

27.     

Mokhtari MA, Nikzad MH. Multi-objective optimization and comparison of machine learning algorithms for the prediction of tensile 
properties of aluminum-magnesium alloy. Mater Today Commun 2024;40:109476.  DOI

28.     

Chaudry U, Hamad K, Abuhmed T. Machine learning-aided design of aluminum alloys with high performance. Mater Today Commun 29.     

https://dx.doi.org/10.1016/s1003-6326(14)63305-7
https://dx.doi.org/10.1016/j.actamat.2003.08.023
https://www.ajer.org/papers/v4(03)/T04301460150.pdf
https://dx.doi.org/10.3390/ma16082972
https://dx.doi.org/10.1179/imtr.1986.31.1.197
https://dx.doi.org/10.1007/s10853-013-8012-3
https://dx.doi.org/10.1103/physrev.91.1320
https://dx.doi.org/10.1016/j.jallcom.2022.164446
https://dx.doi.org/10.1016/S1003-6326(22)65908-9
https://dx.doi.org/10.1016/j.jallcom.2016.07.137
https://dx.doi.org/10.1016/j.jmrt.2020.07.040
https://dx.doi.org/10.1016/s1359-6454(03)00028-4
https://dx.doi.org/10.1016/s1003-6326(21)65651-0
https://dx.doi.org/10.12442/j.issn.1002-185X.E20190101
https://dx.doi.org/10.1016/j.jobe.2022.104261
https://dx.doi.org/10.1016/j.jobe.2022.104592
https://dx.doi.org/10.1016/j.mtcomm.2024.108359
https://dx.doi.org/10.1016/s1003-6326(23)66429-5
https://dx.doi.org/10.1016/j.matlet.2024.136473
https://dx.doi.org/10.1016/j.mtcomm.2023.107473
https://dx.doi.org/10.1016/j.commatsci.2024.113107
https://dx.doi.org/10.1016/j.mtcomm.2023.106177
https://dx.doi.org/10.1016/j.rineng.2024.102717
https://dx.doi.org/10.1016/j.actamat.2024.119873
https://dx.doi.org/10.1016/j.asej.2022.102090
https://dx.doi.org/10.1016/j.jmst.2021.05.011
https://dx.doi.org/10.1016/j.matdes.2022.111483
https://dx.doi.org/10.1016/j.mtcomm.2024.109476


Page 16 of Lu et al. J Mater Inf 2024;4:19 https://dx.doi.org/10.20517/jmi.2024.2117

2021;26:101897.  DOI
Suh JS, Kim YM, Yim CD, Suh B, Bae JH, Lee HW. Interpretable machine learning-based analysis of mechanical properties of 
extruded Mg-Al-Zn-Mn-Ca-Y alloys. J Alloys Compd 2023;968:172007.  DOI

30.     

Zille H, Ishibuchi H, Mostaghim S, Nojima Y. Weighted optimization framework for large-scale multi-objective optimization. In: 
Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion; Denver, USA; 2016. pp. 83-4.  DOI

31.     

Bai P, Shang C, Zhu D, et al. The interpretable descriptors for fatigue performance of wrought aluminum alloys. J Mater Res Technol 
2024;32:3423-31.  DOI

32.     

Bak C, Roy AG, Son H. Quality prediction for aluminum diecasting process based on shallow neural network and data feature 
selection technique. CIRP J Manuf Sci Tec 2021;33:327-38.  DOI

33.     

Dong ZQ, Wang JG, Guan ZP, et al. Effect of short T6 heat treatment on the thermal conductivity and mechanical properties of 
different casting processes Al-Si-Mg-Cu alloys. Metals 2021;11:1450.  DOI

34.     

Bolibruchová D, Širanec L, Matejka M. Selected properties of a Zr-containing AlSi5Cu2Mg alloy intended for cylinder head castings. 
Materials 2022;15:4798.  DOI  PubMed  PMC

35.     

Lumley RN, Deeva N, Larsen R, Gembarovic J, Freeman J. The role of alloy composition and T7 heat treatment in enhancing thermal 
conductivity of aluminum high pressure diecastings. Metall Mater Trans A 2013;44:1074-86.  DOI

36.     

Zhang H, Fu H, Zhu S, Yong W, Xie J. Machine learning assisted composition effective design for precipitation strengthened copper 
alloys. Acta Mater 2021;215:117118.  DOI

37.     

Carruthers C, Teitelbaum H. The linear mixture rule in chemical kinetics. II. Thermal dissociation of diatomic molecules. Chem Phys 
1988;127:351-62.  DOI

38.     

Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials 
innovation. APL Mater 2013;1:011002.  DOI

39.     

Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc B 1996;58:267-88.  DOI40.     
Li Z, Long Z, Lei S, Yang L, Zhang W, Zhang T. Explicit expressions of the saturation flux density and thermal stability in Fe-based 
metallic glasses based on Lasso regression. Intermetallics 2021;139:107361.  DOI

41.     

