ISSN 2770-5900 (Online) Volume 2 | Issue 1 | February 2022

Energy Materials

Review

Open Access

Check for updates

Recent advances in photocatalytic renewable energy production

Xiaolang Chen[#], Jingjing Zhao[#], Guisheng Li, Dieqing Zhang^{*}, Hexing Li^{*}

The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.

[#]Authors contributed equally.

***Correspondence to:** Prof. Dieqing Zhang, the Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, No. 100, Guilin Road, Xuhui District, Shanghai, 200234, China. E-mail: happy2002zdq@126.com; Prof. Hexing Li, the Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, No. 100, Guilin Road, Xuhui District, Shanghai, 200234, China. E-mail: hexing-li@shnu.edu.cn

How to cite this article: Chen X, Zhao J, Li G, Zhang D, Li H. Recent advances in photocatalytic renewable energy production. *Energy Mater* 2022;2:200001. https://dx.doi.org/10.20517/energymater.2021.24

Received: 26 Nov 2021 First Decision: 29 Dec 2021 Revised: 11 Jan 2022 Accepted: 19 Jan 2022 Published: 29 Jan 2022

Academic Editors: Yuping Wu, Yuhui Chen Copy Editor: Xi-Jun Chen Production Editor: Xi-Jun Chen

Abstract

The development of green and renewable energy is becoming increasingly more important in reducing environmental pollution and controlling CO_2 discharge. Photocatalysis can be utilized to directly convert solar energy into chemical energy to achieve both the conversion and storage of solar energy. On this basis, photocatalysis is considered to be a prospective technology to resolve the current issues of energy supply and environmental pollution. Recently, several significant achievements in semiconductor-based photocatalytic renewable energy production have been reported. This review presents the recent advances in photocatalytic renewable energy production over the last three years by summarizing the typical and significant semiconductor-based and semiconductor-like photocatalysts for H₂ production, CO₂ conversion and H₂O₂ production. These reactions demonstrate how the basic principles of photocatalysis can be exploited for renewable energy production. Finally, we conclude our review of photocatalytic renewable energy production and provide an outlook for future related research.

© The Author(s) 2022. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Keywords: Photocatalysis, solar energy conversion, renewable energy, semiconductors

INTRODUCTION

The overconsumption of fossil fuels has depleted traditional energy resources and contributed to environmental pollution in water, soil and air environments^[1]. It is highly expected that renewable and green energy can be exploited to resolve the energy crisis and environmental pollution. Solar energy is an extremely attractive natural energy source. The amount of solar energy that hits the Earth's surface each year $(1.3 \times 10^5 \text{ TW})$ is much greater than that consumed by humans $(1.6 \times 10^1 \text{ TW in } 2010)^{[2,3]}$. The conversion of solar energy to chemical energy via chemical reactions is a prospective method of producing renewable energy. Inspired by the natural photosynthesis of green plants and some other microorganisms, which convert solar energy to chemical energy in the form of carbohydrates or hydrogen, artificial photosynthesis (photocatalysis) is considered a prospective technology for the conversion of solar energy to chemical and Honda discovered water photolysis on TiO₂ electrodes in 1972, photocatalysis has received tremendous attention and developed rapidly in recent decades due to its promising applications in renewable energy production^[7,8].

The basic principles of semiconductor-based photocatalysis are presented in Figure 1^[9]. In general, a complete photocatalytic process on a semiconductor involves three steps. The first step is light absorption, where photons are absorbed by the semiconductor photocatalyst. If the energy (hv) of the photons is larger than the bandgap energy of the semiconductor, the electrons (e) are excited and transmitted to the conduction band (CB) from the valence band (VB), leaving holes (h^+) in the VB. Pairs of negatively charged electrons and positively charged holes (e⁻ h^+ pairs) are generated in this step. The second step is charge separation and transfer. The photogenerated e⁻ h^+ pairs are separated and transferred to the surface of the semiconductor, while some photogenerated e⁻ and h^+ recombine in the bulk of the photocatalyst (volume recombination). The final step is surface reduction and oxidation reactions. The photogenerated charges on the surface of the semiconductor react with chemical species^[9,10]. Meanwhile, some photogenerated e⁻ and h^+ recombine without taking part in any chemical reaction (surface recombination).

Realizing the efficient conversion of solar energy to chemical energy for the production of renewable energy relies on semiconductor photocatalysts^[11]. One of the major issues associated with semiconductor photocatalysts is the insufficient rate of light utilization. The positions of the band edge (CB and VB) in a semiconductor should meet the required potentials of redox reactions. However, this means that light with a lower energy than the absorption onset [visible or even near-infrared (NIR) light] cannot be used. In addition, semiconductor photocatalysts suffer from the inefficient separation of photogenerated charge carriers, resulting in poor photoactivity and quantum efficiency^[11]. There are two effective strategies for overcoming these issues. The first is the development of semiconductor photocatalysts with excellent light absorption ability to improve the light utilization rate. The second is the construction of a scheme or system (including cocatalysts) to effectively facilitate the separation of photogenerated e⁻h⁺ pairs. Current state-of-the-art semiconductor-based nanocomposite systems (e.g., materials with element doping/single atom modification, the construction of heterostructures and the development of cocatalysts) offer intense and wide absorption of light from across the solar spectrum, as well as highly efficient charge separation. These achievements have contributed greatly to the field of renewable energy production.

Herein, we introduce the advances in photocatalytic renewable energy production made in the last three years. We demonstrate how the basic principles of photocatalysis are used in certain reactions for renewable energy production, such as photocatalytic H_2 production, CO_2 conversion and H_2O_2 production, and

Figure 1. Basic principles of semiconductor-driven photocatalysis. Reproduced from Ref.^[9] with permission from Wiley.

introduce some of the typical heterogeneous photocatalysts used in these reactions, such as inorganic semiconductors and organic semiconductor-like materials (e.g., metal- and covalent-organic frameworks). Finally, we conclude with the progression made in photocatalytic renewable energy production and provide an outlook for future related research.

PHOTOCATALYTIC RENEWABLE ENERGY PRODUCTION

Photocatalytic H₂ production

Basic principles of photocatalytic H₂ production

 H_2 is a promising clean energy source that does not produce secondary pollution^[12]. After light harvesting and the separation and transfer of the photogenerated e⁻h⁺ pairs in the aforementioned principle of photocatalysis, the photogenerated e⁻ in the CB reduce adsorbed H⁺ to H₂ [Figure 2] and the photogenerated h⁺ in the VB oxidize a sacrificial agent (S), such as alcohols (e.g., CH₃OH, CH₃CH₂OH and CH₃CH₂CH₂OH), triethanolamine (TEOA) or triethylamine (TEA) into an oxidative product (S⁺) or water into oxygen (O₂)^[13-15]. Nonetheless, the energy level of CB for the H₂ evolution reaction should be lower than 0 V vs. the normal hydrogen electrode (NHE) at pH 7. Additionally, the energy level of the VB for the H₂O oxidation reaction should be higher than 1.23 V vs. NHE, as the following redox reactions show:

Reduction reaction: $2H^+ + 2e^- \rightarrow H_2E = 0.00 \text{ eV}(1)$

Oxidation reaction: Sacrificial agent (S) + $h^+ \rightarrow S^+E > 1.23 \text{ eV}(2)$ or $H_2O + 2h^+ \rightarrow \frac{1}{2}O_2 + 2H^+E = 1.23 \text{ eV}(3)$

Overall water splitting: $2H_2O \rightarrow O_2 + 2H_2E = -1.23 \text{ eV}(4)$

Figure 2. Schematic energy diagram of photocatalytic H_2 production from water-splitting on a semiconductor photocatalyst. CBM: Conduction band minimum; VBM: valence band maximum; E_o : bandgap energy.

Recent advances in photocatalytic H₂ production

H₂ production from water with sacrificial agents

I. Metal oxide-based photocatalysts

Metal oxides have the advantages of low cost, good structural stability and low toxicity. In addition, they are easy to prepare and can be modified via various strategies, which can impart them with improved performances. Moreover, the proper band positions confer metal oxides with good redox capability in the photocatalytic H_2 production reaction^[16].

Titanium dioxide (TiO₂) is the most frequently investigated semiconductor material for photocatalytic H₂, production. Hejazi et al.^[17] described an atomic-scale defect engineering method to form and control traps for Pt single atom (SA) sites upon thin sputtered TiO₂ layers for photocatalytic H₂ production. The density of defect centers can be precisely regulated, resulting in the controlled density of Pt SA sites on TiO₂. These decorated Pt SA sites improved the photoactivity of TiO, by 150 times compared to that on conventional Pt nanoparticle-modified TiO₂. Cho et al.^[18] reported that a pre-reduced TiO₂ support, which can reverse the interaction with Pt nanoparticles and reinforce the metallic state of Pt, resulting in a three-fold increase in H, production rate compared to that on traditional Pt/TiO₂, Pt/TiO₂/H₂O triple junctions are the active catalytic sites for H₂ production in the presence of CH₃OH. Méndez-Medrano *et al.*^[19] constructed a heterojunction between small CuO nanoclusters and TiO₂ (P25), which induces a photocatalytic activity of H, production by using CH₃OH as a sacrificial agent under visible-light irradiation because of the narrow bandgap (1.7 eV) of CuO. The photogenerated e was injected from CuO nanoclusters to the CB of TiO, (P25), resulting in high photoactivity. Osuagwu et al.^[20] presented anatase TiO₂ nanosheet (NS) layers grown on a Ta_2O_5 substrate and this TiO₂ NSs/Ta₂O₅ displayed a 170-fold increase in photocatalytic H₂ production rate compared to that on TiO₂ NSs on a fluorine-doped tin oxide (FTO) substrate with CH₃OH as a sacrificial agent. Such drastically enhanced photoactivity can be ascribed to the blocking effect of Ta_2O_5 for the photogenerated e⁻ in TiO₂ NSs.

Sun *et al.*^[21] synthesized a dodecahedral N-doped C-coated CuO-In₂O₃ p-n heterojunction photocatalyst, which showed a photocatalytic H₂ production rate of 600 µmol·g⁻¹·h⁻¹ and good long-term stability of 50 h in a TEOA aqueous solution. Such a photocatalytic H₂ production rate can be attributed to the efficient separation of photogenerated e⁻-h⁺ pairs and the mediated adsorption behavior ($|\Delta G_{H^*}| \rightarrow 0$) by coupling the N-doped C layer with the CuO-In₂O₃ p-n heterojunction. The improved stability may originate from the mitigation of electron deficiency in CuO by the formation of the p-n heterojunction and protection with the

N-doped C layer. In 2021, Han *et al.*^[22] proposed a rhombohedral corundum/cubic In_2O_3 (rh/c- In_2O_3) phase-junction photocatalyst, which could effectively promote the separation and transfer of photogenerated charges between rh- In_2O_3 and c- In_2O_3 with a Z-scheme mechanism. This In_2O_3 phase-junction photocatalyst showed a H₂ production rate of 2244 µmol·g⁻¹·h⁻¹ in a TEOA aqueous solution. A relevant apparent quantum efficiency (AQE) of 35% was achieved at 400 nm, which is ~12 times that on bare c- In_2O_3 .

II. Sulfide-based photocatalysts

Sulfides, such as molybdenum disulfide (MoS_2), zinc sulfide (ZnS), cadmium sulfide (CdS) and tungsten sulfide (WS₂), have been developed for photocatalytic H₂ production.

In 2018, Guo *et al.*^[23] reported a MoS₂@TiO₂ catalyst for photocatalytic H₂ production. The catalyst realized a H₂ production rate of 580 mmol·g_{MoS}⁻¹·h⁻¹ under simulated solar light irradiation, while methanol was used as a sacrificial hole scavenger. The heterostructure between plasmonic MoS₂ and TiO₂ regulated the charge transfer pathways, which were responsible for light harvesting and photocatalytic H₂ production. Wang *et al.*^[24] embedded edge-enriched ultrathin MoS₂ flake cocatalysts into a yolk-shell TiO₂ bulk to boost photogenerated e⁻ transfer from the bulk to the TiO₂ surface. The as-prepared MoS₂/TiO₂ hybrid showed a H₂ production rate of 2443 µmol·g⁻¹·h⁻¹, which is ~10- and ~4.7-fold greater than that of pure TiO₂ (247 µmol·g⁻¹·h⁻¹) and bulk MoS₂-modified TiO₂ (513 µmol·g⁻¹·h⁻¹), respectively. This improved activity was ascribed to the exposed catalytic edges of the ultra-thin MoS₂ cocatalysts with strong Ti-S bonds, offering a fast charge-transfer pathway between TiO₂ and MoS₂. Furthermore, WS₂-MoS₂ in-plane few-layer heterostructures that function as efficient photocatalysts have been developed recently^[25]. The built-in potential at the epitaxially-grown WS₂-MoS₂ interface facilitated fast separation of the photogenerated e⁻-h⁺ pairs, resulting in a H₂ production rate of 9.83 mmol·g⁻¹·h⁻¹.

Xiao *et al.*^[26] fabricated a copper nanowire (CuNW)/ZnS hybrid with a core-shell structure by a microwaveassisted hydrothermal route [Figure 3A]. The obtained ZnS with a narrowed bandgap could form a strong coupled interface with the CuNWs. As a result, this catalyst exhibited improved activity and stability for photocatalytic H₂ production under the illumination of visible light [Figure 3B and C]. The corresponding H₂ production rate reached 10,722 µmol·g⁻¹·h⁻¹ with an AQE of 69% under LED illumination with a wavelength (λ) of 420 nm. Cu⁺ ions from the CuNWs doped the ZnS shell, lowering the Schottky barrier and enabling photogenerated e⁻ to be injected from Cu⁺/ZnS to the CuNWs, resulting in efficient charge separation. The core-shell NW structure benefited reactant absorption, charge separation and active site protection. Specifically, the CuNW cores acted as active sites to accept e⁻ for the efficient reduction of H⁺ to H₂ [Figure 3D and E].

Wang *et al.*^[27] prepared a zinc oxide/CdS hierarchical composite. The CdS moiety plays a key role in light harvesting. A photocatalytic H₂ production rate of 4134 µmol·g⁻¹·h⁻¹ was obtained with Na₂S and Na₂SO₃ as electron donors. The Z-scheme charge migration scheme bestowed the photocatalyst with a strong ability for H₂ production and improved the photoactivity. Dai *et al.*^[28] constructed a system composed of a unique pyroelectric substrate, poly(vinylidene fluoride-*co*-hexafluoropropylene), carbon nanotubes and a CdS photocatalyst for infrared (IR)-light-driven H₂ production in the presence of TEA. The photocatalytic H₂ production efficiency was improved by more than five times with an AQE of 16.9%. Zhang *et al.*^[29] first converted Cd-based Prussian blue analog cubes into a CdS cage, which were then further transformed into a CdS frame-in-cage. Owing to the novel frame-in-cage structure, a visible-light-driven H₂ production rate of 13.6 mmol·g⁻¹·h⁻¹ was achieved while Na₂S and Na₂SO₃ were used as sacrificial hole scavengers, which was much higher compared to that of the CdS cubes and cages.

Figure 3. (A) Schematic illustration of CuNW/ZnS core-shell hybrids formed by a microwave-assisted hydrothermal route. (B) Photocatalytic H₂ production rate of different samples under LED light irradiation (λ = 420 nm). (C) Cycling activity of CZ and 30 wt.% Cu-Z. (D) Schottky contact, band structure and schematic illustration of the e⁻h⁺ separation process under visible-light irradiation. (E) Schematic diagram of the core-shell structure and the proposed photocatalytic mechanism. Reproduced from Ref.^[26] with permission from Wiley.

