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Abstract
Current periodontal regenerative therapies aim at restitution ad integrum of the periodontal attachment apparatus, 
which involves periodontal ligament, root cementum, and alveolar bone. Guided tissue regeneration, bioactive 
agents and bone replacement grafts have been utilized in an attempt to fully restore the lost periodontal tissues. 
But their predictability has been limited and dependent on patient- and defect-related factors. Consequently, the 
treatment of most periodontal defects still lacks satisfactory and predictable outcomes. Cell therapies, based on 
the use of mesenchymal stem cells (MSCs), represent a promising therapeutic strategy in light of recently available 
published preclinical investigations and clinical studies. The application of MSCs in humans is being performed by 
two different strategies: (1) the ex vivo culture of undifferentiated MSCs from autologous or allogeneic sources, 
subjected to specific cell expansion and characterization/differentiation tests to obtain the required cell counts for 
transplantation; and (2) the use of autologous tissue grafts and micrografts, which apart from MSCs, contain other 
biologically active cell populations and their extracellular matrix. This review evaluates the current status of MSCs 
therapy applied for periodontal regeneration, describing not only their mechanism of action, but also their efficacy 
and safety according to the published evidence.
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INTRODUCTION
Periodontitis is a chronic multifactorial inflammatory disease associated with dysbiotic plaque biofilms and 
characterized by progressive destruction of the tooth-supporting apparatus (periodontal ligament, 
cementum, and alveolar bone) induced by the alteration of the homeostasis between the subgingival 
microbiota and the host immune response[1].

According to a systematic review with data from 37 countries, aimed at consolidating the epidemiologic 
records about the most destructive forms of periodontal disease, severe periodontitis was the sixth most 
prevalent medical condition in world, with a prevalence of 11.2%. In addition, it shows a significant increase 
with age and a peak incidence at 38 years old[2]. Severe periodontitis is widely distributed throughout the 
world and remains a public health concern[3]. Besides, periodontitis is associated with several systemic 
diseases and conditions[4,5] and, therefore, periodontal treatment would not only arrest periodontal 
inflammation and allow recovery of oral health, but it may also influence the course of these associated 
systemic diseases, or at least, in promoting a relevant improvement in biomarkers associated with them[6-9]. 
Therefore, the control of the disease may influence the long-term general health of periodontitis patients[3].

Conventional therapeutic strategies for periodontitis have focused on the infection control of the disease 
and the arrest of chronic inflammation, but not on the restoration of the injured tooth supporting tissues[10]. 
However, many periodontal regenerative therapies have aimed to reconstruct these tissues[11] by the 
formation of a new connective tissue attachment with well-oriented collagen fibres attached to the new-
formed root cementum[12]. Since the 1970s, multiple investigations have evaluated different agents and 
biomaterials that would promote cells from the periodontal ligament (PDL) cells, as the only cell population 
capable of repopulate the affected root surface, and thus regenerating the lost periodontal attachment[13] 
These technologies were based on the application of barrier membranes, bone replacement grafts, 
biologically active agents, and combinations of them; although, not all these strategies have provided the 
same level of evidence with regards to the efficacy in creating a new connective tissue attachment[14].

Recent systematic reviews of randomized controlled clinical trials have reported that strategies based on 
guided tissue regeneration (GTR) and the use of biologically active agents, in particular, enamel matrix 
derivatives (EMD), when used in the treatment of intrabony and furcation defects, provided an added 
clinical benefit of 1.43 mm (0.76-2.22 mm) and 1.27 mm (0.79-1.74 mm), respectively, in terms of clinical 
attachment level (CAL) gains when compared to an open flap debridement (OFD) alone[15,16]. Furthermore, 
the data shows that the addition of a bone replacement graft may improve in some defect configurations, 
the results obtained with the application of either GTR or EMD[15,16]. Conversely, the use of strategies with a 
minimally invasive surgical approach like the minimally invasive surgical technique (MIST)[17], the modified 
MIST technique (M-MIST)[18,19], or the single-flap approach[20] have allowed maximizing CAL gain with a 
significant decrease of postoperative gingival recession[21]. In fact, the importance of microsurgical 
techniques with minimal flap raising and enhancement of primary wound closure and space maintenance 
could be greater than even the regeneration material employed. A randomized controlled clinical study, in 
which the M-MIST technique with and without regeneration material was analyzed in intrabony defects, no 
statistically significant differences were observed between both groups in terms of clinical and radiographic 
variables[22].

These reported benefits from current biomaterials and MISTs, however, are restricted to a specific defect 
anatomy, mainly deep intrabony defects and mandibular degree II furcations[17,18,23-26]. Most periodontal 
lesions, such as supracrestal defects, class III furcation involvement lesions, or wide 1-wall intrabony defects 
still do not have a predictable outcome with standard regenerative technologies[27,28]. For this reason, new 
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tissue engineering strategies are being investigated in order to overcome the limitations of current 
regenerative technologies. The growing evidence in the field of cell therapy research is stimulating the use of 
live cells in periodontal regenerative medicine.

