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Abstract
Aging is a key contributor to the pathogenesis of cardiovascular diseases (CVDs). However, current methods and 
models of CVD do not include the factor of aging due to the use of premature cardiomyocytes. There is an urgent 
need for an engineered cardiovascular tissue (ECT) model that includes aging as the greatest CVD risk factor to 
facilitate drug development for aged CVD patients. Cell therapy, which transplants pluripotent stem cell-derived 
cardiomyocytes in patients, was proved to be effective for cardiac repair, while the cell retention rate is limited. 
Alternatively, implantation of ECT could enable long-term retention of cells after translation and may result in 
rejuvenation in aged hearts. This review summarizes the key features of aging and the influencing factors in 
engineered cardiovascular tissues. The applications and challenges of engineered myocardium designed for clinical 
use are also discussed.
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INTRODUCTION
The elderly population is at higher risk of cardiovascular diseases (CVDs), with approximately 66% of cases 
occurring after the age of 75[1]. Given the increasing average life span worldwide, the severe consequence of 
CVD is expected to notably arouse social concern in the coming years[2,3]. However, cardiomyocytes in post-
mitotic heart progressively decline, and adult cardiovascular tissue is difficult to regenerate once injured[4]. 
Therefore, regenerative therapy has become a research hotspot in recent years. These regenerative strategies 
include pharmaceutical induction of regeneration in situ and cell therapy via transplantation. Engineered 
cardiovascular tissue (ECT) may serve as a useful study tool in both directions.

The development of efficient CVD drugs for the aging population is of great importance. However, 
prevailing models of CVD fall short in presenting the aging features because they use premature 
cardiomyocytes. It is essential to compare the differential gene expression in young cardiomyocytes versus 
old cardiomyocytes to reveal the key molecule targets and pathways affected by aging[5]. This comparison 
can help us to find functional molecules, such as extracellular matrix components, which are capable of 
reversing the aging features[5,6]. Therefore, the generation of age-appropriate cardiac models is of great 
research value. However, the challenges of modeling aged cardiovascular tissues are hampering the 
development of therapies. Some existing models used aged rat cardiomyocytes to construct cardiovascular 
tissues[7]; however, rodent cardiomyocytes have different molecular expression and electrophysiological 
properties compared with human cardiomyocytes, which may not fully capture the complexities of aged 
patients’ tissues. Using induced pluripotent stem cell (iPSC) derived cardiomyocytes (iPSC-CM) may be an 
alternative strategy, but there is a lack of a cost-effective model simulating the pathogenic process of the 
aged human heart using iPSC-CM. The existing aged iPSC-CM model requires up to 14-month prolonged 
culture[5,8]. New strategies that can accelerate the aging of engineered cardiovascular tissues may solve this 
problem. Understanding the mechanisms implicated in aging and rejuvenation of engineered 
cardiovascular tissues will reveal crucial insights for developing new therapies or adapting existing therapies. 
Furthermore, the transplantation of ECT provides the possibility of heart regeneration.  This review 
examines the effect of aging on engineered cardiovascular tissues, focusing on features such as declined 
cardiac contraction, increased tissue stiffness, and DNA damage. The influencing factors of aging such as 
oxidative stress, SIRT2 deficiency, and LMNA gene mutation are clarified. The consequences of enhanced 
rejuvenation in cardiovascular tissues and the underlying mechanisms are summarized. Moreover, the 
potential application of engineered cardiovascular tissues to rejuvenate aged hearts and associated 
challenges are discussed in detail.

ENGINEERED CARDIOVASCULAR TISSUE IN VITRO: AN AGING MODEL
Features and influencing factors of aging in engineered cardiovascular tissues
In vitro models of cardiovascular diseases aim to provide insights into pathological progression and assess 
the rejuvenating effects of pharmacological treatments. However, the contribution of aging is largely 
underrepresented due to the use of neonatal or premature cardiomyocytes. Therefore, generating ECT 
models recapitulating the cellular phenotype of aged cardiovascular tissue in patients could greatly improve 
our understanding of the roles of aging in CVDs. During aging, the cells in the heart develop a senescent 
phenotype characterized by telomere damage, mitochondrial dysfunction, cardiomyocyte pathological 
hypertrophy, and fibrosis[9-11]. Therefore, engineered cardiovascular tissues have been generated to 
reproduce these phenotypes in vitro [Table 1]. For example, an in vitro aged ECT model shows major 
cellular features of aging and stiffness resembling the aged human heart after prolonged culture[8]. However, 
prolonged in vitro culture is time-consuming and costly, which largely hinders the application of this 
model. Therefore, factors that promote aging could be crucial to accelerate aging in vitro [Figure 1].
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Table 1. Features of aging in engineered cardiovascular tissues