III. Carbon nitride-based photocatalysts

Carbon nitride (C_3N_4) comprises only earth-abundant C and N elements and has high thermal and chemical stability because of the robust covalent bonds between the C and N atoms in the layered structure [Figure 4]^[30,31]. Its bandgap energy is ~2.7 eV, meaning that it can absorb visible light. In addition, the CB and VB edge positions of C_3N_4 are suitable for water reduction and oxidation, respectively^[32-34]. Therefore, C_3N_4 is a promising photocatalyst.

In 2019, Mo *et al.*^[35] proposed a Z-scheme system containing two-dimensional (2D) MnO₂/monolayer graphitic carbon nitride with defective Mn³⁺ active sites for H₂ production, while TEOA was used as a sacrificial agent. After Mn³⁺/Mn⁴⁺ redox couples were introduced, these defective Mn³⁺ active sites could promote H₂O adsorption and boost the charge separation and transfer at the interface, resulting in a H₂ production rate of 28.0 mmol·g⁻¹·h⁻¹ and an AQE of 23.33% at λ = 420 nm. Wang *et al.*^[36] prepared Se-doped carbon nitride (Se-C₃N₄) by fluorination, followed by thermal defluorination in Se vapor to realize 2D C₃N₄ with a strong visible-light absorption band. The formation of cyano groups accompanied by Se doping expanded the absorption edge of the C₃N₄ from 416 to 584 nm. In addition, a downward electron spin polarization in the C₃N₄ structure facilitated charge separation and surface catalysis reactions. The visible-light-driven H₂ production rate reached 5411.2 µmol·g⁻¹·h⁻¹ using Se-C₃N₄ with 3 wt.% Pt as a cocatalyst, which was 176.5 times that of the pure C₃N₄ in the presence of TEOA.

In 2021, Xu *et al.*^[37] prepared a NIR-active C/K-doped red polymeric carbon nitride (RPCN). The homogeneous and high incorporation of C and K narrowed the bandgap of C_3N_4 (1.7 eV), thus extending the light absorption edge to the NIR region [Figure 5A]. RPCN displayed a NIR-driven H₂ production rate of 140 µmol·g⁻¹·h⁻¹ from water [Figure 5B and C]. The AQE was 0.84% at 700 ± 10 nm and 13% at 500 ± 10 nm [Figure 5D].

Figure 4. (A) Triazine and (B) tri-s-triazine (heptazine) structures of graphitic carbon nitride $(g-C_3N_4)$. Reproduced from Ref.^[30] with permission from the American Chemical Society.

Figure 5. (A) Ultraviolet-Visible-Near Infrared (UV-Vis-NIR) diffuse reflection spectra. Activity of H₂ production from water with RPCN under irradiation within different light ranges of (B) $500 \le \lambda \le 780$ nm and (C) $700 \le \lambda \le 780$ nm, using ~3 wt.% Pt as the cocatalyst and 10 vol.% TEOA as the sacrificial agent. (D) AQE at various monochromatic wavelengths. Reproduced from Ref.^[37] with permission from Wiley. RPCN: Polymeric carbon nitride; TEOA: triethanolamine; AQE: apparent quantum efficiency.

IV. Metal-organic framework-based photocatalysts

Metal-organic frameworks (MOFs) are porous materials self-assembled from inorganic metal oxide clusters and organic linkers^[38-40]. Owing to their unique properties that include high surface areas, well-defined metal

nodes, adjustable chemical composition and enriched functionality, they have been extensively applied in various fields, such as gas separation and storage, sensors, environmental purification and catalysis^[3,38,41,42].

In 2018, Xiao *et al.*^[43] combined surface plasmonic Au with a Pt-MOF Schottky junction to synthesize a Pt@MIL-125/Au catalyst [MIL-125 is a Ti-based MOF consisting of $Ti_sO_s(OH)_4$ clusters and terephthalate acid linkers]. The spatial separation of the Pt and Au particles steered the formation of electron flow and expedited electron transport. Therefore, Pt@MIL-125/Au showed a much higher photocatalytic H₂ production rate compared to catalysts with Pt or Au from water under the illumination of visible light with TEOA as electron donors.

Chen *et al.*^[39] bestowed the organic linkers (2-aminoterephthalate acid) of NH_2 -MIL-125(Ti) with mixedvalent copper (Cu²⁺/Cu⁺) centers (Cu-NM), which enabled effective electron transfer to the mixed-valent Cu²⁺/Cu⁺ centers from the 2-aminoterephthalate acid linkers [Figure 6A and B]. This resulted in increases in the carrier density and lifetime of the photogenerated charges by 7000 and 27 times, respectively. As a result, a much higher rate of H₂ production compared to that of MOFs with Pt as a cocatalyst (Pt-NM) was obtained under the illumination of visible light from water when TEA was used as a sacrificial hole scavenger [Figure 6C].

Dong *et al.*^[44] fabricated a CdS-based MOF, DLNU-M-CdS(H₂TD) (H₂TD = 1,3,4-thiadiazole-2,5-dithiol), for photocatalytic H₂ production in the presence of TEOA without the assistance of cocatalysts. During the photocatalytic reaction, the electron-donating process from TEOA to H₂TD evoked fast electron transfer in the path of TEOA \rightarrow H₂TD \rightarrow Cd \rightarrow H⁺ to separate photogenerated e⁻h⁺ pairs in DLNU-M-Cd(H₂TD), resulting in a H₂ production rate of 26.1 mmol·g⁻¹·h⁻¹ under the irradiation of UV-visible-light.

Sun *et al.*^[45] incorporated noble-metal-free Ni₂P and Ni₁₂P₅ into UiO-66-NH₂ [a MOF consisting of $Zr_6O_6(OH)_4$ clusters and 2-aminoterephthalate acid linkers] to form Ni₂P@MOF and Ni₁₂P₅@MOF photocatalysts, respectively, for photocatalytic H₂ production with TEA as a hole sacrificial agent. Both Ni₂P@MOF and Ni₁₂P₅@MOF showed enhanced H₂ production rates in comparison with the pristine MOF and their physical mixtures. Ni₂P and Ni₁₂P₅ exhibit a similar capability to Pt in promoting the charge transfer from linkers to clusters and lowering the activation energy of the H₂ production, resulting in higher activity over Ni₂P@MOF than over Pt@MOF.

Meng *et al.*^[46] immobilized CdS quantum dots and carbon nanodots (CDs) in the cages of MIL-101 (a Crbased MOF consisting of Cr clusters and terephthalic acid linkers) to form CD/CdS@MIL-101 composites. The H₂ production rate on CD/CdS@MIL-101 with a CD content of 5.2 wt.% was 14.66 μ mol·h⁻¹ when using lactic acid as a sacrificial agent under the illumination of visible light, which was 8.5 and 18.6 times that on CdS@MIL-101 and pure CdS, respectively. The enhanced photoactivity can be ascribed to the role of electron collection of the CDs, which prolongs the lifetime of the photogenerated charge carriers in the CdS@MIL-101 heterostructure photocatalyst.

Lin *et al.*^[47] demonstrated porphyrin-based zirconium MOFs (PCN-H₂/Pt_{xy}, x:y = 4:1, 3:2, 2:3 and 0:1) with different ratios of H₂TCPP and Pt^{II}TCPP [TCPP = tetrakis(4-carboxyphenyl)porphyrinate] linkers. PCN-H₂/Pt_{0:1} displayed the highest H₂ production reaction rate (351.08 μ mol·h⁻¹·g⁻¹) with TEOA as a sacrificial agent under visible-light irradiation. Such photoactivity can be ascribed to the uniformly dispersed Pt²⁺ ions in PCN-H₂/Pt_{0:1}, which boost the transfer of charges from porphyrins (photosensitizers) to Pt^{II} ions (catalytic centers).

Figure 6. (A) and (B) Schematic of electron-transfer pathways from an organic linker to a titanium-oxo cluster in NH_2 -MIL-125(Ti) and to a mixed-valent Cu center, respectively. S represents a sacrificial agent. (C) Activity of NM, Pt-NM and Cu-NM in photocatalytic H_2 production under visible-light irradiation. Reproduced from Ref.^[39] with permission from Wiley.

V. Covalent-organic framework-based photocatalysts

Covalent-organic frameworks (COFs) are another type of porous crystalline polymers that can precisely integrate molecular building blocks into extended 2D or three-dimensional (3D) structures via covalent bonds^[48-50]. Because of their characteristics, which include low density, high porosity, structural periodicity and modular functionality, COFs have been extensively studied for gas adsorption and separation^[51,52], catalysis^[53,54], sensors^[55-57], optoelectronics^[58,59] and energy storage systems^[60-62].

In 2018, Xie *et al.*^[63] reported a highly ordered COF, CTF-1 ($C_sN_2H_4$), which can efficiently produce H₂ from water. A high AQE for H₂ production of 6% at $\lambda = 420$ nm was obtained, which was ascribed to the welldefined and ordered structure of CTF-1, as well as low carbonization and superior band positions. In 2021, Chen *et al.*^[64] reported the synthesis of four isostructural porphyrinic 2D COFs (MPor-DETH-COF, $M=H_2$, Co, Ni, Zn; DETH = 2,5-diethoxyterephthalohydrazide) and their application in photocatalytic H₂ production [Figure 7]. All four COFs have AA stacking structures with high crystallinity and large surface areas. The introduction of different transition metals into the porphyrin rings regulated the photocatalytic H, production rate of these COFs in the following order: CoPor-DETH-COF < H,Por-DETH-COF < NiPor-DETH-COF < ZnPor-DETH-COF. In the same year, COFs with an ordered arrangement of layered structures were reported for visible-light-driven H₂ production with ascorbic acid as a sacrificial agent^[65]. The mesoporous channels of a β -ketoenamine-linked COF, including a benzothiadiazole moiety, were filled with polyethylene glycol, which inhibited the dislocation of neighboring layers while retaining the columnar π -orbital arrays to boost free charge transfer. Thus, the H₂ production rate was enhanced compared to that of the pure COFs. Yang *et al.*^[66] demonstrated that donor-acceptor-type imine-linked COFs could catalyze H_2 production with a rate of 20.7 mmol·g⁻¹·h⁻¹ under the illumination of visible light with ascorbic acids as hole scavengers. The improved photoactivity was ascribed to the extended light harvesting range, enhanced charge separation efficiency and increased hydrophilicity.

VI. Nitride-based photocatalysts

Nitrides, particularly transition metal nitrides with narrow energy bandgaps and excellent physicochemical properties, can effectively regulate the structures of semiconductor photocatalysts and their photocatalytic performance^[67].

In 2021, Xiao *et al.*^[68] fabricated Mg-Zr-codoped single-crystalline Ta_3N_5 (Ta_3N_5 :Mg+Zr) nanoparticles for H_2 production from H_2O . The photoactivity was 45 times that of pristine Ta_3N_5 . Simultaneous defect tuning and surface property optimization generated high concentrations of long-lived electrons and facilitated

Figure 7. (A) Schematic illustration of the synthesis of MPor-DETH-COFs. (B) Activity of H_2 production under visible-light irradiation using H_2 Por-DETH-COF, CoPor-DETH-COF, NiPor-DETH-COF and ZnPor-DETH-COF. (C) Cycling results of H_2 production under visible-light irradiation using ZnPor-DETH-COF. Reproduced from Ref.^[64] with permission from Springer Nature.

electron migration to the Pt sites on the surface of the photocatalyst, thus enhancing the photoactivity under the illumination of visible light. In the same year, Wang *et al.*^[69] reported the efficient utilization of photogenerated electrons in a single-crystal BaTaO₂N photocatalyst for H₂ production via the sequential decoration of a Pt cocatalyst. The H₂ production rate in a methanol aqueous solution was improved 100fold compared to that of BaTaO₂N. Its AQE was 6.8% at $\lambda = 420$ nm.

H₂ production from overall water splitting

Photocatalytic H_2 production from overall water splitting can effectively avoid the secondary pollution caused by the use of sacrificial hole scavengers, while O_2 is produced from water oxidation.

I. Selenide- and sulfide-based photocatalysts

Wang *et al.*^[70] developed uniform hollow $MoSe_2/CdSe$ nanospheres without any template/surfactant assistance. Owing to the Z-scheme mechanism for charge transfer in the heterostructure, it displayed a H₂ production rate of 7120.0 µmol·g⁻¹·h⁻¹ from water splitting under the irradiation of simulated sunlight and the AQE reached 27.2% at $\lambda = 670$ nm.

S 3p and O 2p orbitals were hybridized by Zhang *et al.*^[71] to generate oxysulfides with stabilization of S²⁻ in a sulfide-based photocatalyst. Additional surface modification of the oxysulfides with dual cocatalysts promoted the separation and transfer of photogenerated charges, thereby reducing charge accumulation and inhibiting photocorrosion. The results demonstrated that the pH value played an important role in realizing the efficient production of stoichiometric H₂ and O₂. Pan *et al.*^[72] reported that Ag dopant and nanohole dual defects in ZnIn₂S₄ monolayers promoted stoichiometric H₂ and O₂ production from water under the illumination of visible light. The Ag dopant and nanohole dual defects optimized the light harvesting and carrier dynamics and served as active sites for the oxidation and reduction of water, respectively, thereby resulting in stable activity for photocatalytic water splitting.

II. C₃N₄-based photocatalysts

Chen *et al.*^[73] constructed 3D porous g-C₃N₄ assembled using highly crystalline and ultrathin NSs. The 3D g-C₃N₄ NSs could produce H₂ and O₂ from water splitting with production rates of 101.4 and 49.1 μ mol·g⁻¹·h⁻¹, respectively, under the illumination of visible light. These rates are ~11.8 and ~5.1 times that of bulk g-C₃N₄ and g-C₃N₄ NSs, respectively. Furthermore, the 3D g-C₃N₄ NSs showed an AQE of 1.4% under light radiation at $\lambda = 420$ nm and maintained good stability for 100 h. Lin *et al.*^[74] demonstrated a one-photon excitation route by coupling a polymeric carbon nitride (PCN) with LaOCl to realize overall water splitting. The modification of LaOCl formed an interfacial electric field that boosted the rapid separation and transfer of photogenerated e⁻-h⁺ pairs in the catalyst. The water reduction half-reaction occurred on LaOCl and its oxidation half-reaction appeared on the PCN. As a result, this "artificial photosynthesis" catalyst showed H₂ and O₂ production rates of 22.3 and 10.7 μ mol·h⁻¹, respectively, from overall water splitting.

Chen *et al.*^[75] synthesized a g-C₃N₄/reduced graphene oxide (rGO)/perylene diimide polymer (PDIP) photocatalyst with a Z-scheme heterostructure to achieve excellent photocatalytic overall water splitting [Figure 8A]. A significant internal electric field was built in the Z-scheme heterostructure [Figure 8B], thereby promoting the high-flux charge transfer and improving the charge separation efficiency by a factor of 8.5. The g-C₃N₄/rGO/PDIP photocatalyst presented H₂ and O₂ production rates of 15.80 and 7.80 μ mol·h⁻¹, respectively, which are ~12.1 times that of pure g-C₃N₄. An AQE of 4.94% at λ = 420 nm and a conversion efficiency of solar energy to hydrogen energy of 0.3% were realized [Figure 8C and D]. Besides, it showed a very good stability within 120 h of photocatalytic reaction [Figure 8E].

Wu *et al.*^[76] prepared $g-C_3N_4$ NSs exfoliated by a femtosecond pulsed laser, which achieved H₂ and O₂ production rates of 42.6 and 18.7 µmol·g⁻¹·h⁻¹, respectively, toward overall water splitting when Pt was used as a cocatalyst. The laser pulses created cyano (-C=N) defects that favored the anchoring of divalent atomic Pt cocatalysts, which are different from Pt metal nanoparticles. This provided more active sites for the surface reaction and suppressed the reverse reaction of water splitting. In addition, the -C=N defects reduced the position of the band edge to improve the oxidation ability of h⁺.