The aim of this review is to summarize the current status of cell therapy in periodontal regeneration, 
presenting the particular characteristics and potentials of stem cells and the most recent evidence regarding 
the application of different modalities of cell therapy for the regeneration of the tooth-supporting structures 
both in the preclinical and in the clinical field.

WHAT IS CELL THERAPY?
Over the last few decades, the concept of cell therapy, as a new technology for the regeneration of organs 
and tissues, has been introduced in regenerative therapies in multiple areas of medicine, such as cardiology 
and traumatology, among others[29-31]. Its objective is to restore the function of damaged tissues and organs 
by the use of diverse cell populations such as resident stem cells, multipotent adult cells, or embryonic stem 
cells[32] which have proliferative and paracrine potential to promote the target tissue regeneration. These cell 
therapies usually include the use of three-dimensional matrices or “scaffolds” that guide cell growth and act 
as vehicles for the release of cells or bioactive molecules, thus supporting and enhancing their tissue-
inductive properties[33].

“Stem cells” are the cells with the greatest proliferation capabilities since they are the most undifferentiated 
progenitors. They are characterized by self-renewal capacity, potential for indefinite proliferation, and 
capacity for differentiation into several cell lineages. Traditionally, two categories of stem cells have been 
described according to their origin and differentiation capacities: embryonic stem cells, which are 
pluripotent cells (able to differentiated to cells from the three embryonic lineages), and adult or postnatal 
stem cells, which are multipotent (capacity to differentiate into cells from their same embryonic layer)[34,35].

Adult stem cells are located in most tissues and organs since they have important roles in tissue homeostasis 
and repair[35]. The use of these cells lacks the ethical and legal issues associated with embryonic stem cells 
and they have not been associated with tumor formation when transplanted in vivo. These facts have made 
this cell population as the preferred source of cells for current cell-based therapeutics[36,37]. Hematopoietic 
stem cells, have been employed during decades as therapeutic tool in bone marrow transplantations[38]. 
Mesenchymal stem cells or “mesenchymal stromal cells” (MSCs), were isolated in 1970s, from bone marrow 
aspirations, and were defined as a subpopulation of plastic-adherent fibroblast-like cells, that formed single-
cell colonies under culture “colony-forming units fibroblasts”[39]. Several years later, these multipotent MSCs 
have become well characterized and their source is not only derived from bone marrow, but also from many 
other adult tissues, many from intraoral sources[39-43]. Among the extraoral tissues for collecting MSCs, the 
umbilical cord and the adipose tissue have been extensively used[44,45]. As for the intraoral sources, MSCs 
have been isolated from the periodontal ligament, the pulp from temporary and permanent teeth, the 
gingival connective tissue, the alveolar bone, the apical papilla, or the dental follicle[40-43,46-48].

Since the first ex vivo preclinical studies with MSCs in the 1970s, many publications have investigated the 
benefits of “putative” MSCs transplantation into animals and humans in several fields of medicine[49-52]. 
However, it was not until 2006, that the International Society for Cell Therapy established the minimal 
criteria for defining human multipotent MSCs for in vitro and preclinical investigations[53]. Thus, a general 
consensus worldwide about the characteristics of MSCs would allow comparing studies from many different 
research groups. According to that consensus, the requisites for being considered as MSCs were: (1) plastic-
adherence under standard culture conditions; (2) expression of specific mesenchymal phenotype markers 
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by at least 95% of the MSCs population (CD90+, CD73+, CD105+), as measured by flow cytometry, and 
absence (≤ 2% expression) of CD34, CD45, CD45, CD79α or CD19, CD14 or CD11b and HLA-DR class II; 
and (3) differentiation potential to osteoblasts, adipocytes, and chondrocytes under in vitro culture, 
demonstrated by cell staining[53]. In addition, as the ultimate goal of ex vivo MSCs expansion is human 
transplantation, the biosafety of the cells in the clinical setting must be ensured through the previous 
analysis of their genomic stability and confirmation of the lack of tumorigenic potential in small animal 
models[37].

MESENCHYMAL STEM CELLS IN REGENERATIVE MEDICINE
MSCs-based strategies for regenerative therapies aim at stimulating the biological processes that lead to 
tissue regeneration through the privileged potential of undifferentiated progenitors[54]. Several pathways 
have been reported to describe the mechanisms by which MSCs exert their therapeutic effects. In vivo 
studies have demonstrated the capacity of MSCs to differentiate to cells from the damaged receptor 
tissue[55,56]; in fact, histological evidence has showed that green fluorescence protein-labeled MSCs, were 
present within the new-formed tissues several weeks after their transplantation[57,58]. Other proposed 
mechanisms of the action of MSCs is based through their paracrine effects, that is, the release of soluble 
bioactive molecules and signals that influence the host’s immune response and enhance the proliferation 
and differentiation of resident progenitor cells[59]. This mechanism based on the promotion of the 
transplanted cells to assist in the tissue self-repair potential have also been tested using the “conditioned 
medium”, that is, the medium where the cells have been cultured rather than transplanting the cells[60-62]. 
With this strategy, growth factors and other bioactive molecules that are released during cell expansion 
continue their activity when applied directly on the target tissues to regenerate by enhancing the cellular 
responses in the injured area in a similar way, but lacking the issues associated with the transplantation of 
living cells[60,61,63].