Aging features Tissue types Strategies accelerating 
aging Aging indicators Reference

Cellular senescence TEBVs Oxidative stress Increased p21 levels and reduced NOS3 expression [19]

Cellular senescence and 
impaired stress response

In vitro aged 
myocardial tissue

Prolonged culture and 
enhanced cellular stiffness

P21 staining, β-galactosidase staining [8]

Cellular senescence Cardiac tissue 
chip model

Acute low-dose doxorubicin 
treatment

DNA damage response foci, and increased 
expression of cell cycle inhibitor p16INK4a, p53, 
and ROS

[7]

Loss and dysfunction of 
SMCs in the vasculature

Tissue-engineered 
blood vessel

Induced pluripotent stem cell 
(iPSC)-derived SMCs from an 
HGPS patient

Reduced vasoactivity, increased medial wall 
thickness, increased calcification and apoptosis

[13]

Cellular senescence and 
impaired cardiomyocyte 
function

Tissue-engineered 
3D co-culture 
system

Aging cardiac fibroblasts Slower action potential conduction, prolonged 
action potential duration, weaker contractions, 
higher tissue stiffness, and reduced calcium 
transient amplitude

[63]

Accelerated aging and 
death

Tissue-engineered 
blood vessels

Induced pluripotent stem cell 
(iPSC)-derived SMCs and ECS 
from an HGPS patient

Reduction in both vasoconstriction and vasodilation [14]

TEBVs: Tissue-engineered blood vessels; SMCs: smooth muscle cells; iPSC: induced pluripotent stem cell; HGPS: hutchinson-gilford progeria 
syndrome; ROS: reactive oxygen species.

Figure 1. Aging in engineered cardiovascular tissues. Dox: Doxorubicin; HGPS: hutchinson-gilford progeria syndrome; hCB-EPC: human 
cord blood-derived endothelial progenitor cells; iPSC: induced pluripotent stem cell; iCM: iPSC-derived cardiomyocyte; iSMC: iPSC-
derived smooth muscle cells; NRCM: neonatal rat cardiomyocyte; ROS: reactive oxygen species; TEBV: tissue-engineered blood vessels.

A recent study identified SIRT2 as a significantly decreased protein in the hearts of aged monkeys[10]. 
Interestingly, SIRT2 deficiency leads to senescence features in human induced pluripotent stem cell (iPSC)-
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derived cardiomyocytes[10], suggesting the possibility of accelerated heart aging in vitro via gene engineering. 
Hutchinson-Gilford Progeria Syndrome (HGPS) is a genetic disease associated with pro-senescence 
characteristics. Consequently, other genetically accelerated aging blood vessel models were fabricated using 
vascular cells derived from HGPS patients’ iPSCs[12-14]. These tissue-engineered blood vessel (TEBV) models 
exhibited features of vascular aging, including excessive extracellular matrix (ECM) deposition and 
occurrence of inflammation. However, this model requires iPS cell resources from HGPS patients, which 
are rare and hinder the application of this model. HGPS is caused by a mutation in the LMNA gene, which 
encodes the nuclear envelope protein lamin A. This mutation results in the production of a shorter 
transcript known as progerin[15]. Aberrant accumulation of progerin in the nuclear membrane interferes 
with DNA damage response, gene transcription, and telomere maintenance[16]. Researchers demonstrated 
that forced progerin expression could induce aging-related features in iPSC-derived neurons [15], expanding 
the application possibilities of this in vitro aging model.

Other factors promoting aging include oxidative stress and telomere damage. The connection between 
oxidative stress and aging has been well established[17]. Studies have revealed that oxidative stress can induce 
senescence and expression of inflammatory markers in the cardiovascular system of aged patients[18]. 
Therefore, researchers seek to generate a vascular aging model via oxidative stress stimulation in TEBV[19]. 
Exposure to H2O2 can significantly increase senescence in endothelial cells and other cell types. 
Interestingly, compared with other cell types, the aging effect on TEBV is dominated by the endothelium[19]. 
Accumulating evidence suggests cardiomyocytes develop senescence upon doxorubicin treatment[20,21]. 
Doxorubicin-induced aging was also achieved in a cardiac tissue chip model through acute low-dose 
doxorubicin treatment[7], with aging features including enhanced DNA damage response, increased p53 
expression and reactive oxygen species (ROS). Recent studies show that telomere damage can activate 
senescence-associated pathways in cardiomyocytes and lead to pathological fibrosis and hypertrophy[9]. 
Since this telomere damage can be induced by mitochondrial dysfunction[11,22], reagents causing 
mitochondrial dysfunction may be used to generate aging models via induced telomere damage.