Using an electrostatic self-assembly method, Zhao *et al.*^[77] coupled B-doped N-deficient 2D C_3N_4 NSs to obtain a 2D/2D polymeric Z-scheme heterostructure. The combination of ultrathin nanostructures, the robust interfacial interaction and the staggered band arrangement in the Z-scheme system boosted the separation and transfer of photogenerated e^-h^+ pairs, thus realizing stoichiometric H₂ and O₂ production from photocatalytic overall water splitting with Pt and Co(OH)₂ cocatalysts.

III. MOF-based photocatalysts

In 2020, a Pt@UiO-66-NH₂@MnO_x photocatalyst with Pt and MnO_x cocatalysts was designed by

Figure 8. (A) Schematic illustration of $g-C_3N_4/rGO/PDIP$ fabrication. (B) Surface photovoltage (SPV) spectra. (C) Wavelength dependency of AQE for photocatalytic overall water splitting. (D) Photocatalytic activity of overall water splitting under AM 1.5G simulated sunlight irradiation using $g-C_3N_4/rGO/PDIP$. (E) Cycling results of photocatalytic overall water splitting. Reproduced from Ref.⁽⁷⁵⁾ with permission from Wiley. rGO: Reduced graphene oxide; PDIP: perylene diimide polymer.

Zhang *et al.*^[78] for the complete spatial separation of photogenerated e⁻-h⁺ pairs in UiO-66-NH₂, thereby realizing H₂ and O₂ production from water. Compared with UiO-66-NH₂, Pt@UiO-66-NH₂ and UiO-66-NH₂@MnO_x photocatalysts, Pt@UiO-66-NH₂@MnO_x exhibited the highest photoactivity for overall water splitting. As cocatalysts, Pt favored the trapping of photogenerated e⁻, while MnO_x particles tended to collect photogenerated h⁺. The photogenerated e⁻ and h⁺ flowed to the inside and outside of the MOF, respectively, accumulating on the respective cocatalysts and further inducing redox reactions.

Significantly, Hu *et al.*^[79] integrated a H₂ evolution reaction (HER)-MOF and a water oxidation reaction (WOR)-MOF into liposomal structures for the spatial separation of photogenerated e^-h^+ pairs. The HER-MOF consisted of a light-harvesting Zn-porphyrin and a catalytic Pt-porphyrin and was modified with pentafluoropropionic acid, making the HER-MOF hydrophobic and thus promoting its binding to the hydrophobic lipid bilayer of the liposome. The WOR-MOF was composed of a $[Ru(2,2'-bipyridine)_3]^{2+}$ based photosensitizer and an Ir-bipyridine catalytic center and was localized in the hydrophilic interior of the liposome. Owing to the rapid electron transfer from the Zn-porphyrin and $[Ru(2,2'-bipyridine)_3]^{2+}$ antennae to the Pt-porphyrin and Ir-bipyridine reaction centers and the efficient charge separation in the lipid bilayers, this liposome-MOF achieved H₂ and O₂ production in a ~2:1 ratio with an AQE of ~1.5%.

IV. Other photocatalysts

Wang *et al.*^[80] reported quadruple-band InGaN NW arrays, which are composed of $In_{0.35}Ga_{0.65}N$, $In_{0.27}Ga_{0.73}N$, $In_{0.20}Ga_{0.80}N$ and GaN sections, with energy bandgaps of 2.1, 2.4, 2.6, and 3.4 eV, respectively. These multiband InGaN NW arrays were modified upon a nonplanar wafer to improve the light absorption. The doping gradient was introduced along the NWs to form a built-in electric field, which separated and extracted photogenerated charge carriers for water redox reactions. This InGaN photocatalyst exhibited a solar-to-hydrogen efficiency of ~5.2%.

Pan *et al.*^[81] used rGO NSs to promote the transfer of photogenerated charge carriers between H₂ producing photocatalysts (e.g., carbon nitride and BiVO₄) and O₂ evolution photocatalysts (e.g., Fe₂O₃ and WO₃), thereby realizing efficient overall water splitting. Furthermore, Oshima *et al.*^[82] presented HCa₂Nb₃O₁₀ NSs sensitized by a Ru(II) tris-diimine photosensitizer for overall water splitting under visible-light irradiation, combined with a WO₃-based water oxidation photocatalyst and a I₃⁻/I⁻ redox couple. The Pt-intercalated HCa₂Nb₃O₁₀ NSs, which were further modified with amorphous Al₂O₃ clusters as H₂ production components, realized a dye-based turnover number and frequency of 4580 and 1960 h⁻¹, respectively. Its AQE at 420 nm was 2.4%.

Zhao *et al.*^[83] presented a practically feasible strategy that mimicked natural photosynthesis known as the hydrogen farm project (HFP). The proposed system comprised solar energy harvesting and H₂ production subsystems integrated by a Fe³⁺/Fe²⁺ redox ion pair [Figure 9]. The BiVO₄ crystals with accurately tuned {110}/{010} facets were used as photocatalysts for this project. The AQE of photocatalytic water oxidation and the complete forward reaction is 71% and there is almost no reverse reaction. A solar-to-chemical conversion efficiency of > 1.9% was also achieved.

In 2020, Takata *et al.*^[84] used an aluminum-doped strontium titanate (SrTiO₃:Al) photocatalyst to realize an AQE of 96% for overall water splitting at wavelengths of 350-360 nm, which was equivalent to an almost uniform internal quantum efficient. The selective photodeposition of Rh/Cr₂O₃ and CoOOH cocatalysts upon different crystal facets of the photocatalyst for the H₂ and O₂ production reactions, respectively, boosted the H₂ and O₂ production reactions separately. Thus, multiple consecutive forward charge transfers without reverse charge transfer were realized, thereby attaining the maximum AQE for overall water splitting.

Photocatalytic H₂ production from hydrogen storage materials

Achieving the efficient storage and transportation of gaseous H_2 is a significant challenge. Storing H_2 in a liquid or solid material that holds H_2 under ambient conditions and releases it as the conditions change is a safe and efficient method^[3]. In particular, many efforts have been made to achieve the release of H_2 from H_2 storage materials, such as ammonia borane (AB) and formic acid (FA).

Figure 9. (A) Schematic of hydrogen farm project (HFP) for scalable solar H_2 production using particulate photocatalysts for water oxidation and a shuttle ion loop for energy storage. (B) Practical realization for HFP using BiVO₄ as a water oxidation photocatalyst, Fe³⁺/Fe²⁺ as shuttle ions for energy storage and an electrolysis cell for H_2 production. Reproduced from Ref.^[83] with permission from Wiley.

In 2018, Zhang *et al.*^[85] demonstrated the NIR-plasmonic energy up-conversion process in Yb³⁺/Er³⁺-doped NaYF₄ nanoparticle (NaYF₄:Yb-Er NP)@W₁₈O₄₉ NW heterostructures. The improvement of the up-conversion luminescence of the NaYF₄:Yb-Er NPs was attributed to the NIR-excited localized surface plasmon resonance (LSPR) of the W₁₈O₄₉ NWs. Simultaneously, this plasmon-enhanced up-conversion luminescence was partly absorbed by the W₁₈O₄₉ NWs, re-exciting its higher energy LSPR [Figure 10A]. Based on this plasmonic energy transfer process, the NaYF₄:Yb-Er NP@W₁₈O₄₉ NW heterostructures exhibited an ~35-fold increase in catalytic H₂ production from AB [Figure 10B and C].

Very recently, Zhang *et al.*^[so] reported a Pd-decorated Ti-MOF@TpTt composite (Pd@Ti-MOF@TpTt) coated with an ultrathin COF nanobelt [Figure 11A]. This catalyst presented much higher photoactivity for H_2 production from AB hydrolysis than that of the other counterparts with fibrillar-like COF shells [Figure 11B]. This improved activity could be ascribed to its high surface area, core-shell structure and type II heterojunction [Figure 11C], which provided more active sites and promoted the separation of photogenerated e⁻-h⁺ pairs. Finally, Pd@Ti-MOF@TpTt displayed excellent stability for H_2 production [Figure 11D].

Cao *et al.*^[87] synthesized a CdS/CoP@rGO hybrid for photocatalytic H_2 production from FA using ultrasmall CoP nanoparticles as a cocatalyst for the first time. The visible-light-driven H_2 production rate using the CdS/CoP@rGO hybrid reached 182 ± 12.5 µmol·mg⁻¹·h⁻¹ without any additives, which was 30 times that of the bare CdS. The system could be sustained for more than seven days.

Figure 10. (A) Schematic diagram of plasmonic energy upconversion in the NaYF₄:Yb-Er NP/W₁₈O₄₉ NW heterostructure system upon irradiation at λ = 980 nm. (B) Amount of H₂ production from AB aqueous solution under irradiation at λ = 980 nm: (1) no catalyst; (2) W₁₈O₄₉ NWs; and (3) NaYF₄:Yb-Er NW@W₁₈O₄₉ NP heterostructures. (C) Amount of H₂ production of W₁₈O₄₉ NWs in 1 h under irradiation at different incident light wavelengths. Reproduced from Ref.^[85] with permission from Wiley.

Figure 11. (A) Schematic illustration of the synthesis of Pd-decorated Ti-MOF@TpTt hybrids. (B) Activity of H_2 production from AB aqueous solution over Pd@Ti-MOF@TpTt and Ti-MOF@TpTt under different conditions. (C) Proposed mechanism for AB hydrolysis catalyzed by Pd@Ti-MOF@TpTt. (D) Cycling results of AB hydrolysis under light irradiation using Pd@Ti-MOF@TpTt. Reproduced from Ref.^[86] with permission from Wiley.

Zhang *et al.*^[88] loaded AuPd nanoparticles upon super-small carbon nitride nanospheres (AuPd/CNS) to construct a Mott-Schottky photocatalyst and used it to catalyze H₂ production from FA. It showed a turnover frequency of 1017.8 h⁻¹ under visible-light illumination ($\lambda > 420$ nm). The alloying, plasmonic and Mott-Schottky effects optimized the electronic structure of Pd in the AuPd/CNS composite, which accelerated the electrons transferred from the carbon nitride and Au to the active Pd sites, thus resulting in improved photoactivity.

Photocatalytic CO₂ conversion

Basic principles of photocatalytic CO₂ conversion

The overuse of fossil resources has led to excessive CO_2 emissions, which have contributed to the greenhouse effect. There are already many technologies for collecting and sequestering CO_2 , such as scrubbing, mineral carbonation, geological injection and oceanic injection^[89]. Nevertheless, these technologies are expensive and may cause the leakage of $CO_2^{[89,90]}$. Alternatively, CO_2 can be considered as a low-cost, safe and abundant carbon source that can be converted into valuable energy fuels. This strategy could not only reduce CO_2 emissions and alleviate the greenhouse effect, but also mitigate the energy crisis.

 CO_2 is highly thermodynamically stable and its C=O bond energy (750 kJ·mol⁻¹) is much larger than that of C-H (411 kJ·mol⁻¹), C-O (327 kJ·mol⁻¹), and C-C (336 kJ·mol⁻¹) single bonds^[91,92]. Thus, the photocatalytic conversion of CO₂ to hydrocarbons requires high energy input to activate the C=O double bonds and convert them into C-H single bonds. Photogenerated e⁻ with an appropriate reduction potential can supply a driving force for the reduction of CO₂. Photocatalytic CO₂ conversion takes place through a multi-step reaction pathway with the participation of 2, 6, 8, 12, 14 or 18 e⁻ and H⁺ [Figure 12]^[93,94]. Various products, including C₁ compounds (e.g., CO, CH₄, HCOOH, CH₃OH and HCHO) and C₂ molecules (e.g., CH₂CH₂, C₂H₅OH and CH₃COOH)^[95], can be generated. Some reactions related to photocatalytic CO₂ conversion and the relevant reduction potentials (*E*⁰) are listed in Table 1^[96,97].

As shown in Table 1, a reduction potential of -1.85 V is required for direct single-electron CO_2 reduction^[98]. So far, almost no photocatalysts have displayed sufficient ability to drive this single-electron transfer process. On the contrary, H⁺-assisted multi-electron/H⁺ reduction represents an alternative and more advantageous method.

*Recent advances in photocatalytic CO*₂ *conversion*

Photocatalytic CO₂ conversion with H₂O

The utilization of H_2O as a reducing agent to photocatalytically convert CO_2 is an intriguing process^[99] that involves multi-electron reactions [Table 1]^[100,101]. As a result, various products, such as $CO^{[102,103]}$, CH_4 and CH_3OH , can be obtained. Taking CO production as an example, the photogenerated h^+ oxidize H_2O into O_2 with the generation of H^+ (Equation 5), while the photogenerated e^- reduce CO_2 to CH_4 via a two-electron reaction with two protons (Equation 6):

 $\mathrm{H_2O} + 2\mathrm{h^{\scriptscriptstyle +}} \rightarrow 1/2\mathrm{O_2} + 2\mathrm{H^{\scriptscriptstyle +}(5)}$

 $\text{CO}_2 + 2\text{H}^+ + 2e^- \rightarrow \text{CO} + \text{H}_2\text{O}(6)$

At present, photocatalytic CO_2 conversion with H_2O mainly involves two reaction systems^[89]. One is a liquid phase system, in which the CO_2 conversion efficiency is largely limited due to the low solubility of CO_2 (~0.03 M under ambient conditions) with the occurrence of competitive H_2 production from H_2O . Thus, many efforts have been made to enhance the pressure of CO_2 and increase the solubility of CO_2 in alkaline

Entry	Equation	Product	E ⁰ (V)
1	$CO_2 + e^- \rightarrow CO_2^-$	Carbonate anion radical	-1.85
2	$CO_2 + 2H^+ + 2e^- \rightarrow HCOOH$	Formic acid	-0.61
3	$CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$	Carbon monoxide	-0.53
4	$CO_2 + 4H^+ + 4e^- \rightarrow HCHO + H_2O$	Formaldehyde	-0.48
5	$CO_2 + 4H^+ + 4e^- \rightarrow C + 2H_2O$	Carbon	-0.20
6	$CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH + H_2O$	Methanol	-0.38
7	$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$	Methane	-0.24
8	$2CO_2 + 12H^+ + 12e^- \rightarrow C_2H_4 + 4H_2O$	Ethylene	-0.34
9	$2CO_2 + 12H^+ + 12e^- \rightarrow C_2H_5OH + 3H_2O$	Ethanol	-0.33
10	$2CO_2 + 14H^+ + 14e^- \rightarrow C_2H_6 + 4H_2O$	Ethane	-0.27
11	$3CO_2 + 18H^+ + 18e^- \rightarrow C_3H_7OH + 5H_2O$	Propanol	-0.32
12	$2H^+ + 2e^- \rightarrow H_2$	Hydrogen	-0.42

Table 1. Electrochemical reactions involved in aqueous CO_2 and proton reduction with their corresponding reduction potentials E^0 (V vs. NHE at pH 7)

Reproduced from Ref.^[96] with permission from Wiley.

Figure 12. Schematic energy diagram for CO_2 reduction and H_2O oxidation on a semiconductor. Reproduced from Refs.^[93,94] with permission from Wiley.

systems^[104]. The other is a gas-phase system that uses CO_2 and H_2O vapor and realizes a higher selectivity for CO_2 reduction^[105]. Multifarious photocatalysts have been explored for CO_2 conversion using H_2O .

I. Metal oxide-based photocatalysts

Sorcar *et al.*^[106] reported bimetallic Cu-Pt nanoparticle-sensitized blue titania (TiO₂) that generated large amounts of CH_4 and CH_3CH_3 during artificial-sunlight-driven CO_2 reduction with H_2O . Within 6 h of the reaction, 3.0 mmol·g⁻¹ of CH_4 and 0.15 mmol·g⁻¹ of CH_3CH_3 were produced.