It has long been believed that the tissue source where the cells are isolated would predispose the cell lineage 
of MSCs differentiation[64]. However, the evidence supporting that cells epigenetics is regulated by the tissue 
of origin is limited[65]. On the contrary, the property termed “cell plasticity” as the capacity of demonstrating 
potential to extend beyond the differentiated cell phenotypes of their resident tissue has been ascribed for 
MSCs[66], which then may be considered as pluripotent cells[67]. Several investigations have evaluated this 
potential studying and whether these transdifferentiated cells are really able to perform identical functions 
as the cells of the tissue towards which they have been differentiated[68]. The first protocols differentiating 
BMSCs into neurons for nervous system repair were described by Woodbury et al.[69]. Subsequently, other 
investigations have applied epigenetic modifiers and neuronal induction signals being able to differentiate 
MSCs into neural-like cells[70], although the functionality of these cells is not completely elucidated[71]. MSCs 
also exhibit important immunomodulatory properties, since they reduce the proliferation of T helper 
lymphocytes and suppress the proliferation of activated T lymphocytes, B cells, “natural killers” cells, 
dendritic cells, and neutrophils[72,73], thus decreasing the production of proinflammatory cytokines. This 
property has allowed the use of cell therapies based on allogeneic transplantation of MSCs and also the 
development of cell therapies for autoimmune diseases[34,49,74,75]. Furthermore, MSCs have showed the 
capacity for homing into sites of injury after systemic infusion, a property orchestrated by certain 
chemotactic cytokines and integrins, that make MSCs interesting candidates for various medical 
disciplines[51].

Another advantage of MSCs-based regenerative technologies is their minimally invasive isolation and lower 
morbidity in comparison with standard regenerative therapies. This is particularly applicable to their use in 
the oral and maxillofacial area where the treatment of alveolar ridge atrophies requires oral rehabilitation 
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with dental implants[76]. In these clinical situations, the gold standard therapy is the autologous bone graft, 
which not only entails a great morbidity, but also has limitations with respect to the bone availability of the 
donor site[77,78]. Besides a lower morbidity, the use of MSCs would also improve the perspectives regarding 
graft availability, as the number of cell counts may be controlled during ex vivo expansion[37].

APPLICATIONS OF MESENCHYMAL STEM CELLS FOR PERIODONTAL REGENERATION
During the last decades, several attempts based on the use of stem cells for periodontal bioengineering have 
been published. They have been based on the application of cells with proliferative and paracrine potentials, 
in combination with three-dimensional matrixes, with the objective of maintaining the blood clot stability 
and the space for the regeneration, and at the same time, stimulating the regenerative process, thus resulting 
in improved clinical outcomes when compared with standard treatments[79]. These attempts have evaluated 
different modalities of MSCs therapy[80-84], some transplanting undifferentiated ex vivo expanded MSCs into 
the periodontal defect and others transplanting tissue micro-grafts with potentiality to contain MSCs, but 
without any ex vivo processing and cell culturing[85].

Use of undifferentiated ex vivo expanded MSCs for periodontal regeneration
Isolation and ex vivo expansion of undifferentiated MSCs have been the most common strategy for cell 
therapy applied in periodontal regeneration and tested in preclinical studies[54,86,87]. Although there are 
multiple variations depending on the specific methods used by each research group, the standard isolation 
protocol for MSCs is based on the aspiration [bone marrow mesenchymal stem cells (BMSCs) or adipose 
tissue-derived MSCs (ADSCs)][45,46], surgical harvesting [gingiva-derived MSCs (GMSCs)][37,40], tooth 
extraction and root scraping [periodontal ligament (PDL-MSCs), dental follicle (DFCs), and apical papilla 
MSCs (SCAPs)][41,48,88], or collection of the pulp tissue [dental pulp stem cells from permanent (DPSCs) or 
exfoliated deciduous teeth (SHEDs)][42,43]. After isolation, solid samples are fragmented and digested in 
enzymatic solutions, usually type I collagenase (3 mg/mL) and dispase (4 mg/mL) for 30-60 min at 
37 °C[40,41,88]. Then, the suspension is centrifuged and filtered to obtain single cell suspensions that are seeded 
in tissue flaks with culture media, usually α-modified Eagle’s minimal essential medium (α-MEM) or 
Dulbecco’s modified minimum essential medium/nutrient mixture F-12 (DMEM/F12), containing 10% fetal 
calf serum, 2 mM L-glutamine and 100 U/mL penicillin and 100 μg/mL streptomycin[89,90]. Cells are then 
incubated (37 °C, 5% CO2, 95% humidity) until they reach 80%-90% confluence, and then they are 
trypsinized (trypsin-EDTA) and seeded again at a lower concentration until a proper cell count is 
attained[91,92].