In summary, to better understand the molecular differences between aged and young cardiovascular tissues, 
it is required to construct age-appropriate ECT. However, existing aged ECT relies on prolonged culture 
and is time-consuming. Therefore, the ways to accelerate the aging process in vitro are the key to 
improvement. Some genetic manipulations, which lead to SIRT2 deficiency and abnormal accumulation of 
progerin, were proved to be able to accelerate aging. These findings provide a theoretical basis for 
constructing an ECT model of accelerated aging by genetic manipulations. In addition to intrinsic factors, 
some extrinsic factors, such as oxidative stress, have also been shown to accelerate the aging process. Based 
on these findings, a more economical in vitro aging model could be developed through genetic 
manipulation or external stimulation. It will provide a favorable model for further understanding the 
molecular characteristics of aging and exploring new therapeutic targets.

Rejuvenation of ECT: lessons from cardiovascular tissues
To rejuvenate engineered cardiovascular tissues, we need to gain insights from the aging and rejuvenation 
of cardiovascular tissues [Table 2]. Extracellular matrix proteins enriched in young cardiac ECM have been 
shown to promote heart regeneration[23,24]. A recent study identified a novel ECM molecule, versican, which 
can induce cardiac regeneration[6]. Since ECM proteins can be delivered as recombinant proteins or 
modified RNA, they may serve as very suitable rejuvenating targets for cardiac tissue. Endothelium-targeted 
Sirt7 gene therapy ameliorates aging features in a mouse model of HGPS[25], suggesting that Sirt7 is a 
potential target for reversing age-related vascular dysfunction. Restoring mitochondrial function through 
the inhibition of DYRK1B activity has also been shown to rejuvenate mitochondrial bioenergetics and 
cardiac performance[26] [Figure 2].
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Table 2. Rejuvenation in cardiovascular tissues

Rejuvenation features Tissue types Rejuvenation strategies Potential 
target Reference

Enhanced cardiomyocyte proliferation, 
reduced fibrosis, and improved cardiac 
function

Myocardium Intramyocardial injection of versican Integrin β1, 
ERK1/2 and 
Akt

[6]

Improves neovascularization and extends 
life span 

Vascular 
endothelium

Vascular endothelium-targeted Sirt7 gene therapy Sirt7 [25]

Improve in vitro and in vivo 
vasculogenesis

Vascular 
endothelium

Conjugation of drug-loaded liposomal nanoparticles 
directly to the surface of GDM-exposed ECFCs

N/A [27]

β-galactosidase, p53, p21, and p16 were 
remarkably reduced

Myocardium Exosomes derived from human umbilical cord MSCs Apaf1 [28]

Modulated the aging-related p16 gene 
and enhanced cell proliferation

Myocardium Covalently immobilized 2 proangiogenic cytokines 
(vascular endothelial growth factor and basic fibroblast 
growth factor) onto porous collagen scaffolds

N/A [30]

Rejuvenating mitochondrial 
bioenergetics

Myocardium Inhibition of DYRK1B or STAT3 activity using specific 
inhibitors

PGC-1α [26]

Rejuvenating cardiac gene expression, 
heart function, exercise capacity, and 
systemic biomarkers

Myocardium CDC transplantation N/A [29]

MSC: Mesenchymal stem cell; CDC: cardiosphere-derived cell.

Figure 2. Rejuvenation of cardiovascular tissues. CDC: Cardiosphere-derived cell; GDM: gestational diabetes mellitus; MI: myocardial 
infarction; MSC: mesenchymal stem cell; ECFC: endothelial colony-forming cells.

Moreover, a recent study reported a novel strategy to rejuvenate vascular progenitor cells via TGF-β 
inhibitor-loaded liposomal nanoparticles[27], suggesting the therapeutic potential of drug-loaded 
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nanoparticles. Another study shows that young mesenchymal stem cells (MSC)-derived exosomes can 
revitalize aged MSCs and promote their cardiac repair function via miR-136/Apaf1 axis[28], indicating the 
protective effect of beneficial factor-loaded exosomes. In another study, human heart cells from older 
donors were treated with exosomes secreted by cardiosphere-derived cells (CDCs) from young donors[29]. 
Results show that young-CDC-secreted exosomes could reverse senescent cellular features in aged human 
heart cells in vitro. Growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast 
growth factor (bFGF), have also been reported to rejuvenate engineering tissues constructed from MSCs of 
aged donors[30] [Figure 2].