Li *et al.*^[107] reported a cake-like porous TiO₂ photocatalyst with the surface-localized doping of copper and cobalt. The doped TiO₂ photocatalyst boosted the photoreduction of CO₂ with water vapor. 1% Cu-doped TiO₂ promoted the breaking of C=O bonds. The production rates of CO and CH₄ reached 45.31 and 42.35 μ mol·h⁻¹, respectively, under simulated sunlight irradiation. This activity was further enhanced by incorporating trace cobalt. In addition to the enhanced performance in terms of the production of CO and CH₄, the selectivity was also increased for the production of hydrocarbons (C₂₊). The production rates of

 C_2H_6 and C_3H_8 reached 89.20 and 3.36 µmol·h⁻¹, respectively, over 0.02% Co-1% Cu/TiO₂. The incorporation of copper and cobalt ions realized efficient charge separation in the catalyst, resulting in the generation and enrichment of methyl radicals upon cobalt ions, which induced the production of C_{2+} .

Atomically dispersed Cu-supported mesoporous TiO_2 (mTiO₂) was used for the light-driven reduction of CO₂ with H₂O by Yuan *et al*.^[108]. The authors revealed that the atom-dispersed Cu(II) underwent reduction to Cu(I) and finally to Cu(0), with the mixture of Cu(I) and Cu(0) proving effective for the production of CH₄.

La- and Rh-doped $SrTiO_3$ ($SrTiO_3$:La,Rh) and Mo-doped BiVO₄ (BiVO₄:Mo) light absorbers were integrated into a photocatalyst by Wang *et al.*^[109]. This photocatalyst converted CO₂ and H₂O into formate (HCOO⁻) and O₂ and achieved a solar-to-HCOO⁻ conversion efficiency of 0.08% and a selectivity of 97%.

Z-scheme type photocatalysts composed of $g-C_3N_4$ and Au-loaded anatase TiO₂ (A-TiO₂) were fabricated by Wang *et al.*^[110]. The surface heterojunction between the coexposed {001} and {101} facets in A-TiO₂ improved the separation efficiency of the photogenerated e^-h^+ pairs. The loaded Au gathered and transferred the stimulated electrons originating from A-TiO₂ to $g-C_3N_4$. The $g-C_3N_4$ component trapped the photogenerated e^- and improved the adsorption ability of CO₂. This catalyst exhibited high photoactivity of CO₂ conversion under the illumination of visible light, with CH₄ and CO formation rates of 37.4 and 21.7 μ mol·g⁻¹·h⁻¹, respectively.

Wang *et al.*^[111] loaded Ag and Co dual cocatalysts on Al-doped SrTiO₃ [Figure 13], which brought about an enhanced CO production rate and a corresponding selectivity of 99.8% at λ = 300 nm. The CO production rate of 52.7 µmol·h⁻¹ was 12 times that of the catalyst without Co cocatalysts (4.7 µmol·h⁻¹). The AQE for CO production was ~0.03% at λ = 365 nm, with a selectivity of 98.6% for CO production. The Ag and Co cocatalysts acted as reduction and oxidation sites to promote the production of CO and O₂, respectively.

A CuO_x@p-ZnO photocatalyst with CuO_x uniformly dispersed on polycrystalline ZnO was fabricated by Wang *et al.*^[112]. This catalyst reduced CO₂ to C₂H₄ with a selectivity of 32.9% and the production rate was 2.7 μ mol·g⁻¹·h⁻¹ with H₂O as a hole scavenger under illumination. During the reduction reaction, a unique Cu⁺ site was formed on the surface of the CuO matrix and this surface Cu⁺ site can anchor the generated CO and further stabilize the intermediate *OC-COH of C-C coupling, which thus promoted the production of C₂H₄.

II. MOF- and COF-based photocatalysts

Lu *et al.*^[113] synthesized crystalline porphyrin tetrathiafulvalene COFs for CO₂ conversion with H₂O without the addition of photosensitizers, sacrificial agents or noble metal cocatalysts. The photogenerated e⁻ were effectively transferred from tetrathiafulvalene to porphyrin, which led to the separation of e⁻-h⁺ pairs for CO₂ reduction and H₂O oxidation. As a result, a photocatalytic CO production rate of 123.3 μ mol·g⁻¹ with a selectivity of 100% was achieved, along with H₂O oxidation to O₂ under the illumination of visible light after 60 h.

Fang *et al.*^[114] reported a pyrazolyl porphyrinic Ni-MOF (PCN-601) that integrated a light photosensitizer, active sites and large surface areas as an excellent and durable photocatalyst for visible-light-driven CO_2 conversion with H_2O vapor. The production rate of CH_4 was much higher than that of similar MOFs based on carboxylate porphyrin.

Figure 13. (A) Cocatalyst loading by the photodeposition method. (B) Photocatalytic CO_2 conversion into CO over Al-SrTiO₃ modified with Ag and Co using water as the reductant. Reproduced from Ref.^[111] with permission from the Royal Society of Chemistry.

Heterometallic Fe₂M cluster-based MOF (NNU-31-M, M = Co, Ni and Zn) photocatalysts were fabricated by Dong *et al.*^[115]. The overall conversion of CO₂ and H₂O into HCOOH and O₂ was achieved in the absence of any sacrificial agent and photosensitizer when using these MOFs. Under visible-light irradiation, the heterometallic clusters and photosensitive ligands can generate separated e⁻-h⁺ pairs. The metal M accepts e⁻ to reduce CO₂ and the metal Fe uses h⁺ to oxidize H₂O. NNU-31-Zn showed the highest HCOOH production of 26.3 µmol·g⁻¹·h⁻¹ and a selectivity of 100%.

Feng *et al.*^[116] synthesized a Zr-based mixed-linker MOF (mPT-MOF), consisting of Zr clusters and 4,4'- (1,10-phenanthroline-3,8-diyl)dibenzoic acid and 2"-nitro-[1,1':4',1":4",1"'-quaterphenyl]-4,4'''-dicarboxylic acid linkers. Cu¹ photosensitizers (Cu-PSs) and molecular Re catalysts were incorporated in the MOF to form mPT-Cu/Re for photocatalytic CO_2 reduction with water. Installation of the Cu-PSs and molecular Re catalysts in the MOF promoted the transfer of multi-electrons to drive CO_2 reduction under visible-light irradiation. A turnover number of 1328 was obtained, which was a 95-fold improvement over the homogeneous counterparts.

Jiang *et al.*^[117] created "molecular compartments" inside MOF crystals by growing TiO₂ inside different pores of a chromium (Cr) terephthalate-based MOF (MIL-101) and its derivatives. This allows for the synergy between the light-absorbing/electron-generating TiO₂ units and the catalytic metal Cr clusters in the MOFs, thus facilitating the photoreduction of CO₂ to CO and CH₄ with the production of O₂ from H₂O. An AQE of 11.3% for CO₂ reduction at λ = 350 nm was obtained over 42%-TiO₂-in-MIL-101-Cr-NO₂(42% of TiO₂ in a MIL-101 derivative).

Very recently, Yu *et al.*^[118] integrated MoS₂ NSs into defective MOFs (d-UiO-66) to form Mo-O-Zr bimetallic sites between UiO-66 and MoS₂. The active interfaces were beneficial for the transfer of photogenerated charge carriers, resulting in enhanced activity. The d-UiO-66/MoS₂ composite facilitated visible-light-driven CO₂ conversion with H₂O to CH₃COOH. The production rate of CH₃COOH was 39.0 μ mol·g⁻¹·h⁻¹ and the selectivity was 94%.

Wu *et al.*^[119] reported Cu-based MOF, $Cu_3(BTC)_2$ (BTC = 1,3,5-benzene tricarboxylate), encapsulated Cu_2O nanowires for the photoreduction of CO_2 to CH_4 with water vapor. Such a MOF not only inhibits the water

vapor-induced corrosion of Cu_2O but also facilitates CO_2 uptake and charge separation [direct transfer of photogenerated electrons from the CB of Cu_2O to the LUMO level of non-excited $Cu_3(BTC)_2$], thus leading to a 1.9-fold higher photoactivity of CO_2 reduction into CH_4 , compared to that of pure Cu_2O .

III. Nitride-based photocatalysts

Li *et al.*^[120] incorporated the heteroatom B-Co dimer into a porous C_2N to form B-Co@ C_2N , which was used for the photoreduction of CO_2 to C_2H_6 . The combination of B and Co regulated the 3d orbital of the Co atoms to a lower energy level, which impairs the CO adsorption strength in comparison with Co-Co@ C_2N and results in a low energy barrier of ~0.61 eV for C-C coupling. The H₂ production reaction was inhibited owing to the strong adsorption of the *CO₂/*COOH intermediates. Furthermore, the light absorbance of B-Co@ C_2N in the visible and infrared light regions was improved in comparison with that on pure C_2N .

A Au/p-GaN photocatalyst with a plasmonic heterostructure realized the photoreduction of gas-phase CO_2 to CO with water oxidation under solar illumination^[121]. This heterostructure photocatalyst was composed of metal/insulator/semiconductor components with an Al_2O_3 layer between the metal nanoparticles and p-GaN, which contributed to the promotion of CO production.

IV. Other photocatalysts

Wang *et al.*^[122] fabricated a marigold-like SiC@MoS₂ photocatalyst with a unique Z-scheme structure to realize visible-light-driven CO₂ conversion with water. The production rates of CH₄ and O₂ were 323 and 621 μ L·g⁻¹·h⁻¹, respectively, with stability over five cycles of 40 h.

Layered bismuth oxyhalides (BiOX, where X = F, CI, Br and I) were used for the conversion of CO₂ with H₂O without adding photosensitizers or sacrificial agents^[123]. The optimal BiOBr photocatalyst displayed CO and CH₄ production rates of 21.6 and 1.2 µmol·g⁻¹·h⁻¹, respectively, under simulated sunlight irradiation.

 $SnS-SnS_2$ heterostructured NS frameworks were grown on FTO substrates for the photoconversion of CO_2 with H_2O to C_2 (acetaldehyde) and C_3 (acetone) hydrocarbons^[124]. The photoactivity of $SnS-SnS_2$ was improved by increasing the fraction of SnS in the composite through the partial transformation of SnS_2 to SnS. SnS provides CO_2 adsorption sites with lower activation energy, which is the rate-determining step for CO_2 reduction. The Z-scheme charge transfer dynamic in the SnS-SnS_2 catalyst drives the water oxidation on SnS₂ and CO_2 reduction on SnS.

Photocatalytic CO₂ conversion with H₂

Photocatalytic CO₂ conversion with H₂ is a prospective method for CO₂ reduction^[125]. Light illumination can achieve a favorable rate and yield in eight-electron CO₂ reduction with H₂^[125,126]. The photogenerated h⁺ in the active VB of the photocatalysts can react with H₂ to produce H⁺. The produced H⁺ and photogenerated e⁻ can then convert CO₂ into CO, CH₃OH and hydrocarbons (e.g., CH₄, C₂H₄, C₂H₆, C₃H₆ and C₃H₈). Generally, CH₄ or CO products are produced during photocatalytic CO₂ conversion with H₂ (Equations 7 and 8)^[89].

 $\text{CO}_2 + 4\text{H}_2 \rightarrow \text{CH}_4 + 2\text{H}_2\text{O}(7)$

 $\mathrm{CO}_2 + \mathrm{H}_2 \rightarrow \mathrm{CO} + \mathrm{H}_2\mathrm{O}(8)$

In 2018, Jelle *et al.*^[127] fabricated highly dispersed nanostructured RuO₂ catalysts loaded on 3D silicon photonic crystal supports for photocatalytic conversion of CO₂ with H₂ to CH₄. A conversion rate of 4.4 mmol·g_{cat}⁻¹·h⁻¹ was obtained under simulated solar irradiation. Silicon photonic crystals have unique light-harvesting characteristics in the entire spectrum of sunlight, coupled with its large surface area, resulting in the high CH₄ production rate. In the same year, Wang *et al.*^[128] reported a defect-rich indium oxide $[In_2O_{3-x}(OH)_y]$ catalyst for the light-driven reduction of CO₂ to CH₃OH. The CH₃OH production rate and selectivity were 0.06 mmol·g_{cat}⁻¹·h⁻¹ and 50%, respectively, under simulated solar irradiation. Furthermore, in 2019, Yan *et al.*^[129] used the rhombohedral polymorph of an indium sesquioxide photocatalyst for the photoactivity, superior stability and improved selectivity toward CH₃OH over CO. In 2020, Yan *et al.*^[130] reported the isomorphic replacement of Lewis acid sites (In³⁺ ions) in In₂O₃ with single-site Bi³⁺ ions to activate CO₂ molecules. The as-formed Bi_xIn_{2-x}O₃ photocatalyst showed a three orders of magnitude higher photoactivity was attributed to the increased solar energy utilization rate and rapid separation and transfer of photogenerated charges.

Photocatalytic CO₂ conversion with methane reforming

Methane (CH₄) is the second most common greenhouse $gas^{[89]}$. The photocatalytic conversion of CO₂ into syngas (H₂ and CO) with CH₄ reforming (Equation 9) is considered an effective method to decrease the environmental concentration of these two greenhouse gases. Generally, metal catalysts are highly effective for this reaction.

 $\text{CO}_2 + \text{CH}_4 \rightarrow 2\text{H}_2 + 2\text{CO(9)}$

Huang *et al.*^[131] reported the conversion of CO₂ by CH₄ upon a Ni nanocrystal modified with silica clusters, which exhibited excellent durability for methane reforming (> 700 h). It achieved high H₂ and CO production rates of 17.1 and 19.9 mmol·g⁻¹·min⁻¹, respectively, and excellent solar fuel efficiency of 12.5% under solar light irradiation. Even under IR irradiation (λ > 830 nm), the solar-to-fuel efficiency remained at 3.1%.

Zhou *et al.*^[132] loaded single-atom Ru sites on a Cu nanoparticle surface for photocatalytic CO_2 conversion with CH_4 reforming. A stability of 50 h and a selectivity of > 99% were achieved. Photoexcited hot carriers and single-atom Ru active sites led to the observed photoactivity.

Shoji *et al.*^[133] reported a SrTiO₃-supported Rh catalyst for UV-light-driven CO₂ reduction with CH₄ reforming, which cannot be realized by traditional thermal catalysis. The photogenerated h^+ and e^- were employed for the oxidation of CH₄ over SrTiO₃ and the reduction of CO₂ over Rh, respectively.

The photoassisted steam reforming and dry CO₂ reforming of CH₄ at room temperature with high selectivity of syngas were realized in gas-phase catalysis by Zhao *et al.*^[134] for the first time. Bimetallic Rh-V oxide cluster anions (Rh₂VO₁₋₃⁻) were used as catalysts and both the oxidation of CH₄ and the reduction of H₂O/CO₂ were achieved effectively without light irradiation. The key step in controlling the syngas (CO and H₂) selectivity in this system was to photoinduce the reaction intermediates (Rh₂VO_{2,3}CH₂⁻) into electronically excited states [Figure 14]^[134].

Figure 14. Two consecutive catalytic cycles of photoassisted steam reforming or dry CO_2 reforming of methane to syngas mediated by Rh_2VO_{1-3} clusters. "UV" represents ultraviolet light (λ = 355 nm photon). Reproduced from Ref.^[134] with permission from Wiley.

Photocatalytic CO₂ conversion with other electron donors

TEOA, TEA, triisopropanolamine (TIPA) and sodium sulfite (Na_2SO_3) have been reported as efficient electron donors for quenching the photogenerated h^+ during photocatalytic CO_2 conversion.