Although most preclinical investigations have injected the MSCs suspensions in the target area or seeded 
them in tri-dimensional scaffolds, new approaches using cell sheets technology have been proposed[93-95]. 
This treatment consists of the ex vivo expanding of cell layers, which preserve, unlike standard culture 
techniques, their endogenous extracellular matrix, growth factors, and fibronectin molecules[81]. With this 
technology, no proteolytic enzymes, such as trypsin[96], are used to prevent alterations of the extracellular 
microenvironment, and cells achieve confluency, within 80-150 μm cell layers (usually 4-5 layers)[97], which 
can be directly transplanted into the defect without any scaffold[96]. Cell pellets or microtissues may also be 
tri-dimensionally manufactured from multilayer cell sheets; they are aggregates that increase the 
endogenous extracellular matrix secretion and exhibit improved mechanical properties and cell viability. 
These technologies aim to mimic the natural development of periodontal tissues by applying these PDL-
MSCs pellets to promote the complete reconstruction of cementum-periodontal ligament complexes[98].

In addition to their local transplantation, MSCs have been applied systemically, based in their capacity to 
migrate to damaged areas and stimulate tissue repair. Yu et al.[99] reported that BMSCs injected systemically 
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moved to surgically created periodontal defects and contributed to the healing of the lesions.

New regenerative strategies in periodontal therapy, to be considered as appropriate and effective therapeutic 
tools, require reliable evidence derived from preclinical and clinical studies[100]. The first step involves the 
design of preclinical investigations in which periodontal defects that mimic the naturally occurring lesions 
in humans affected by periodontitis are experimentally created[54,86,101,102]. The selection of a particular 
preclinical model will depend on the type of defect (e.g., fenestration, furcation, or intrabony periodontal 
lesion), the study follow-up, and the main study endpoint. Large animal models, such as the non-human 
primate or the canine, despite their high cost, are preferred due to their biological and histological 
similarities to humans[102]. In these studies, the formation of a new periodontal ligament, bone, and 
cementum, as well as a new connective tissue attachment are histologically evaluated in a test group, in 
which the new material is assessed in comparison to a control group (the gold-standard therapy, a negative 
control device, etc.)[100]. Experimental research is needed for successful translation of new regenerative 
periodontal strategies to the clinical setting. Afterwards, clinical studies, and especially, randomized 
controlled clinical trials are needed to determine, not only the safety and efficacy of a certain biomaterial, 
bioactive agent, or cell population for periodontal regeneration under ideal or controlled conditions in 
patients, but also the effectiveness of the device in normal clinical conditions[100,103].

Preclinical studies
The first preclinical investigations evaluating the transplantation of ex vivo expanded MSCs into periodontal 
lesions were published in the 1990s[104]. Thereafter, multiple experimental in vivo investigations have 
provided histological evidence of the formation of new cementum, connective tissue attachment, and bone 
formation when MSCs from bone marrow[105], adipose tissue[106], dental pulp from temporary and permanent 
teeth[107], periodontal ligament[89,91], or gingival connective tissue[108] were applied into experimentally created 
periodontal defects[54,86,87].

Monsarrat et al.[54] reported that most of this preclinical research published until 2013, was performed in the 
dog model (49% of the studies), with MSCs with an autologous origin (63% vs. 14% allogeneic and 28% 
xenogeneic) and harvested from intraoral sources (63%). MSCs-based therapies have been tested in different 
periodontal defect models, such as buccal dehiscence, 2 and 3-wall intrabony, and type II and III furcation 
lesions, as well as critical size supracrestal periodontal defects[75,94,109-111].

In the last years, the study of the tissue-inductive potential of allogeneic[75,94,111] and xenogeneic MSCs[109,110] 
has increased. These investigations have reported that the use of cells from other species or other 
individuals is safe, without eliciting relevant immunogenic reactions after their transplantations[109,111].

Table 1 shows the most recent preclinical investigations in which the effect of a test group, consisting of the 
use of MSCs from different tissue sources, was histologically evaluated for periodontal 
regeneration[75,94,109-116]. The results from these studies vary depending on the control used. When the 
comparative control was open flap debridement alone, or with an adjunctive negative control [i.e., sodium 
chloride (NaCl) solution injection], a clear and statistically significant superiority was reported in the test 
group applying a cell therapy[94,109,110,116]. Takewaki et al.[116] histologically observed epithelium invasion with 
inflammatory cell infiltrate and lack of periodontal ligament and cementum formation after OFD, but on 
the contrary, a successful periodontal regeneration with mature bone, new cementum and well-oriented 
Sharpey’s fibers when the OFD was combined with the application of autologous BMSCs clumps. 
Conversely, when the control group consisted of using the same three-dimensional scaffold without the 
cells, the results from different studies were heterogeneous[75,111,114]. The use of allogeneic and autologous 
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Table 1. Preclinical studies (2016-2020) with large animal models, in which mesenchymal stem cells are compared with a control treatment with no cells, for periodontal regeneration

Author 
(Country)

Animal model/follow 
up Defect type

Cell groups (MSCs/scaffold/GF-
gene) 
Cells origin

Control groups Cell transplantation method

Liu et al.[114] 
(China)