Raguraman S, Priyadarshini MS, Nguyen T, et al. Machine learning-guided accelerated discovery of structure-property correlations in 
lean magnesium alloys for biomedical applications. J Magnes Alloy 2024;12:2267-83.  DOI

42.     

Ho TK. Random decision forests. In Proceedings of 3rd International Conference on Document Analysis and Recognition; 1995 Aug 
14-16; Montreal, Canada. IEEE; 2002. pp. 278-82.  DOI

43.     

Yao F, You G, Zeng S, Zhou K, Peng L, Ming Y. Fabrication, microstructure, and thermal conductivity of multilayered Cu mesh/
AZ31 Mg foil composites. J Mater Res Technol 2021;14:1539-50.  DOI

44.     

Wang K, Li W, Xu W, Hou S, Hu S. Simultaneous improvement of thermal conductivity and strength for commercial A356 alloy 
using strontium modification process. Met Mater Int 2021;27:4742-56.  DOI

45.     

Vandersluis E, Bois-brochu A, Ravindran C, Chiesa F. Mechanical properties and conductivity of low-pressure die-cast 319 aluminum 
prepared with hot isostatic pressing, thermal treatment, or chemical treatment. J Mater Eng Perform 2020;29:2335-45.  DOI

46.     

Yang Z, He X, Li B, Atrens A, Yang X, Cheng H. Influence of Si, Cu, B, and trace alloying elements on the conductivity of the Al-Si-
Cu alloy. Materials 2022;15:426.  DOI  PubMed  PMC

47.     

Kim CW, Cho JI, Choi SW, Kim YC. The effect of alloying elements on thermal conductivity of aluminum alloys in high pressure die 
casting. Adv Mater Res 2013;813:175-8.  DOI

48.     

Luo G, Zhou X, Li C, Huang Z, Du J. A Quantitative study on the interaction between silicon content and heat treatment on thermal 
conductivity of Al-Si binary alloys. Int J Metalcast 2022;16:1585-94.  DOI

49.     

Gan J, Du J, Wen C, Zhang G, Shi M, Yuan Z. The effect of Fe content on the solidification pathway, microstructure and thermal 
conductivity of hypoeutectic Al–Si alloys. Int J Metalcast 2022;16:178-90.  DOI

50.     

Tian L, Anderson I, Riedemann T, Russell A. Modeling the electrical resistivity of deformation processed metal–metal composites. 
Acta Mater 2014;77:151-61.  DOI

51.     

Gan J, Huang Y, Du J, Wen C, Liu J. Synchronous improvement in thermal conductivity and mechanical properties of Al–7Si–0.6Fe–
0.5Zn cast alloy by B/La/Sr composite modification. Mater Res Express 2020;7:086501.  DOI

52.     

Mulazimoglu MH, Drew RAL, Gruzleski JE. Solution treatment study of cast Al–Si alloys by electrical conductivity. Can Metall 
Quart 1989;28:251-8.  DOI

53.     

Li K, Zhang J, Chen X, et al. Microstructure evolution of eutectic Si in Al-7Si binary alloy by heat treatment and its effect on 
enhancing thermal conductivity. J Mater Res Technol 2020;9:8780-6.  DOI

54.     

Shanmugasundaram T, Heilmaier M, Murty B, Sarma VS. On the Hall–Petch relationship in a nanostructured Al–Cu alloy. Mat Sci 
Eng A 2010;527:7821-5.  DOI

55.     

Kammer C. Aluminum and aluminum alloys. In: Warlimont H, Martienssen W, Editors. Springer handbook of materials data. Springer 
International Publishing; 2018. pp. 161-97.  DOI

56.     

Zou Y, Wu X, Tang S, et al. Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg 
ratios. J Mater Sci Technol 2021;85:106-17.  DOI

57.     

Hansen N. The effect of grain size and strain on the tensile flow stress of aluminium at room temperature. Acta Metall 1977;25:863-9.  
DOI

58.     

Thangaraju S, Heilmaier M, Murty BS, Vadlamani SS. On the estimation of true Hall–Petch constants and their role on the 59.     