I. TEOA as an electron donor

The growth and assembly of highly dispersed UiO-66-NH₂ nanocrystals upon graphene to form an active photocatalyst for CO₂ conversion was reported by Wang *et al.*^[135]. The as-synthesized UiO-66-NH₂/graphene photocatalyst displayed both high activity and selectivity for the visible-light-driven conversion of CO₂ to HCOOH in the presence of TEOA. The photoreduction efficiency of UiO-66-NH₂/graphene for CO₂ was ~11 times greater than that of UiO-66-NH₂. The strong interaction between UiO-66-NH₂ and graphene effectively boosted the transfer of photogenerated e⁻ and inhibited the separation of UiO-66-NH₂ from graphene, resulting in its high photoactivity and good cyclability.

Wang *et al.*^[136] confined highly dispersed nickel cobalt oxyphosphide nanoparticles (NiCoOP NPs) in multichannel hollow carbon fibers (MHCFs) to form a NiCoOP-NP@MHCF catalyst for photocatalytic CO₂ reduction. The photoactivity was investigated in a tandem system, with $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ (bpy = 2'2-bipyridine) used as a photosensitizer in the presence of TEOA. The as-formed catalyst exhibited considerable activity, offering a CO production rate of 166 µmol·mg_{cat}⁻¹·h⁻¹.

Wang *et al.*^[137] decorated single-atom Cu sites upon UiO-66-NH₂ (Cu SAs/UiO-66-NH₂) to promote the photoreduction of CO₂ to liquid fuels, with TEOA used as an electron donor. The decoration of single-atom Cu sites on UiO-66-NH₂ facilitated the conversion of CO₂ to CHO^{*} and CO^{*} intermediates, resulting in good selectivity for CH₃OH and CH₃CHOH. This photocatalyst realized CH₃OH and CH₃CH₂OH production rates of 5.33 and 4.22 μ mol·g⁻¹·h⁻¹, respectively, which were much higher compared to those of pure UiO-66-NH₂ and Cu NP-loaded UiO-66-NH₂.

Yang *et al.*^[138] demonstrated that a Ni-based metal-organic layer (MOL) exposing rich (100) crystal facets (Ni-MOL-100) showed much higher CO_2 -to-CO photoactivity than with rich (010) crystal facets exposed

(Ni-MOL-010) and bulky Ni-MOF. Under Xe lamp irradiation (300 mW, $\lambda > 420$ nm), the catalytic activity in a [Ru(phen)₃](PF₆)₂, TEOA, CH₃CN and H₂O system reached 2.5- and 4.6-fold higher than those of Ni-MOL-010 and bulky Ni-MOF, respectively.

Li *et al.*^[139] presented a bioinspired MOF with flexible Cu and Ni dual-metal-site pairs (DMSPs) that exhibited self-adaptive behavior to fit mutative C1 intermediates, realizing visible-light-driven CO_2 reduction to CH_4 . The Cu and Ni DMSPs were incorporated into MOF-808 to form MOF-808-CuNi, leading to a production rate of 158.7 µmol·g⁻¹·h⁻¹ and a promoted CH_4 selectivity of 97.5%. Various C1 intermediates were stabilized by the flexible self-adaptive DMSPs in multistep reactions, resulting in the high selectivity of CH_4 .

II. TEA as an electron donor

Qi *et al.*^[140] proposed a single molecular cage of Ir(III) complex-decorated Zr-based metal-organic cages (Ir^{III}-MOC-NH₂) for visible-light-driven CO₂ reduction. The Ir^{III}-MOC-NH₂ catalyst had high photoactivity and selectivity for CO₂-to-CO conversion in the presence of TEA. The selectivity was 99.5% and the turnover frequency reached ~120 h⁻¹, which was 3.4 times that of bulk Ir^{III}-MOC-NH₂. The AQE was 6.71%.

III. TIPA as an electron donor

Liu *et al.*^[141] reported three functionalized polyoxo-titanium cluster-based photocatalysts for CO_2 reduction, namely, Ti_6 functionalized with phenylphosphonic acid and Ti_8 and Ti_6 functionalized with 1,1-ferrocene dicarboxylic acid (Fcdc). The light absorption range of Ti_8 -Fcdc and Ti_6 -Fcdc was expanded to the visible light region. The introduction of Fcdc ligands in the photocatalysts boosted the transfer of electrons from the Fcdc ligands to the Ti-oxo nucleus. In particular, both Ti_8 -Fcdc and Ti_6 -Fcdc achieved the photocatalytic reduction of CO_2 to HCOO⁻ with high selectivity (96.2% and 97.5%, respectively) and photoactivity (170.30 and 350.00 μ mol·g⁻¹·h⁻¹, respectively) under visible-light irradiation in the presence of TIPA.

IV. Sodium sulfite (Na₂SO₃) as an electron donor

Zhu *et al.*^[142] prepared a Cu/Cu⁺-modified Ti³⁺/TiO₂ (Cu/Cu⁺@TiO₂) photocatalyst for photocatalytic CO₂ conversion under Xe lamp irradiation with Na₂SO₃ as an electron donor. The Cu⁺-O valences inside the TiO₂ lattice promoted the transfer of carriers and the Cu on the surface of the catalyst as active sites promoted the reduction of CO₂. The synergistic effect between Cu and Cu⁺ ions increased the charge carrier density. All the photogenerated e⁻ in the photocatalyst (100%) were used for CO₂ reduction.

Photocatalytic H₂O₂ production

Basic principles of photocatalytic H₂O₂ production

Since H_2O_2 was first synthesized in 1818^[143], it has captured more and more attention and has even been listed as one of the 100 most important chemicals^[144]. As a green oxidant, H_2O_2 contains a 47.1% (w/w) active oxygen content. Apart from H_2O and O_2 , no other byproducts are generated during its reactions. As a result, H_2O_2 has been widely used in organic synthesis^[145], wastewater treatment and disinfection^[146] and the pulp and paper industry^[147]. Moreover, H_2O_2 has also been employed in energy research as a onecompartment fuel cell^[148]. The theoretical maximum output potential of 1.09 V in H_2O_2 fuel cells is comparable to that in conventional H_2 fuel cells (1.23 V). However, unlike H_2 , H_2O_2 is completely soluble in water and easy to transport, which paves the way for it to become a desirable alternative energy carrier. These wide applications result in a huge demand for H_2O_2 , with the global annual demand at ~2.2 Mt^[149].

At present, anthraquinone oxidation is the primary technology for industrial H_2O_2 production^[143]. However, its industrial synthetic route is complicated, with high energy consumption and toxic byproducts.

Alternative approaches are in development, such as the direct production of H_2O_2 from O_2 and H_2 , but this method has a high cost, high energy intensity and a risk of explosions. Compared with these two methods, photocatalytic H_2O_2 production requires only earth-abundant H_2O or other sacrificial agents and O_2 as raw materials instead of dangerous H_2/O_2 mixtures and can be operated using semiconductors as catalysts under sunlight irradiation^[150-153]. Moreover, no pollutants are produced during this process.

A detailed illustration of photocatalytic H_2O_2 production is presented in Figure 15^[9]. The photogenerated h⁺ in the VB oxidizes H_2O (or other sacrificial agents) to generate O_2 (or other oxidation products) and protons (H⁺, Equation 10), while the photogenerated e⁻ in the CB reacts with the adsorbed O_2 to generate H_2O_2 . Specifically, H_2O_2 can be produced through either an indirect sequential two-step one-electron reduction route (Equations 11 and 12) or a direct one-step two-electron reduction route (Equation 13). In the indirect two-step one-electron reduction process, the one-electron reduction of O_2 produces a superoxide radical (O_2^{\bullet} , Equation 11), which then reacts with two H⁺ ions and another electron to produce H_2O_2 (Equation 12). In the direct one-step two-electron reduction of O_2 reacts directly with two H⁺ ions to form H_2O_2 via a two-electron reduction process (Equation 13). These two processes can both be described by the overall reaction in Equation 14.

 $2H_2O + 4h^+ \rightarrow O_2 + 4H^+(10)$

 $O_2 + e^- \rightarrow O_2^{\bullet}(11)$

 $O_2^{\bullet} + 2H^+ \rightarrow H_2O_2(12)$

 $O_2 + 2H^+ + 2e^- \rightarrow H_2O_2(13)$

 $2H_2O + O_2 \rightarrow 2H_2O_2(14)$

Recent advances in photocatalytic H_2O_2 production H_2O_2 production from O_2 reduction I. C_3N_4 -based photocatalysts

An interfacial Schottky junction consisting of Ti_3C_2 and porous $g-C_3N_4$ NSs was designed by Yang *et al.*^[154] for visible-light-driven H_2O_2 production. It displayed an H_2O_2 production rate of 2.20 μ mol·L⁻¹·min⁻¹, which was ~2.1 times that of pure $g-C_3N_4$. The improved photoactivity was ascribed to the formed interfacial Schottky junction and built-in electric field, which boosted the spatial separation of photogenerated charges.

Wu *et al.*^[155] introduced alkali metal dopants and N vacancies in C_3N_4 . This extended the light absorption region, shortened the band gap from 2.85 to 2.63 eV and suppressed the recombination of photogenerated charges. The synergistic effect of the dopants and defects brought about a photocatalytic H_2O_2 production rate of 10.2 mmol·g⁻¹·h⁻¹ using isopropanol as an electron donor, which was 89.5 times that of pure C_3N_4 . Similarly, Xie *et al.*^[156] introduced two types of cooperative N vacancies, that is, NH_x and N₂C vacancies, into polymeric carbon nitride. It delivered a 15-fold improvement in H_2O_2 production with excellent stability using ethanol as a sacrificial hole scavenger. The AQE reached 26.78% and 11.86% at 340 and 420 nm, respectively. The NH_x and N₂C vacancies accelerated the photoexcited charge separation and assisted in activating O_2 in the two-electron pathway, respectively.

Figure 15. Illustration of photocatalytic H_2O_2 production. S represents the sacrificial agents. CBM: Conduction band minimum; VBM: valence band maximum.

Zhang *et al.*^[157] prepared an alkali and sulfur codoped polymeric carbon nitride and used it as a photocatalyst for H_2O_2 production from the O_2 reduction reaction. The photocatalyst realized a H_2O_2 production rate on the millimolar level under the irradiation of visible light with an AQE of 100% and a selectivity of 96%. Alkali and sulfur dopants in the photocatalyst boosted the separation of interlayer charges and the polarization of trapped electrons for the capture and reduction of O_2 , respectively.

Zhou *et al.*^[158] synthesized surface •OH group-functionalized $g-C_3N_4$ nanotubes. The nanotube structures provided a high surface area and promoted mass transfer. The •OH groups captured the photogenerated h^+ to facilitate the separation of photogenerated charges and were also beneficial in suppressing the self-decomposition of H_2O_2 . Consequently, a H_2O_2 production rate of 240.36 µmol·g⁻¹·h⁻¹ was obtained.

Chen *et al.*^[159] prepared a Na⁺-doped cyano-rich g-C₃N₄ photocatalyst. The porous g-C₃N₄ with Na⁺ dopants and cyano groups simultaneously optimized the photoactivity and selectivity, showing H₂O₂ production rates of 7.01 mmol·h⁻¹ under visible light irradiation ($\lambda \ge 420$ nm) and 16.05 mmol·h⁻¹ under simulated sun conditions, respectively, and a selectivity of 93% from two-electron O₂ reduction.

II. MOF- and COF-based photocatalysts

In 2018, Isaka *et al.*^[160] reported the visible-light-driven H_2O_2 production via two-electron O_2 reduction using a MIL-125-NH₂ photocatalyst with TEOA or benzyl alcohols as electron donors. Depositing NiO nanoparticles upon MIL-125-NH₂ drastically improved its photoactivity. Furthermore, in 2021, Chen *et al.*^[161] introduced a photosensitizer, 4,4,4',4''-(pyrene-1,3,6,8-tetrayl)tetrabenzoic acid (L2), into MIL-125 to form L2-functionalized MOFs (MIL-125-L2), which showed a H_2O_2 production rate of 1654 µmol·L⁻¹·h⁻¹ under the illumination of visible light ($\lambda > 400$ nm) with TEOA as a sacrificial hole scavenger. This high photoactivity was ascribed to the visible light absorption of L2, which originated from the π -electron system in L2, making MIL-125-L2 a catalyst for visible light response.

In 2020, Krishnaraj *et al.*^[162] reported two new 2D COFs, in which the (diarylamino)benzene linkers formed a Kagome lattice and showed strong visible light absorption. The high crystallinity and large surface area of these COFs allowed for effective charge transfer and diffusion. The diarylamine (donor) unit in these COFs efficiently promoted the reduction of O_2 to H_2O_2 using alcohols as sacrificial hole scavengers.

 $\rm H_2O_2$ production from $\rm O_2$ reduction coupled with value-added organic chemical synthesis from organic matter oxidation

The production of H_2O_2 from O_2 reduction coupled with the synthesis of value-added organic chemicals is attractive. On this basis, photogenerated carriers can be fully utilized during the process of photocatalytic renewable energy production, enhancing the processes of solar-to-chemical conversion efficiency.

I. Reduction of O₂ coupled with oxidation of benzyl alcohol

Benzaldehyde is the simplest and most important aromatic aldehyde in industry. It has a wide range of applications in medicine, dyes, perfumes, resins and other industries^[163]. The photocatalytic production of benzaldehyde from the oxidation of benzyl alcohol is a green process (Equation 15).

 $O_2 + Ph-CH_2OH \rightarrow H_2O_2 + Ph-CHO(15)$

In 2019, Isaka *et al.*^[164] reported hydrophobic linker-alkylated MOFs, MIL-125-Rn (n = 4 and 7), for the photocatalytic production of H_2O_2 in a two-phase system (water/benzyl alcohol) [Figure 16A and B]. The hydrophobization of MIL-125-NH₂ separated it from the aqueous phase into the benzyl alcohol phase. In this two-phase system, H₂O₂ was produced in the water phase, while the MOF structure was more stable in the benzyl alcohol phase. This resulted in improved photoactivity [Figure 16C]. The as-prepared hydrophobic MOF also showed its feasible application in H₂O₂ production in various aqueous solutions, including extremely low pH and NaCl solutions [Figure 16D]. Furthermore, Kawase et al.^[165] reported another hydrophobic cluster-alkylated MIL-125-NH₂ (OPA/MIL-125-NH₂). Its Ti clusters were alkylated by octadecylphosphonic acid (OPA). The activity for H₂O₂ production was higher than that of the reported MIL-125-Rn in the abovementioned two-phase system^[164]. OPA modified the outermost surface of the MOFs while preserving the inner pores, which resulted in enhanced activity. In 2020, Chen *et al.*^[166] further synthesized a hydrophobic OPA/ $Zr_{100-}Ti_x$ -MOF (x = 0, 5, 7.5 and 10), in which Zr clusters were alkylated with OPA, and applied it for H₂O₂ production in the above-mentioned two-phase system. The optimal $OPA/Zr_{925}Ti_{2.5}$ -MOF photocatalyst displayed a H_2O_2 production rate of 9.7 mmol·L⁻¹·h⁻¹ under the illumination of visible light ($\lambda > 420$ nm), which was ~4.5 times that of the Zr_{100} -MOF. H_2O_2 production cycling tests indicated that it showed good stability.

II. Reduction of O₂ coupled with oxidation of benzylamine

The synthesis of nitriles from the selective oxidation of amines plays a key role in both laboratory and industrial synthetic processes because nitrile is an important intermediate product for the synthesis of several fine chemicals, pharmaceuticals and agrochemicals^[167-173]. The photocatalytic oxidation of amines to nitriles is an effective approach for the synthesis of nitriles under mild conditions (Equation 16).