Beagle dog (n = 6)/6 
months

Buccal dehiscences* BMSCs/DBBM-collagen 
(AUT)

DBBM-collagen Grafting after OFD

Hu et al.[109] 
(China)

Minipigs (n = 12)/3 months Three-wall intrabony defects* (I) DPSCs injection 
(II) VitC treated DPSCs sheets (XEN)

NaCl injection Grafting after OFD/subperiosteal 
injection

Basan et al.[112] 
(Germany)

Minipigs (n = 15)/4 months Class II furcation defects* PDL-MSCs/CP + SMem (AUT) (a) CP + SMem 
(b) CMem/HA-TCP + GF + 
SMem 
(c) CMem + SMem 
(d) CM + SMem 
(e) CM + GF + SMem 
(f) blank + SMem

Grafting after OFD

Takewaki et al.[116] 
(Japan)

Beagle dogs (n = 7)/3 
months

Class III furcation defects† BMSCs sheets + osteogenic media 
(AUT)

OFD Grafting after OFD

Guo et al.[94] 
(China)

Beagle dogs (n = 5)/3 
months

2-wall intrabony defects‡ DFSCs sheets 
PDL-MSCs sheets (ALLO)

- Grafting after OFD

Nuñez et al.[111] 
(Spain)

Beagle dogs (n = 
9)/3months

Critical-size supra-alveolar defects§ PDL-MSCs/DBBM-collagen (ALLO) DBBM-collagen Grafting after OFD

Venkataiah et al.[75] 
(Japan)

Minipigs (n = 4)/1 month Furcation defect model* ADSCs/fibrin gel (AUT or ALLO) Fibrin gel Grafting after OFD

Rezaei et al.[115] 
(Iran)

Mongrel dogs (n = 5)/2 
months

Class II furcation defects¶ BMSCs/fibrin glue/PRP 
BMSCs/fibrin glue (AUT)

(a) PRP + fibrin glue 
(b) Fibrin glue

Grafting after OFD

Li et al.[110] 
(China)

Minipigs (n = 9)/3 months Bone defects in both sides of the mesial root of 
lower 1st molar*

(I) SCAPs 
(II) SCAPs/SFRP2

Saline Subperiosteal injection

Li et al.[113] 
(China)

Minipigs (n = 6)/3 months Class II furcation defects‡ DPSCs-IPs/β-TCP (AUT) β-TCP Grafting after OFD

*Surgically created defects and immediate regenerative intervention (no material for defect chronification). †Surgically created defects and alginate impression materials for 1 week. ‡Surgically created defects and silk 
ligatures for 4 weeks. §Surgically created defects and Orthodontic wire ligatures for 7 weeks. ¶Surgically created defects; 3 weeks healing before regenerative intervention (no material for defect chronification). 
MSCs: Mesenchymal stem cells; GF: growth factor; BMSCs: bone marrow stem cells; DPSCs: dental pulp stem cells; PDL-MSCs: periodontal ligament-derived stem cells; ADSCs: adipose tissue-derived stem cells; 
SCAPs: apical papilla mesenchymal stem cells; DPSCs-IPs: stem cells from inflammatory dental pulp tissues; AUT: autologous; XEN: xenogeneic; ALLO: allogeneic; HA: hydroxyapatite; VitC: Vitamin C; CP: collagen 
powder; SMem: covered with semipermeable membrane; DBBM: demineralized bovine bone mineral; NaCl: sodium chloride; CMem: collagen membrane; CM: collagen matrix; OFD: open flap debridement; PRP: 
platelet-rich plasma; SFRPs: secreted frizzled-related proteins; CMem/HA-TCP: collagen membrane/hydroxilapatite-tricalcium phosphate; β-TCP: beta-tricalcium phosphate.

ADSCs/fibrin gel constructs for the treatment of class II furcation models in minipigs provided new cementum, bone, and periodontal ligament, unlike the 
control group (fibrin gel), which showed lack of new tissues formation[75]. The micro-CT analysis revealed that the newly formed alveolar ratio in the allogeneic 
and autologous ADSCs groups was significantly greater (4.4 and 5.4 folds, respectively) than in the control group[75]. However, other publications did not 
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report a significant added benefit with the application of MSCs[111,114]. Liu et al.[114] treated buccal dehiscence-
type defects in Beagle dogs with either autologous BMSCs seeded in collagen-hydroxyapatite scaffolds or the 
scaffolds alone. The results of the histometric analysis showed very similar dimensions with respect to the 
height of new-formed cementum (64%-71%) and bone (71%-75%) in both groups. Similarly, Nuñez et al.[111] 
found no statistically significant differences for histometric values between a test group consisted of 
hydroxyapatite-collagen scaffolds with embedded allogeneic PDL-MSCs and a control group (scaffold 
alone) for the regenerative treatment of critical-size supraalveolar periodontal defects in Beagle dogs. In this 
study, the authors suggest that the limited effects of the cells could be attributable to the early soft tissue 
recession and exposure of the furcation fornix, what could have prevented from space maintenance and a 
satisfactory regenerative process[111] [Table 1].