https://dx.doi.org/10.1016/j.mtcomm.2020.101897
https://dx.doi.org/10.1016/j.jallcom.2023.172007
https://dx.doi.org/10.1145/2908961.2908979
https://dx.doi.org/10.1016/j.jmrt.2024.08.160
https://dx.doi.org/10.1016/j.cirpj.2021.04.001
https://dx.doi.org/10.3390/met11091450
https://dx.doi.org/10.3390/ma15144798
http://www.ncbi.nlm.nih.gov/pubmed/35888266
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323043
https://dx.doi.org/10.1007/s11661-012-1443-7
https://dx.doi.org/10.1016/j.actamat.2021.117118
https://dx.doi.org/10.1016/0301-0104(88)87133-7
https://dx.doi.org/10.1063/1.4812323
https://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://dx.doi.org/10.1016/j.intermet.2021.107361
https://dx.doi.org/10.1016/j.jma.2024.06.008
https://dx.doi.org/10.1109/ICDAR.1995.598994
https://dx.doi.org/10.1016/j.jmrt.2021.07.042
https://dx.doi.org/10.1007/s12540-020-00669-x
https://dx.doi.org/10.1007/s11665-020-04743-8
https://dx.doi.org/10.3390/ma15020426
http://www.ncbi.nlm.nih.gov/pubmed/35057144
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778120
https://dx.doi.org/10.4028/www.scientific.net/AMR.813.175
https://dx.doi.org/10.1007/s40962-021-00706-4
https://dx.doi.org/10.1007/s40962-021-00580-0
https://dx.doi.org/10.1016/j.actamat.2014.06.013
https://dx.doi.org/10.1088/2053-1591/aba8df
https://dx.doi.org/10.1179/000844389795576447
https://dx.doi.org/10.1016/j.jmrt.2020.06.021
https://dx.doi.org/10.1016/j.msea.2010.08.070
https://dx.doi.org/10.1007/978-3-319-69743-7_6
https://dx.doi.org/10.1016/j.jmst.2020.12.045
https://dx.doi.org/10.1016/0001-6160(77)90171-7


Page 17 of Lu et al. J Mater Inf 2024;4:19 https://dx.doi.org/10.20517/jmi.2024.21 17

superposition law exponent in Al alloys. Adv Eng Mater 2012;14:892-7.  DOI
Lee S, Seo N, Kang M, Son SB, Lee S, Jung J. Natural aging-induced nanoprecipitation and its impact on tensile properties of Al–Si–
Cu–Mg cast alloy. Mater Charact 2024;215:114204.  DOI

60.     

Gomes LF, Spinelli J, Bogno A, Gallerneault M, Henein H. Influence of annealing treatment on Si morphology and strength of rapid 
solidified Al-12 wt% Si powders. J Alloys Compd 2019;785:1077-85.  DOI

61.     

Zheng G, Li H, Lei C, Fu J, Bian T, Yang J. Natural aging behaviors and mechanisms of 7050 and 5A90 Al alloys: a comparative 
study. Mat Sci Eng A 2018;718:157-64.  DOI

62.     

Zhang X, Huang L, Zhang B, Chen Y, Liu F. Microstructural evolution and strengthening mechanism of an Al–Si–Mg alloy processed 
by high-pressure torsion with different heat treatments. Mat Sci Eng A 2020;794:139932.  DOI

63.     

Shin J, Ko S, Kim K. Development and characterization of low-silicon cast aluminum alloys for thermal dissipation. J Alloys Compd 
2015;644:673-86.  DOI

64.     

Klemens PG. Deviations from Matthiessen’s rule and the electronic thermal conductivity of alloys. In: Mirkovich VV, Editor. Thermal 
conductivity 15. Springer US; 1978. pp. 203-7.  DOI

65.     

Chen JK, Hung HY, Wang CF, Tang NK. Thermal and electrical conductivity in Al–Si/Cu/Fe/Mg binary and ternary Al alloys. J 
Mater Sci 2015;50:5630-9.  DOI

66.     

Wang Y, Cao L, Wu X, Lin X, Yao T, Peng L. Multi-alloying effect of Ti, Mn, Cr, Zr, Er on the cast Al-Zn-Mg-Cu alloys. Mater 
Charact 2023;201:112984.  DOI

67.     

Li H, Cao F, Guo S, et al. Effects of Mg and Cu on microstructures and properties of spray-deposited Al-Zn-Mg-Cu alloys. J Alloys 
Compd 2017;719:89-96.  DOI

68.     

Ma K, Wen H, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum 
alloy. Acta Mater 2014;62:141-55.  DOI

69.     

Engdahl T, Hansen V, Warren P, Stiller K. Investigation of fine scale precipitates in Al–Zn–Mg alloys after various heat treatments. 
Mat Sci Eng A 2002;327:59-64.  DOI

70.     

https://dx.doi.org/10.1002/adem.201200114
https://dx.doi.org/10.1016/j.matchar.2024.114204
https://dx.doi.org/10.1016/j.jallcom.2019.01.257
https://dx.doi.org/10.1016/j.msea.2018.01.119
https://dx.doi.org/10.1016/j.msea.2020.139932
https://dx.doi.org/10.1016/j.jallcom.2015.04.230
https://dx.doi.org/10.1007/978-1-4615-9083-5_26
https://dx.doi.org/10.1007/s10853-015-9115-9
https://dx.doi.org/10.1016/j.matchar.2023.112984
https://dx.doi.org/10.1016/j.jallcom.2017.05.101
https://dx.doi.org/10.1016/j.actamat.2013.09.042
https://dx.doi.org/10.1016/s0921-5093(01)01876-7