 $2O_2 + Ph-CH_2NH_2 \rightarrow 2H_2O_2 + Ph-CN(16)$

In 2021, Tian *et al.*^[174] reported that benzylamine oxidation could be used as a half-reaction to couple with H_2O_2 production from O_2 reduction (Equation 13) using defective ZrS₃ nanobelts with disulfide (S₂²⁻) and sulfide anion (S²⁻) vacancies [Figure 17A-F]. The defective ZrS₃ nanobelts exhibited good photoactivity for H_2O_2 production and high selectivity (> 99%) for benzonitrile production from benzylamine oxidation [Figure 17G and H]. The S₂²⁻ vacancies facilitated the separation of e⁻-h⁺ pairs and the S²⁻ vacancies improved the e⁻ conduction, h⁺ extraction and benzylamine oxidation kinetics. As a result, the photocatalyst displayed a H_2O_2 production rate of 78.1 ± 1.5 and a benzonitrile production rate 32.0 ± 1.2 µmol·h⁻¹ under simulated sunlight irradiation.

Figure 16. (A) Two-phase system (water/benzyl alcohol) for photocatalytic H_2O_2 production. (B) Alkylation reaction of linkers of MIL-125-NH₂ to form MIL-125-Rn (n = 1, 4 or 7). (C) Photocatalytic activity and (D) related mechanism of H_2O_2 production in the two-phase system under photoirradiation ($\lambda > 420 \text{ nm}$). Reproduced from Ref.^[164] with permission from Wiley.

H_2O_2 production from O_2 and H_2O

To improve the eco-friendliness and sustainability of H_2O_2 production, earth-abundant water should be used instead of alcohols or other sacrificial agents (e.g., TEOA and TEA). The oxidation of H_2O by h^+ produces O_2 and H^+ , while the reduction of O_2 by e^- produces $H_2O_2^{[175]}$. On this basis, H_2O_2 can be synthesized from H_2O and O_2 with 100% efficiency.

Ma *et al.*^[176] fabricated a protonated TiO₂ nanotube with carbon dots for H₂O₂ production under visible-light irradiation ($\lambda > 420$ nm). It showed a H₂O₂ production rate of 3.42 mmol·g_{cat}⁻¹·h⁻¹ in water, exceeding the values obtained on TiO₂ catalysts with noble metals. The protons on the catalyst play a key role in H₂O₂ production by promoting the reduction of O₂ to H₂O₂ and inhibiting H₂O₂ decomposition. This catalyst displayed a solar-to-H₂O₂ apparent energy conversion efficiency of 5.2%.

Zeng *et al.*^[177] reported a C_3N_4 -grafted cationic polyethylenimine (PEI) molecule for the photocatalytic H_2O_2 production from H_2O and O_2 . The PEI/ C_3N_4 photocatalyst exhibited a H_2O_2 production rate of 208.1 µmol·g⁻¹·h⁻¹, which was 25 times that of the pure C_3N_4 . This was ascribed to the simultaneous improvement in charge separation and two-electron O_2 reduction selectivity.

Figure 17. Transformation process of monoclinic ZrS_3 into hexagonal ZrS_2 from the [010] (A-C) and [001] (D-F) views. (A, D) Crystal structure of monolayer ZrS_3 with a boundary of $1 \times 3 \times 1$. (B, E) Crystal structure of monolayer ZrS_3 after desulfuration of S_2^{-2-} ions. (C, F) Crystal structure of monolayer ZrS_2 with a boundary of $1 \times 3 \times 1$. (G) Activity of H_2O_2 and benzonitrile production for a repeated photoreaction sequence with $ZrS_{1-y}S_{2-x}$ (15/100) under simulated sunlight irradiation [$ZrSS_{2-x}$ annealed for X time was denoted as $ZrSS_{2-x}(X)$, and $ZrS_{1-y}S_{2-x}$ annealed for X min and treated with Y mg Li was denoted as $ZrS_{1-y}S_{2-x}(X/Y)$]. (H) H_2O_2 and benzonitrile production rates. Reproduced from Ref.^[174] with permission from Springer Nature.

In 2020, Zhao *et al.*^[178] demonstrated a ZIF-8/C₃N₄ composite for visible-light-driven H₂O₂ production from H₂O and O₂. It displayed a H₂O₂ production rate of 2641 µmol·g⁻¹·h⁻¹ and an AQE of 19.57%. In 2021, Zhao *et al.*^[179] constructed a C₃N₄-assisted Ni₃(HHTP)₂ (Ni-CAT) photocatalyst that could catalyze the production of H₂O₂ from H₂O and O₂ under visible-light illumination. In this case, the Ni-CAT photocatalyst was the main active component for the reduction of O₂, while C₃N₄-assisted Ni-CAT suppressed the recombination of photogeneration charge carriers by providing electrons. Furthermore, Wu *et al.*^[180] fabricated a metal-free photocatalyst composed of carbon dots, organic dye molecules, procyanidins and 4-methoxybenzaldehyde for direct H₂O₂ production from seawater. This catalyst exhibited a visible-light-driven H₂O₂ production rate of 1776 µmol·g⁻¹·h⁻¹, which is ~4.8 times that of the pristine polymer.

In 2021, Teng *et al.*^[181] fabricated a Sb-single-atom-loaded C_3N_4 photocatalyst for the production of H_2O_2 from water and O_2 at $\lambda = 420$ nm. An AQE of 17.6% and a conversion efficiency of solar energy to chemical energy of 0.61% for H_2O_2 production were achieved. The formed μ -peroxide at the Sb sites promoted the two-electron O_2 reduction reaction and highly concentrated photogenerated h^+ at its neighboring N atoms promoted water oxidation reaction, resulting in the excellent photocatalytic activity. Importantly, in the

same year, Ye *et al.*^[182] reported a zinc polyphthalocyanine (ZnPPc)-decorated and B-doped carbon nitride (NBCN) hybrid (ZnPPc-NBCN) photocatalyst with a Z-scheme heterostructure. The high redox potential of the photocatalyst was stable during the reaction and the photocatalytic H_2O_2 production rate from pure water and open air reached 114 µmol·g⁻¹·h⁻¹.

CONCLUSIONS AND OUTLOOK

This review summarizes recent significant achievements in photocatalytic renewable energy production based on semiconductor and semiconductor-like driven photocatalysis, particularly for H₂ production, CO₂ reduction and H₂O₂ generation. To improve the photocatalytic performance, these research works have mainly focused on solving two scientific issues with photocatalysis, namely, light absorption and photogenerated charge separation. To improve the light utilization rate and/or boost the photogenerated charge separation, various strategies based on the design of photocatalysts have been employed: (1) doping of heteroelements/modification with single atoms; (2) creation of defects; (3) loading of dual cocatalysts; (4) construction of heterostructures (e.g., type II and Z-scheme); (5) fabrication of isotropic facets; and (6) generation of synergistic effects using multicomponents. Meanwhile, the improvement on the following reactions has also been considered: (1) for H₂ production from overall water splitting: effective water oxidation half-reaction and separation of the H₂ and O₂ products; (2) for CO₂ conversion: solubility and competitive H₂ production in the liquid phase, activation of CO₂ molecules and product selectivity; and (3) for H₂O₂ production from O₂ (and water): the selectivity of two-electron O₂ reduction, effective water oxidation half-reaction and self-decomposition of the formed H₂O₂.

The current semiconductor-based nanocomposite systems mainly consist of single inorganic semiconductor components or organic semiconductor-like polymers, such as MOFs and COFs. Although significant advances in photocatalytic renewable energy production have been achieved, these systems still exhibit some shortcomings, including the photocorrosion of sulfides and the instability of MOF and COF structures. For practical applications, it is necessary to bestow these traditional systems with new features or functionality in future research.

(1) Semiconductor-based bioinspired photocatalysis is a promising avenue for new photocatalysts with enhanced efficiency and stability, inspired by the abovementioned bioinspired HER-WOR-MOF photocatalyst^[79]. Such a system can be constructed by the effective integration of the superiorities from traditional photocatalysis and biological components, that is, the combination of traditional inorganic semiconductors and highly selective bioenzymes.

(2) Photoelectrocatalysis that can efficiently combine photo- and electric energies represents an important direction, inspired by the aforementioned hydrogen farm project^[83]. Such strategies can efficiently enhance the catalytic efficiency and easily separate the catalysts and products.

(3) Photothermal catalysis is another exciting direction. For example, the conversion of CO_2 with H_2 or CH_4 via thermal catalysis requires high temperatures. Introducing photocatalysis can lower the temperature. Thus, the combination of photocatalysis and thermal catalysis is of great significance for future research.

DECLARATIONS Authors' contributions Wrote the manuscript: Chen X, Zhao J Reviewed the manuscript: Zhang D, Li G, Li H

Availability of data and materials

Not applicable.

Financial support and sponsorship

This work was supported by the National Key Research and Development Program of China (2020YFA0211004), and National Natural Science Foundation of China (22022608, 21876112, 21876113, 92034301), "111" Innovation and Talent Recruitment Base on Photochemical and Energy Materials (No. D18020), Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Engineering Research Center of Green Energy Chemical Engineering (No. 18DZ2254200), Shanghai Frontiers Science Research Base of Biomimetic Catalysis and Shanghai government (18SG41).

Conflicts of interest

All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate

Not applicable.

Consent for publication Not applicable.

ivot applicabl

Copyright

© The Author(s) 2022.

REFERENCES

- 1. Martins F, Felgueiras C, Smitkova M, Caetano N. Analysis of fossil fuel energy consumption and environmental impacts in European countries. *Energies* 2019;12:964. DOI
- 2. Hisatomi T, Kubota J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. *Chem Soc Rev* 2014;43:7520-35. DOI PubMed
- 3. Wen M, Mori K, Kuwahara Y, An T, Yamashita H. Design and architecture of metal organic frameworks for visible light enhanced hydrogen production. *Appl Catal B-Environ* 2017;218:555-69. DOI
- 4. Cheng H, Wen M, Ma X, et al. Hydrogen doped metal oxide semiconductors with exceptional and tunable localized surface plasmon resonances. *J Am Chem Soc* 2016;138:9316-24. DOI PubMed
- 5. Bhatkhande DS, Pangarkar VG, Beenackers AA. Photocatalytic degradation for environmental applications a review. *J Chem Technol Biotechnol* 2002;77:102-16. DOI
- 6. Fuku K, Hayashi R, Takakura S, Kamegawa T, Mori K, Yamashita H. The synthesis of size- and color-controlled silver nanoparticles by using microwave heating and their enhanced catalytic activity by localized surface plasmon resonance. *Angew Chem Int Ed Engl* 2013;52:7446-50. DOI PubMed
- 7. Cheng H, Qian X, Kuwahara Y, Mori K, Yamashita H. A plasmonic molybdenum oxide hybrid with reversible tunability for visiblelight-enhanced catalytic reactions. *Adv Mater* 2015;27:4616-21. DOI PubMed
- Kamegawa T, Shimizu Y, Yamashita H. Superhydrophobic surfaces with photocatalytic self-cleaning properties by nanocomposite coating of TiO(2) and polytetrafluoroethylene. *Adv Mater* 2012;24:3697-700. DOI PubMed
- Hou H, Zeng X, Zhang X. Production of hydrogen peroxide by photocatalytic processes. *Angew Chem Int Ed Engl* 2020;59:17356-76. DOI PubMed
- 10. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Heterojunction photocatalysts. Adv Mater 2017;29:1601694. DOI PubMed
- 11. Wang F, Li Q, Xu D. Recent progress in semiconductor-based nanocomposite photocatalysts for solar-to-chemical energy conversion. *Adv Energy Mater* 2017;7:1700529. DOI
- 12. Zhao W, Chen Z, Yang X, et al. Recent advances in photocatalytic hydrogen evolution with high-performance catalysts without precious metals. *Renew Sustain Energy Rev* 2020;132:110040. DOI
- 13. Wang Z, Li C, Domen K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. *Chem Soc Rev* 2019;48:2109-25. DOI PubMed
- 14. Ou M, Li J, Chen Y, et al. Formation of noble-metal-free 2D/2D $Zn_mIn_2S_{m+3}$ (m = 1, 2, 3)/MXene Schottky heterojunction as an efficient photocatalyst for hydrogen evolution. *Chem Eng J* 2021;424:130170. DOI
- 15. Ou M, Li J, Geng M, Wang J, Wan S, Zhong Q. Construction of Z-scheme photocatalyst containing ZnIn₂S₄, Co₃O₄-photodeposited

BiVO₄ (110) facets and rGO electron mediator for overall water splitting into H₂ and O₂. Catal Lett 2021;151:2570-82. DOI

- 16. Wang L, Zhang J, Zhang Y, Yu H, Qu Y, Yu J. Inorganic metal-oxide photocatalyst for H₂O₂ production. Small 2021. DOI
- Hejazi S, Mohajernia S, Osuagwu B, et al. On the controlled loading of single platinum atoms as a Co-catalyst on TiO₂ anatase for optimized photocatalytic H₂ generation. *Adv Mater* 2020;32:e1908505. DOI PubMed
- Cho Y, Park B, Padhi DK, et al. Disordered-layer-mediated reverse metal-oxide interactions for enhanced photocatalytic water splitting. *Nano Lett* 2021;21:5247-53. DOI PubMed
- Méndez-Medrano MG, Kowalska E, Ohtani B, et al. Heterojunction of CuO nanoclusters with TiO₂ for photo-oxidation of organic compounds and for hydrogen production. *J Chem Phys* 2020;153:034705. DOI PubMed
- Osuagwu B, Raza W, Tesler AB, Schmuki P. A drastic improvement in photocatalytic H₂ production by TiO₂ nanosheets grown directly on Ta₂O₅ substrates. *Nanoscale* 2021;13:12750-6. DOI PubMed
- 21. Sun L, Zhuang Y, Yuan Y, et al. Nitrogen-Doped carbon-coated CuO-In₂O₃ p-n heterojunction for remarkable photocatalytic hydrogen evolution. *Adv Energy Mater* 2019;9:1902839. DOI
- 22. Han L, Jing F, zhang J, et al. Environment friendly and remarkably efficient photocatalytic hydrogen evolution based on metal organic framework derived hexagonal/cubic In2O3 phase-junction. *Appl Catal B-Environ* 2021;282:119602. DOI
- Guo L, Yang Z, Marcus K, et al. MoS₂/TiO₂ heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution. *Energy Environ Sci* 2018;11:106-14. DOI
- 24. Wang W, Zhu S, Cao Y, et al. Edge-enriched ultrathin MoS₂ embedded yolk-shell TiO₂ with boosted charge transfer for superior photocatalytic H₂ evolution. *Adv Funct Mater* 2019;29:1901958. DOI
- Lai G, Lyu L, Huang Y, et al. Few-layer WS₂-MoS₂ in-plane heterostructures for efficient photocatalytic hydrogen evolution. *Nano* Energy 2021;81:105608. DOI
- 26. Xiao S, Dai W, Liu X, et al. Microwave-induced metal dissolution synthesis of core-shell copper nanowires/ZnS for visible light photocatalytic H, evolution. *Adv Energy Mater* 2019;9:1900775. DOI
- 27. Wang S, Zhu B, Liu M, Zhang L, Yu J, Zhou M. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. *Appl Catal B-Environ* 2019;243:19-26. DOI
- Dai B, Fang J, Yu Y, et al. Construction of infrared-light-responsive photoinduced carriers driver for enhanced photocatalytic hydrogen evolution. *Adv Mater* 2020;32:e1906361. DOI PubMed
- Zhang P, Luan D, Lou XWD. Fabrication of CdS frame-in-cage particles for efficient photocatalytic hydrogen generation under visible-light irradiation. *Adv Mater* 2020;32:e2004561. DOI PubMed
- 30. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? *Chem Rev* 2016;116:7159-329. DOI PubMed
- Ismael M. A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis. J Alloys Compd 2020;846:156446. DOI
- 32. Gong Y, Li M, Wang Y. Carbon nitride in energy conversion and storage: recent advances and future prospects. *ChemSusChem* 2015;8:931-46. DOI PubMed
- Wang X, Blechert S, Antonietti M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2012;2:1596-606. DOI
- Zheng Y, Liu J, Liang J, Jaroniec M, Qiao SZ. Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. *Energy Environ Sci* 2012;5:6717. DOI
- Mo Z, Xu H, Chen Z, et al. Construction of MnO₂/Monolayer g-C₃N₄ with Mn vacancies for Z-scheme overall water splitting. *Appl Catal B-Environ* 2019;241:452-60. DOI
- Wang Y, Xu W, Zhang Y, et al. Introducing spin polarization into atomically thin 2D carbon nitride sheets for greatly extended visible-light photocatalytic water splitting. *Nano Energy* 2021;83:105783. DOI
- 37. Xu Y, Fan M, Yang W, et al. Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon nitride capable of near-infrared photocatalytic H₂ production. *Adv Mater* 2021;33:e2101455. DOI PubMed
- Yamashita H, Mori K, Kuwahara Y, et al. Single-site and nano-confined photocatalysts designed in porous materials for environmental uses and solar fuels. *Chem Soc Rev* 2018;47:8072-96. DOI PubMed
- Chen X, Xiao S, Wang H, et al. MOFs Conferred with transient metal centers for enhanced photocatalytic activity. *Angew Chem Int Ed Engl* 2020;59:17182-6. DOI PubMed
- Chen X, Cai Y, Liang R, et al. NH2-UiO-66(Zr) with fast electron transfer routes for breaking down nitric oxide via photocatalysis. *Appl Catal B-Environ* 2020;267:118687. DOI
- 41. Wen M, Li G, Liu H, Chen J, An T, Yamashita H. Metal-organic framework-based nanomaterials for adsorption and photocatalytic degradation of gaseous pollutants: recent progress and challenges. *Environ Sci : Nano* 2019;6:1006-25. DOI
- Wen M, Mori K, Kuwahara Y, Yamashita H. Plasmonic Au@Pd nanoparticles supported on a basic metal-organic framework: synergic boosting of H₂ production from formic acid. ACS Energy Lett 2017;2:1-7. DOI
- 43. Xiao JD, Han L, Luo J, Yu SH, Jiang HL. Integration of plasmonic effects and Schottky junctions into metal-organic framework composites: steering charge flow for enhanced visible-light photocatalysis. Angew Chem Int Ed Engl 2018;57:1103-7. DOI PubMed
- 44. Dong D, Yan C, Huang J, et al. An electron-donating strategy to guide the construction of MOF photocatalysts toward co-catalystfree highly efficient photocatalytic H₂ evolution. *J Mater Chem A* 2019;7:24180-5. DOI
- 45. Sun K, Liu M, Pei J, et al. Incorporating transition-metal phosphides into metal-organic frameworks for enhanced photocatalysis. *Angew Chem Int Ed Engl* 2020;59:22749-55. DOI PubMed
- 46. Meng X, Sheng J, Tang H, Sun X, Dong H, Zhang F. Metal-organic framework as nanoreactors to co-incorporate carbon nanodots