In most studies the scaffold-cell construct has been applied directly into the periodontal defect after raising 
a full thickness flap and full debridement of the defect[92,112,116]. However, some authors have applied the cell 
therapy by a subperiosteal injection[110]. Hu et al.[109] compared the regenerative efficacy of human DPSCs 
injections with DPSCs cell sheets placed after an OFD in a 3-wall intrabony defect model in minipigs. 
Although four months later, the histological results showed new alveolar bone and Sharpey’s fibers attached 
to the new cementoid layers in both groups, the histometric analysis revealed a greater new-formed alveolar 
bone height in the grafted sites (4.5 ± 0.3 mm) than in the areas treated by injected cells (3.8 ± 0.5 mm; P > 
0.05). This low superiority should not necessarily be attributed to the transplantation strategy, but to other 
reasons, such as the supplementation of the culture media with vitamin C in the grafted group or the 
inherent benefits of the cell sheet technique[109]. These methods in which the extracellular matrix is 
preserved, as cell sheets or pellets/aggregates techniques, have been increasingly tested in preclinical studies 
for periodontal regeneration[94,109,116]. Guo et al.[94] found that allogeneic DFSCs sheets showed better results 
in terms of new cementum (5.16 ± 0.23 mm) and bone height (4.67 ± 0.35 mm) than allogeneic PDL-MSCs 
sheets (3.84 ± 0.30 mm and 3.42 ± 0.26 mm, respectively), although these differences were not statistically 
significant. As scaffolds for carrying the cells, the most recent preclinical investigations have used fibrin 
gel[75,115], collagen materials (membranes, matrixes, and powder)[112] and composite biomaterials made of 
hydroxyapatite and/or calcium phosphates mixed with collagen[111,112,114] [Table 1].

Clinical studies
The safety and efficacy of the use of MSCs for periodontal regeneration demonstrated in preclinical studies, 
as well as their genomic stability shown in vitro, has prompted clinical investigations to assess their 
performance and efficacy in patients[37,54,86,87]. In the last decade, several clinical studies have studied the 
benefits of MSCs-based therapies in periodontal regeneration[58,74,81,82,84,85,117-119]. Their experimental design is 
shown in Table 2.

In terms of its safety, all clinical studies agree that MSCs-based therapies for periodontal regeneration are 
safe. No serious adverse events, other than the common complications of standard periodontal regenerative 
surgeries, such as medium-sized pain and swelling, sensitivity, and angular cheilosis, have been 
reported[74,81,84,117,118,121]. Patients completely and spontaneously recovered in few weeks and no tooth lost was 
found during the follow up[117].

Most of the published studies are case reports/series, with follow-ups ranging from 6 to 36 months, in 
which, the use of allogeneic or autologous MSCs for the treatment of intrabony, circumferential, and 
furcation defects, seems to significantly improve clinical and radiographic parameters[58,74,81,82,117-120].
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Table 2. Design of clinical studies with MSCs for periodontal regeneration

Author 
(Country)

Design (follow 
up) n (final) Test Control Type of defect

Yamada et al.[120] 
(Japan)

CR (12 months) 1 BMSCs (AUT)/PRP - Intrabony defect

D’Aquino et al.[121] 
(Italy)

Split-mouth CCT 
(12 months)

7 DPSCs (AUT)/collagen sponge Collagen 
sponge

Supraalveolar defects secondary to 
third molar impaction

Yamada et al.[58] 
(Japan)

CS (6 months) 17 BMSCs (AUT)/PRP - Not reported

Dhote et al.[82] 
(India)

Parallel-group 
RCT (12 months)

20 Cord blood MSCs (ALLO)/β-
TCP/PDGF-BB

OFD Intrabony defects

Chen et al.[81] 
(China)

Parallel-group 
RCT (12 months)

30 PDL-MSCs sheets (AUT)/DBBM DBBM Intrabony defects

Baba et al.[117] 
(Japan)

CS (36 months) 10 BMSCs (AUT)/PRP/PLA - Intrabony defects (1, 2, and 3 walls)

Li et al.[119] 
(China)

CR (9 months) 2 DPSC-IPs (AUT)/β-TCP Furcation defects

Iwata et al.[118] 
(Japan)

CS (6 months) 10 PDL-MSCs sheets (AUT)/PGA/β-TCP - Intrabony defects (1, 2, 3-wall), 
horizontal and circumferential 
defects

Hernández-
Monjaraz et al.[74] 
(Mexico)

CR (6 months) 1 DPSC (ALLO)/collagen/PVP/non-
resorbable membrane

- Circumferential defect

Sánchez et al.[84] 
(Spain)

Parallel-group 
CCT (12 months)

19 PDL-MSCs (AUT)/DBBM-collagen DBBM-
collagen

Intrabony defects (1 and 2-wall)

CR: Case report; CCT: controlled clinical trial; CS: case series; RCT: randomized controlled clinical trial; BMSCs: bone marrow mesenchymal stem 
cells; DPSCs: dental pulp stem cells; MSCs: mesenchymal stem cells; PDL-MSCs: periodontal ligament-derived stem cells; AUT: autologous; 
ALLO: allogeneic; PRP: platelet-derived plasma; β-TCP: beta-tricalcium phosphate; PDGF-BB: platelet-derived growth factor-BB; DBBM: 
demineralized bovine bone mineral; PLA: poly-L-lactic acid resin; PGA: polyglycolid acid mesh; PVP: polyvinyl pyrrolidone sponge; OFD: open flap 
debridement.

Only three parallel-group controlled clinical trials, evaluating the effect of MSCs therapy on the functional 
regeneration of lost periodontal tissues, have been published to date[81,82,84]. They are all 12-month controlled 
clinical trials, including 20-30 patients initially, suffering from periodontitis, with the presence of at least 
one tooth with a deep intrabony defect. Dhote et al.[82] reported significantly greater probing pocket depth 
reduction and CAL gain after treating the defects allocated to the test group with allogeneic cord blood 
MSCs cultured in a β-TCP scaffold with PDGF-BB, (4.50 ± 1.08 mm and 3.91 ± 1.37 mm, respectively), 
when compared with a control treatment, consisting of an OFD alone (3.50 ± 0.90 mm and 2.08 ± 0.90 mm, 
respectively; P < 0.05). However, when in addition to the OFD, a scaffold was utilized as control treatment, 
the differences between the groups lost the statistical significance[81,84]. Chen et al.[81] transplanted PDL-MSCs 
sheets together with demineralized bovine bone mineral (DBBM) in 21 intrabony periodontal defects, and 
the scaffold alone in 20 defects. Twelve months later, the results showed significant improvements in both 
groups, in terms of alveolar bone fill, the primary outcome variable in terms of efficacy, but differences 
between the cell and the control group could not be detected[81]. Similarly, Sánchez et al.[84] did not find a 
significant added beneficial effect of transplanting autologous PDL-MSCs embedded in a DBBM/collagen 
scaffold when grafted in 1 and 2-wall intrabony defects, compared with the use of the same scaffold without 
the cells. However, in this study a clear trend favoring the cell group was reported in terms of mean probing 
pocket depth reduction and CAL gain. Unlike the two previous randomized controlled clinical trials (RCT), 
the latter study could not use a randomized allocation, as not all patients provided teeth with PDL samples 
exhibiting appropriate cell proliferation, thus the assignment of patients to the test group was based on the 
ability of cell growth from the periodontal ligament remnants from their extracted teeth[84].
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In another controlled clinical trials, using a split-mouth design, DPSCs/collagen sponges constructs were 
transplanted into defects located in the distal aspect of lower second molars after the extraction of the 
impacted third molars[121]. The results derived from the evaluation of the seven patients that completed the 
12-month follow-up revealed that all the defects from the cell group attained ≥ 70% bone regeneration from 
their initial defect size whilst more than half of the control defects exhibited no regeneration or 30% 
regeneration of the original defect dimension[121].

Although the most common cell source in the MSCs-based clinical studies for periodontal regeneration has 
been the periodontal ligament[81,84,118], other intraoral (dental pulp) and extraoral (bone marrow from the 
iliac crest) sites have been chosen for cell isolation with optimal cell counts after expansion[58,117,119,121]. In 
addition, most studies have employed cell populations from autologous tissues[58,81,84,117-121]; however, 
allogeneic sources are becoming an interesting alternative to autologous cells, due to their better cost-
effectiveness[74,82].

In regards to the surgical technique, the method for cell transplantation into the defect in all the human 
studies was the OFD, with or without papilla preservation techniques, followed by the graft placement[81,82,84] 
[Table 2].

Whole tissue fractions without ex vivo culture
This strategy is based on transplanting samples of autologous tissue, mainly from autologous periodontal 
ligament[80,122,123] and dental pulp of permanent teeth[83,124-126], with minimal manipulation and without ex vivo 
expansion[76]. Two different approaches of whole tissue fractions containing stem cells should be 
distinguished. In one, the tissue sample, immediately after its harvesting and isolation, is directly introduced 
into the periodontal defect without any manipulation[80,122,123]. On the other hand, the tissue samples once 
isolated, are mechanically disaggregated with special devices to attain a so-called “micrografts containing 
different cell fractions, with MSCs among them”[83,124-126].

One advantage of these strategies is the preservation of the extracellular matrix together with other cell 
fractions that are usually discarded when cultivating MSCs ex vivo. The hypothesis is that these cells and 
tissue fractions may have relevant roles in the maintenance of the niche/microenvironment where the stem 
cells exert their biological activity[123,125]. However, whole tissue fractions contain, not only MSCs, but also 
other progenitors and cell populations that although not having the differential cell inductive potential for 
regeneration, as monocytes and other hematopoietic cells, may release growth factors and signalling 
molecules, which in their physiologic ratios, may promote the regenerative process[127,128]. Another advantage 
of whole tissue fractions without ex vivo expansion is that all the procedures are performed in the dental 
chair at the same session, so that all regulatory issues when manipulating stem cells are avoided and 
consequently, their use is much more cost effective. In spite of the absence of preclinical evidence in animal 
models that confirms the regeneration of the periodontal tissues from a histological and histometric point of 
view[129], this cell therapy modality has been tested in various controlled clinical studies in which 
significantly better clinical outcomes have been shown by the “whole tissue fractions” group in comparison 
to the control group consisting of an OFD or the scaffold alone[80,83,123] [Table 3].