and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst. *Appl Catal B-Environ* 2019;244:340-6. DOI

- 47. Lin C, Han C, Zhang H, et al. Porphyrin-based metal-organic frameworks for efficient photocatalytic H₂ production under visiblelight irradiation. *Inorg Chem* 2021;60:3988-95. DOI PubMed
- Lyle SJ, Waller PJ, Yaghi OM. Covalent organic frameworks: organic chemistry extended into two and three dimensions. *Trends* Chem 2019;1:172-84. DOI
- Geng K, He T, Liu R, et al. Covalent organic frameworks: design, synthesis, and functions. *Chem Rev* 2020;120:8814-933. DOI PubMed
- Segura JL, Mancheño MJ, Zamora F. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. *Chem Soc Rev* 2016;45:5635-71. DOI PubMed
- Gao C, Li J, Yin S, et al. Isostructural three-dimensional covalent organic frameworks. Angew Chem Int Ed Engl 2019;58:9770-5. DOI PubMed
- Jiang L, Tian Y, Sun T, et al. A Crystalline polyimide porous organic framework for selective adsorption of acetylene over ethylene. J Am Chem Soc 2018;140:15724-30. DOI PubMed
- Li LH, Feng XL, Cui XH, Ma YX, Ding SY, Wang W. Salen-based covalent organic framework. J Am Chem Soc 2017;139:6042-5. DOI PubMed
- 54. Yan S, Guan X, Li H, et al. Three-dimensional Salphen-based covalent-organic frameworks as catalytic antioxidants. *J Am Chem Soc* 2019;141:2920-4. DOI PubMed
- Lin G, Ding H, Yuan D, Wang B, Wang C. A pyrene-based, fluorescent three-dimensional covalent organic framework. J Am Chem Soc 2016;138:3302-5. DOI PubMed
- Wang P, Zhou F, Zhang C, et al. Ultrathin two-dimensional covalent organic framework nanoprobe for interference-resistant twophoton fluorescence bioimaging. *Chem Sci* 2018;9:8402-8. DOI PubMed PMC
- 57. Das G, Biswal BP, Kandambeth S, et al. Chemical sensing in two dimensional porous covalent organic nanosheets. *Chem Sci* 2015;6:3931-9. DOI PubMed PMC
- 58. Ding H, Li J, Xie G, et al. An AIEgen-based 3D covalent organic framework for white light-emitting diodes. *Nat Commun* 2018;9:5234. DOI PubMed PMC
- Bessinger D, Ascherl L, Auras F, Bein T. Spectrally switchable photodetection with near-infrared-absorbing covalent organic frameworks. J Am Chem Soc 2017;139:12035-42. DOI PubMed PMC
- 60. Wang S, Wang Q, Shao P, et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. *J Am Chem Soc* 2017;139:4258-61. DOI PubMed
- 61. Du Y, Yang H, Whiteley JM, et al. Ionic covalent organic frameworks with spiroborate linkage. *Angew Chem Int Ed Engl* 2016;55:1737-41. DOI PubMed
- 62. Mulzer CR, Shen L, Bisbey RP, et al. Superior charge storage and power density of a conducting polymer-modified covalent organic framework. *ACS Cent Sci* 2016;2:667-73. DOI PubMed PMC
- 63. Xie J, Shevlin SA, Ruan Q, et al. Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazinebased framework. *Energy Environ Sci* 2018;11:1617-24. DOI
- 64. Chen R, Wang Y, Ma Y, et al. Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution. *Nat Commun* 2021;12:1354. DOI PubMed PMC
- 65. Zhou T, Wang L, Huang X, et al. PEG-stabilized coaxial stacking of two-dimensional covalent organic frameworks for enhanced photocatalytic hydrogen evolution. *Nat Commun* 2021;12:3934. DOI PubMed PMC
- 66. Yang J, Acharjya A, Ye MY, et al. Protonated imine-linked covalent organic frameworks for photocatalytic hydrogen evolution. *Angew Chem Int Ed Engl* 2021;60:19797-803. DOI PubMed PMC
- 67. Cheng Z, Qi W, Pang CH, et al. Recent advances in transition metal nitride-based materials for photocatalytic applications. *Adv Funct Materials* 2021;31:2100553. DOI
- Xiao J, Vequizo JJM, Hisatomi T, et al. Simultaneously tuning the defects and surface properties of Ta₃N₅ nanoparticles by Mg-Zr codoping for significantly accelerated photocatalytic H₂ evolution. J Am Chem Soc 2021;143:10059-64. DOI PubMed
- Wang Z, Luo Y, Hisatomi T, et al. Sequential cocatalyst decoration on BaTaO₂N towards highly-active Z-scheme water splitting. *Nat Commun* 2021;12:1005. DOI PubMed PMC
- 70. Wang Y, Zhao J, Chen Z, et al. Construction of Z-scheme MoSe₂/CdSe hollow nanostructure with enhanced full spectrum photocatalytic activity. *Appl Catal B-Environ* 2019;244:76-86. DOI
- 71. Zhang G, Wang X. Oxysulfide semiconductors for photocatalytic overall water splitting with visible light. *Angew Chem Int Ed Engl* 2019;58:15580-2. DOI PubMed
- 72. Pan R, Hu M, Liu J, et al. Two-dimensional all-in-one sulfide monolayers driving photocatalytic overall water splitting. *Nano Lett* 2021;21:6228-36. DOI PubMed
- Chen X, Shi R, Chen Q, et al. Three-dimensional porous g-C₃N₄ for highly efficient photocatalytic overall water splitting. *Nano* Energy 2019;59:644-50. DOI
- 74. Lin Y, Su W, Wang X, Fu X, Wang X. LaOCl-coupled polymeric carbon nitride for overall water splitting through a one-photon excitation pathway. *Angew Chem Int Ed Engl* 2020;59:20919-23. DOI PubMed
- 75. Chen X, Wang J, Chai Y, Zhang Z, Zhu Y. Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C₃N₄/rGO/PDIP Z-scheme heterojunction. *Adv Mater* 2021;33:e2007479. DOI
- 76. Wu C, Xue S, Qin Z, et al. Making $g-C_3N_4$ ultra-thin nanosheets active for photocatalytic overall water splitting. *Appl Catal B*-

Environ 2021;282:119557. DOI

- 77. Zhao D, Wang Y, Dong C, et al. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. *Nat Energy* 2021;6:388-97. DOI
- Zhang J, Bai T, Huang H, et al. Metal-organic-framework-based photocatalysts optimized by spatially separated cocatalysts for overall water splitting. *Adv Mater* 2020;32:e2004747. DOI PubMed
- 79. Hu H, Wang Z, Cao L, et al. Metal-organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. *Nat Chem* 2021;13:358-66. DOI PubMed
- Wang Y, Wu Y, Sun K, Mi Z. A quadruple-band metal-nitride nanowire artificial photosynthesis system for high efficiency photocatalytic overall solar water splitting. *Mater Horiz* 2019;6:1454-62. DOI
- Pan Z, Zhang G, Wang X. Polymeric carbon nitride/reduced graphene oxide/Fe₂O₃: all-solid-state Z-scheme system for photocatalytic overall water splitting. *Angew Chem Int Ed Engl* 2019;58:7102-6. DOI
- Oshima T, Nishioka S, Kikuchi Y, et al. An artificial Z-scheme constructed from dye-sensitized metal oxide nanosheets for visible light-driven overall water splitting. J Am Chem Soc 2020;142:8412-20. DOI PubMed
- Zhao Y, Ding C, Zhu J, et al. A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts. *Angew* Chem Int Ed Engl 2020;59:9653-8. DOI PubMed
- Takata T, Jiang J, Sakata Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity. *Nature* 2020;581:411-4. DOI PubMed
- Zhang Z, Liu Y, Fang Y, et al. Near-infrared-plasmonic energy upconversion in a nonmetallic heterostructure for efficient H₂ evolution from ammonia borane. Adv Sci (Weinh) 2018;5:1800748. DOI PubMed PMC
- Zhang MY, Li JK, Wang R, Zhao SN, Zang SQ, Mak TCW. Construction of core-shell MOF@COF hybrids with controllable morphology adjustment of COF shell as a novel platform for photocatalytic cascade reactions. *Adv Sci (Weinh)* 2021;8:e2101884. DOI PubMed PMC
- Cao S, Chen Y, Wang H, et al. Ultrasmall CoP nanoparticles as efficient cocatalysts for photocatalytic formic acid dehydrogenation. Joule 2018;2:549-57. DOI
- Zhang S, Li M, Zhao J, et al. Plasmonic AuPd-based Mott-Schottky photocatalyst for synergistically enhanced hydrogen evolution from formic acid and aldehyde. *Appl Catal B-Environ* 2019;252:24-32. DOI
- Wang C, Sun Z, Zheng Y, Hu YH. Recent progress in visible light photocatalytic conversion of carbon dioxide. J Mater Chem A 2019;7:865-87. DOI
- 90. Hu Y. Advances in CO₂ conversion and utilization. Washington: American Chemical Society; 2010.
- Mao J, Li K, Peng T. Recent advances in the photocatalytic CO₂ reduction over semiconductors. *Catal Sci Technol* 2013;3:2481. DOI
- Shi R, Waterhouse GI, Zhang T. Recent progress in photocatalytic CO₂ reduction over perovskite oxides. Sol RRL 2017;1:1700126. DOI
- Duan X, Xu J, Wei Z, et al. Metal-free carbon materials for CO₂ electrochemical reduction. *Adv Mater* 2017;29:1701784. DOI PubMed
- 94. Leitner W. The coordination chemistry of carbon dioxide and its relevance for catalysis: a critical survey. *Coord Chem Rev* 1996;153:257-84. DOI
- Zhang L, Zhao ZJ, Gong J. Nanostructured materials for heterogeneous electrocatalytic CO₂ reduction and their related reaction mechanisms. *Angew Chem Int Ed Engl* 2017;56:11326-53. DOI PubMed
- 96. Shen H, Peppel T, Strunk J, Sun Z. Photocatalytic reduction of CO₂ by metal-free-based materials: recent advances and future perspective. *Sol RRL* 2020;4:1900546. DOI
- 97. Sun Z, Talreja N, Tao H, et al. Catalysis of carbon dioxide photoreduction on nanosheets: fundamentals and challenges. *Angew Chem Int Ed Engl* 2018;57:7610-27. DOI PubMed
- Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Photocatalytic reduction of CO₂ on TiO₂ and other semiconductors. *Angew* Chem Int Ed Engl 2013;52:7372-408. DOI PubMed
- Inoue T, Fujishima A, Konishi S, Honda K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. *Nature* 1979;277:637-8. DOI
- Morris AJ, Meyer GJ, Fujita E. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 2009;42:1983-94. DOI PubMed
- Angamuthu R, Byers P, Lutz M, Spek AL, Bouwman E. Electrocatalytic CO₂ conversion to oxalate by a copper complex. *Science* 2010;327:313-5. DOI PubMed
- 102. Li J, Shao W, Geng M, Wan S, Ou M, Chen Y. Combined Schottky junction and doping effect in Cd_xZn_{1-x}S@Au/BiVO₄ Z-Scheme photocatalyst with boosted carriers charge separation for CO₂ reduction by H₂O. *J Colloid Interface Sci* 2022;606:1469-76. DOI PubMed
- 103. Ou M, Tu W, Yin S, et al. Amino-assisted anchoring of CsPbBr₃ perovskite quantum dots on porous g-C₃ N₄ for enhanced photocatalytic CO₂ reduction. *Angew Chem Int Ed Engl* 2018;57:13570-4. DOI PubMed
- 104. Zhang Q, Han W, Hong Y, Yu J. Photocatalytic reduction of CO₂ with H₂O on Pt-loaded TiO₂ catalyst. Catalysis Today 2009;148:335-40. DOI
- 105. Xie S, Wang Y, Zhang Q, Deng W, Wang Y. MgO- and Pt-promoted TiO₂ as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal 2014;4:3644-53. DOI
- 106. Sorcar S, Hwang Y, Lee J, et al. CO₂, water, and sunlight to hydrocarbon fuels: a sustained sunlight to fuel (Joule-to-Joule)