In the first clinical report using non-manipulated tissue samples, periodontal ligament grafts, obtained by 
scraping the mid-third of the root of extracted third molars with a healthy periodontium, were immediate 
transplanted into class-II furcation lesions in mandibular molars[80]. When compared at six months with the 
control group using only coronally advanced flaps, the test group exhibited a greater CAL gain and probing 
pocket depth reduction (P < 0.05). A similar protocol, but, combining PDL scraped from the root surface 
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Table 3. Design of clinical trials on periodontal regeneration with whole tissue fractions

Author 
(Country)

Design 
(follow up)

n 
(final) Test Control Grafts processing Periodontal 

defect

Akbay et al.[80] 
(Turkey)

Split-mouth 
RCT 
(6 months)

10 PDL grafts (AUT) OFD None Degree II mandibular 
furcation 

Aimetti et al.[125] 
(Italy)

CR (12 
months)

1 DPSCs (AUT)/collagen 
sponge

- Mechanical dissociation 
(medimax system)

1, 2-wall intrabony 
defect

Aimetti et al.[126] 
(Italy)

CR (12 
months)

4 DPSCs (AUT)/collagen 
sponge

- Mechanical dissociation 
(medimachine system)

1- or 2-wall intrabony 
defect

Kl et al.[122] 
(India)

CR (12 
months)

1 PDL grafts (AUT)/Gelatine 
sponge

None Intrabony defect

Aimetti et al.[125] 
(Italy)

CS (12 
months)

11 Micrografts rich in DPSC 
(AUT)/collagen sponge

- Mechanical dissociation 
(Rigenera system)

Intrabony defects

Ferrarotti et al.[83] 
(Italy)

Parallel-group 
RCT 
(12 months)

29 Micrografts rich in DPSC 
(AUT)/collagen sponge

Collagen 
sponge

Mechanical dissociation 
(Rigenera system)

Intrabony defects

Shalini et al.[123] 
(India)

Parallel-group 
RCT 
(12 months)

28 PDL grafts (AUT) OFD None Intrabony defects

RCT: Randomized controlled clinical trial; CR: case report; CS: case series; PDL: periodontal ligament; DPSCs: dental pulp stem cells; AUT: 
autologous; OFD: open flap debridement.

and the socket walls and mixed a gelatin sponge, the so-called “Autologous Stem Cell Assistance in 
Periodontal Regeneration (SAI-PRT)” was tested in a 12-month RCT, using as control group OFD in the 
treatment of intrabony defects[122,123]. This study also reported significant probing pocket depth reductions 
and CAL gains in the test group[123].

In another protocol, the isolated tissues (in this case fresh pulpal tissue obtained immediately after tooth 
extraction), were mechanically disaggregated with a special device to obtain the so-called “micrografts”, 
which were subsequently filtered and transplanted into the defects embedded in collagen sponges[124]. 
Clinical reports using this approach have shown beneficial clinical and radiographic effects when utilized 
for the treatment of non-contained intrabony defects[124-126]. Recently, a RCT compared the MIST to treat 
deep intrabony periodontal defects using either dental pulp micrografts placed in a collagen sponge 
biocomplex (test) or the same technique with the collagen sponge alone (control)[83]. The results after 12 
months showed that the application of the cell-based therapy significantly improved the clinical and 
radiographic parameters, suggesting that this strategy could represent a promising and easy method for 
periodontal regeneration[83].

CONCLUSION
The scientific evidence from preclinical and clinical research has proven that the application of MSCs used 
in periodontal regenerative interventions is safe. These cell-based treatments can use either ex vivo 
expanded MSCs or minimally manipulated whole tissue fractions. The transplantation of ex vivo expanded 
MCSs into preclinical models of experimental periodontal defects have resulted in significant attainment of 
histological periodontal regeneration. However, the clinical evidence is still limited. When compared to 
OFD, this strategy has shown significant benefits in both clinical and radiographic outcomes. However, 
when the control group is the same biomaterial used as cell carrier without MSCs, controversial results have 
been published, although the number of RCTs is very limited. The implantation of whole tissue fractions 
(mainly dental pulp and periodontal ligament) has also reported significant clinical benefits when compared 
with a negative control group. However, the histological outcomes of this cell therapy strategy have not yet 
been reported.
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The present evidence of the efficacy and efficiency of these technologies based on cell therapies is too 
preliminary, with only a handful of clinical trials published. There is, therefore, a clear need of further 
clinical research, mainly in the form of RCT with adequate sample sizes, longer follow-ups, and robust 
designs. These designs should use patient-based analysis and the control group should be identical to the 
test group, but without cells or tissue extracts. Besides efficacy, other issues such as cost-effectiveness, 
patient morbidity, and patient-reported outcomes should be added.
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