photoconversion efficiency of 1%. Energy Environ Sci 2019;12:2685-96. DOI

- Li N, Wang B, Si Y, et al. Toward high-value hydrocarbon generation by photocatalytic reduction of CO₂ in water vapor. ACS Catal 2019;9:5590-602. DOI
- Yuan L, Hung S, Tang Z, Chen HM, Xiong Y, Xu Y. Dynamic evolution of atomically dispersed Cu species for CO₂ photoreduction to solar fuels. ACS Catal 2019;9:4824-33. DOI
- 109. Wang Q, Warnan J, Rodríguez-jiménez S, et al. Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. *Nat Energy* 2020;5:703-10. DOI
- Wang C, Zhao Y, Xu H, et al. Efficient Z-scheme photocatalysts of ultrathin g-C₃N₄-wrapped Au/TiO₂-nanocrystals for enhanced visible-light-driven conversion of CO, with H₂O. *Appl Catal B-Environ* 2020;263:118314. DOI
- 111. Wang S, Teramura K, Hisatomi T, et al. Dual Ag/Co cocatalyst synergism for the highly effective photocatalytic conversion of CO₂ by H₂O over Al-SrTiO₃. *Chem Sci* 2021;12:4940-8. DOI PubMed PMC
- 112. Wang W, Deng C, Xie S, et al. Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II). J Am Chem Soc 2021;143:2984-93. DOI PubMed
- Lu M, Liu J, Li Q, et al. Rational design of crystalline covalent organic frameworks for efficient CO₂ photoreduction with H₂O. Angew Chem Int Ed Engl 2019;58:12392-7. DOI PubMed
- Fang ZB, Liu TT, Liu J, et al. Boosting interfacial charge-transfer kinetics for efficient overall CO₂ photoreduction via rational design of coordination spheres on metal-organic frameworks. J Am Chem Soc 2020;142:12515-23. DOI PubMed
- Dong LZ, Zhang L, Liu J, et al. Stable heterometallic cluster-based organic framework catalysts for artificial photosynthesis. Angew Chem Int Ed Engl 2020;59:2659-63. DOI PubMed
- 116. Feng X, Pi Y, Song Y, et al. Metal-organic frameworks significantly enhance photocatalytic hydrogen evolution and CO₂ reduction with earth-abundant copper photosensitizers. J Am Chem Soc 2020;142:690-5. DOI PubMed
- Jiang Z, Xu X, Ma Y, et al. Filling metal-organic framework mesopores with TiO₂ for CO₂ photoreduction. *Nature* 2020;586:549-54. DOI PubMed
- 118. Yu F, Jing X, Wang Y, Sun M, Duan C. Hierarchically porous metal-organic framework/MoS₂ interface for selective photocatalytic conversion of CO₂ with H₂O into CH₃COOH. *Angew Chem Int Ed Engl* 2021;60:24849-53. DOI
- 119. Wu H, Kong XY, Wen X, et al. Metal-organic framework decorated cuprous oxide nanowires for long-lived charges applied in selective photocatalytic CO₂ reduction to CH₄. *Angew Chem Int Ed Engl* 2021;60:8455-9. DOI PubMed
- Li L, Guo H, Yao G, et al. Visible/infrared light-driven high-efficiency CO₂ conversion into ethane based on a B-Co synergistic catalyst. J Mater Chem A 2020;8:22327-34. DOI
- 121. Li R, Cheng W, Richter MH, et al. Unassisted highly selective gas-phase CO₂ reduction with a plasmonic Au/p-GaN photocatalyst using H₂O as an electron donor. ACS Energy Lett 2021;6:1849-56. DOI
- 122. Wang Y, Zhang Z, Zhang L, et al. Visible-light driven overall conversion of CO₂ and H₂O to CH₄ and O₂ on 3D-SiC@2D-MoS₂ heterostructure. J Am Chem Soc 2018;140:14595-8. DOI PubMed
- Ren X, Gao M, Zhang Y, et al. Photocatalytic reduction of CO₂ on BiOX: effect of halogen element type and surface oxygen vacancy mediated mechanism. *Appl Catal B-Environ* 2020;274:119063. DOI
- Wu CY, Lee CJ, Yu YH, et al. Efficacious CO₂ photoconversion to C₂ and C₃ hydrocarbons on upright SnS-SnS₂ heterojunction nanosheet frameworks. ACS Appl Mater Interfaces 2021;13:4984-92. DOI PubMed
- 125. Thampi KR, Kiwi J, Grätzel M. Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. *Nature* 1987;327:506-8. DOI
- Ahmed N, Shibata Y, Taniguchi T, Izumi Y. Photocatalytic conversion of carbon dioxide into methanol using zinc-copper-M(III) (M=aluminum, gallium) layered double hydroxides. J Catal 2011;279:123-35. DOI
- 127. Jelle AA, Ghuman KK, O'brien PG, et al. Highly efficient ambient temperature CO₂ photomethanation catalyzed by nanostructured RuO₂ on silicon photonic crystal support. *Adv Energy Mater* 2018;8:1702277. DOI
- 128. Wang L, Ghoussoub M, Wang H, et al. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure. *Joule* 2018;2:1369-81. DOI
- 129. Yan T, Wang L, Liang Y, et al. Polymorph selection towards photocatalytic gaseous CO₂ hydrogenation. *Nat Commun* 2019;10:2521. DOI PubMed PMC
- 130. Yan T, Li N, Wang L, et al. Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO₂ photocatalytic hydrogenation. *Nat Commun* 2020;11:6095. DOI PubMed PMC
- 131. Huang H, Mao M, Zhang Q, et al. Solar-light-driven CO₂ reduction by CH₄ on silica-cluster-modified Ni nanocrystals with a high solar-to-fuel efficiency and excellent durability. Adv Energy Mater 2018;8:1702472. DOI
- Zhou L, Martirez JMP, Finzel J, et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. *Nat Energy* 2020;5:61-70. DOI
- 133. Shoji S, Peng X, Yamaguchi A, et al. Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems. *Nat Catal* 2020;3:148-53. DOI
- 134. Zhao YX, Yang B, Li HF, et al. Photoassisted selective steam and dry reforming of methane to syngas catalyzed by rhodiumvanadium bimetallic oxide cluster anions at room temperature. *Angew Chem Int Ed Engl* 2020;59:21216-23. DOI PubMed
- Wang X, Zhao X, Zhang D, Li G, Li H. Microwave irradiation induced UIO-66-NH2 anchored on graphene with high activity for photocatalytic reduction of CO₂. *Appl Catal B-Environ* 2018;228:47-53. DOI
- Wang Y, Wang S, Lou XWD. Dispersed nickel cobalt oxyphosphide nanoparticles confined in multichannel hollow carbon fibers for photocatalytic CO₂ reduction. *Angew Chem Int Ed Engl* 2019;58:17236-40. DOI PubMed

- 137. Wang G, He CT, Huang R, Mao J, Wang D, Li Y. Photoinduction of Cu single atoms decorated on UiO-66-NH₂ for enhanced photocatalytic reduction of CO₂ to Liquid fuels. J Am Chem Soc 2020;142:19339-45. DOI PubMed
- Yang W, Wang HJ, Liu RR, et al. Tailoring crystal facets of metal-organic layers to enhance photocatalytic activity for CO₂ reduction. *Angew Chem Int Ed Engl* 2021;60:409-14. DOI PubMed
- Li J, Huang H, Xue W, et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO₂ photoreduction to CH₄. Nat Catal 2021;4:719-29. DOI
- Qi X, Zhong R, Chen M, et al. Single Metal-organic cage decorated with an Ir(III) complex for CO₂ photoreduction. ACS Catal 2021;11:7241-8. DOI
- 141. Liu J, Li N, Sun J, et al. Ferrocene-functionalized polyoxo-titanium cluster for CO, photoreduction. ACS Catal 2021;11:4510-9. DOI
- 142. Zhu S, Chen X, Li Z, et al. Cooperation between inside and outside of TiO₂: Lattice Cu⁺ accelerates carrier migration to the surface of metal copper for photocatalytic CO₂ reduction. *Appl Catal B-Environ* 2020;264:118515. DOI
- Campos-Martin JM, Blanco-Brieva G, Fierro JL. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Ed Engl 2006;45:6962-84. DOI PubMed
- Sato K, Aoki M, Noyori R. A "Green" route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 1998;281:1646-7. DOI PubMed
- 145. Zhan W, Ji L, Ge Z, Wang X, Li R. A continuous-flow synthesis of primary amides from hydrolysis of nitriles using hydrogen peroxide as oxidant. *Tetrahedron* 2018;74:1527-32. DOI
- 146. Ksibi M. Chemical oxidation with hydrogen peroxide for domestic wastewater treatment. Chem Eng J 2006;119:161-5. DOI
- 147. Gurram RN, Al-Shannag M, Lecher NJ, Duncan SM, Singsaas EL, Alkasrawi M. Bioconversion of paper mill sludge to bioethanol in the presence of accelerants or hydrogen peroxide pretreatment. *Bioresour Technol* 2015;192:529-39. DOI PubMed
- Yamazaki S, Siroma Z, Senoh H, Ioroi T, Fujiwara N, Yasuda K. A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel. J Power Sources 2008;178:20-5. DOI
- 149. Chen X, Kondo Y, Kuwahara Y, Mori K, Louis C, Yamashita H. Metal-organic framework-based nanomaterials for photocatalytic hydrogen peroxide production. *Phys Chem Chem Phys* 2020;22:14404-14. DOI PubMed
- Haider Z, Cho H, Moon G, Kim H. Minireview: Selective production of hydrogen peroxide as a clean oxidant over structurally tailored carbon nitride photocatalysts. *Catalysis Today* 2019;335:55-64. DOI
- 151. Su J, Vayssieres L. A place in the sun for artificial photosynthesis? ACS Energy Lett 2016;1:121-35. DOI
- 152. Lewis NS. Developing a scalable artificial photosynthesis technology through nanomaterials by design. *Nat Nanotechnol* 2016;11:1010-9. DOI PubMed
- Faunce TA, Lubitz W, Rutherford AW, et al. Energy and environment policy case for a global project on artificial photosynthesis. Energy Environ Sci 2013;6:695. DOI
- 154. Yang Y, Zeng Z, Zeng G, et al. Ti₃C₂ Mxene/porous g-C₃N₄ interfacial Schottky junction for boosting spatial charge separation in photocatalytic H₂O₂ production. *Appl Catal B-Environ* 2019;258:117956. DOI
- Wu S, Yu H, Chen S, Quan X. Enhanced photocatalytic H₂O₂ production over carbon nitride by doping and defect engineering. ACS Catal 2020;10:14380-9. DOI
- 156. Xie Y, Li Y, Huang Z, et al. Two types of cooperative nitrogen vacancies in polymeric carbon nitride for efficient solar-driven H₂O₂ evolution. Appl Catal B-Environ 2020;265:118581. DOI
- 157. Zhang P, Tong Y, Liu Y, et al. Heteroatom dopants promote two-electron O₂ reduction for photocatalytic production of H₂O₂ on polymeric carbon nitride. *Angew Chem Int Ed Engl* 2020;59:16209-17. DOI PubMed
- Zhou L, Lei J, Wang F, et al. Carbon nitride nanotubes with in situ grafted hydroxyl groups for highly efficient spontaneous H₂O₂ production. *Appl Catal B-Environ* 2021;288:119993. DOI
- 159. Chen L, Chen C, Yang Z, Li S, Chu C, Chen B. Simultaneously tuning band structure and oxygen reduction pathway toward highefficient photocatalytic hydrogen peroxide production using cyano-rich graphitic carbon nitride. *Adv Funct Mater* 2021;31:2105731. DOI
- Isaka Y, Kondo Y, Kawase Y, Kuwahara Y, Mori K, Yamashita H. Photocatalytic production of hydrogen peroxide through selective two-electron reduction of dioxygen utilizing amine-functionalized MIL-125 deposited with nickel oxide nanoparticles. *Chem Commun (Camb)* 2018;54:9270-3. DOI PubMed
- 161. Chen X, Kuwahara Y, Mori K, Louis C, Yamashita H. Introduction of a secondary ligand into titanium-based metal-organic frameworks for visible-light-driven photocatalytic hydrogen peroxide production from dioxygen reduction. J Mater Chem A 2021;9:2815-21. DOI
- 162. Krishnaraj C, Sekhar Jena H, Bourda L, et al. Strongly Reducing (Diarylamino)benzene-based covalent organic framework for metalfree visible light photocatalytic H₂O₂ generation. *J Am Chem Soc* 2020;142:20107-16. DOI PubMed PMC
- 163. Mal DD, Khilari S, Pradhan D. Efficient and selective oxidation of toluene to benzaldehyde on manganese tungstate nanobars: a noble metal-free approach. *Green Chem* 2018;20:2279-89. DOI
- 164. Isaka Y, Kawase Y, Kuwahara Y, Mori K, Yamashita H. Two-phase system utilizing hydrophobic metal-organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide. *Angew Chem Int Ed Engl* 2019;58:5402-6. DOI PubMed
- 165. Kawase Y, Isaka Y, Kuwahara Y, Mori K, Yamashita H. Ti cluster-alkylated hydrophobic MOFs for photocatalytic production of hydrogen peroxide in two-phase systems. *Chem Commun (Camb)* 2019;55:6743-6. DOI PubMed
- 166. Chen X, Kuwahara Y, Mori K, Louis C, Yamashita H. A hydrophobic titanium doped zirconium-based metal organic framework for photocatalytic hydrogen peroxide production in a two-phase system. J Mater Chem A 2020;8:1904-10. DOI
- 167. Huang Y, Chong X, Liu C, Liang Y, Zhang B. Boosting hydrogen production by anodic oxidation of primary amines over a nise

nanorod electrode. Angew Chem Int Ed Engl 2018;57:13163-6. DOI PubMed

- 168. Martin A, Kalevaru VN. Heterogeneously catalyzed ammoxidation: a valuable tool for one-step synthesis of nitriles. *ChemCatChem* 2010;2:1504-22. DOI
- Łuczak T. Electrochemical behaviour of benzylamine, 2-phenylethylamine and 4-hydroxyphenylethylamine at gold. A comparative study. J Appl Electrochem 2007;38:43-50. DOI
- Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem 2010;53:7902-17. DOI PubMed PMC
- 171. Wang T, Jiao N. Direct approaches to nitriles via highly efficient nitrogenation strategy through C-H or C-C bond cleavage. Acc Chem Res 2014;47:1137-45. DOI PubMed
- 172. Yan G, Zhang Y, Wang J. Recent advances in the synthesis of aryl nitrile compounds. Adv Synth Catal 2017;359:4068-105. DOI
- 173. Liu RY, Bae M, Buchwald SL. Mechanistic insight facilitates discovery of a mild and efficient copper-catalyzed dehydration of primary amides to nitriles using hydrosilanes. J Am Chem Soc 2018;140:1627-31. DOI PubMed PMC
- Tian Z, Han C, Zhao Y, et al. Efficient photocatalytic hydrogen peroxide generation coupled with selective benzylamine oxidation over defective ZrS₃ nanobelts. *Nat Commun* 2021;12:2039. DOI PubMed PMC
- 175. Shiraishi Y, Kanazawa S, Kofuji Y, et al. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metalfree photocatalysts. *Angew Chem Int Ed Engl* 2014;53:13454-9. DOI PubMed
- 176. Ma R, Wang L, Wang H, et al. Solid acids accelerate the photocatalytic hydrogen peroxide synthesis over a hybrid catalyst of titania nanotube with carbon dot. *Appl Catal B-Environ* 2019;244:594-603. DOI
- 177. Zeng X, Liu Y, Kang Y, et al. Simultaneously tuning charge separation and oxygen reduction pathway on graphitic carbon nitride by polyethylenimine for boosted photocatalytic hydrogen peroxide production. *ACS Catal* 2020;10:3697-706. DOI
- Zhao Y, Liu Y, Cao J, et al. Efficient production of H₂O₂ via two-channel pathway over ZIF-8/C3N4 composite photocatalyst without any sacrificial agent. *Appl Catal B-Environ* 2020;278:119289. DOI
- Zhao Y, Liu Y, Wang Z, et al. Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H₂O, production. *Appl Catal B-Environ* 2021;289:120035. DOI
- Wu Q, Cao J, Wang X, et al. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. *Nat Commun* 2021;12:483. DOI PubMed PMC
- Teng Z, Zhang Q, Yang H, et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. *Nat Catal* 2021;4:374-84. DOI
- 182. Ye YX, Pan J, Xie F, et al. Highly efficient photosynthesis of hydrogen peroxide in ambient conditions. Proc Natl Acad Sci U S A 2021;118:e2103964118. DOI PubMed PMC