Strategies targeting senescent cells are also of great importance in cardiovascular rejuvenation. To induce 
cytotoxicity specifically in senescent cells, two approaches are commonly applied: genetic methods and 
immunological methods. The genetic method introduces cellular suicide signals driven by the p16 or p21 
promoter[31,32], while the immunological method uses immune cells and antibodies to recognize and 
eliminate senescent cells[33,34]. Inducible elimination of senescent cells was achieved in mice expressing 
caspase 8 (a suicide signal activated by a drug named AP20187) in p16INK4a-positive senescent cells[35]. 
Moreover, precise elimination of type-specific aging cells could be achieved using cell type-specific Cre 
mice[36]. In another mouse model, herpes simplex virus thymidine kinase (HSV-TK) expression was driven 
by the p16INK4A promoter, and specific elimination of p16INK4A positive cells was achieved by the antiviral 
drug Ganciclovir[37]. These genetic clearance strategies of senescent cells suggest that the delivery of 
inducible suicide construct driven by the p16 or p21 promoter using adeno-associated virus (AAV) may be 
a possible approach for selective clearance of aging cells in CVD patients. Combining this with tissue-
specific Cre, cell type-selective elimination of aging cells will generate novel insights into whether the 
removal of aging non-cardiomyocytes contributes to the improvement of heart function.

Alternatively, the immunological method usually uses chimeric antigen receptor (CAR) T cells and specific 
antibodies. CAR T cells are genetically engineered to target cells with specific antigens. For example, 
urokinase-type plasminogen activator receptor (uPAR) is used as a cell surface marker to eliminate 
senescent cells[33]. The results show that the removal of aging cells via uPAR CAR T cells can reduce liver 
fibrosis[33]. Vaccination against senescent antigens has also been proven to be an effective strategy. 
Glycoprotein nonmetastatic melanoma protein B (GPNMB) is enriched in senescent vascular endothelial 
cells[34]. Vaccination of mice against GPNMB can reduce GPNMB-positive cells and extend the lifespan of 
progeroid mice[34]. It is expected that more novel gene delivery and immunological drugs targeting senescent 
cells will be developed and tested on age-matched in vitro models for preclinical investigation.

Some molecules such as SIRT7 and ECM molecules have been explored and proved to have rejuvenating 
capacity. In addition, some drug-loaded nanoparticles and exosomes have also been confirmed to promote 
rejuvenation. The removal of senescent cells by genetic or immunological methods may also be a promising 
treatment that requires further research and development. The development of novel anti-aging therapies 
through AAV or RNA-mediated molecular therapy, or delivery of drug-loaded nanoparticles and exosomes, 
as well as senescent cell depletion, could be followed by preclinical validation in age-appropriate animal and 
ECT models.

ENGINEERED CARDIOVASCULAR TISSUE IN VIVO FOR REJUVENATION: CLINICAL 
POTENTIAL AND CHALLENGES
Heart failure is the severe stage or terminal stage of various CVDs and is characterized by apoptosis of 
cardiomyocytes and a decline in heart function. The loss of cardiomyocytes is irreversible due to the 
declined regeneration capacity of adult myocardium. The only effective way to cure heart failure is 
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transplant therapy, but this strategy is largely hindered by the lack of donor resources and the complexity of 
the surgery. The development of stem cell technology in recent years is expected to address this problem. 
The first generation of cardiac regeneration therapy mainly focused on adult stem cells, such as 
mesenchymal stem cells. These adult stem cells, which can self-renew and differentiate, were transplanted 
into patient’s hearts to replace damaged cardiomyocytes. Several clinical trials based on this strategy have 
been conducted in Europe, the United States, and Japan[38]. However, whether transplanted adult stem cells 
can replace damaged cardiomyocytes remains unclear. Researchers believe that some of the functional 
improvements observed in these experiments may be related to paracrine effects or immunomodulatory 
effects of mesenchymal stem cells[39]. With the deepening of research and technological development in 
regenerative medicine, the second generation of cardiac regenerative therapy focused on multiple strategies, 
such as cardiomyocytes and ECTs derived from iPSCs. Clinical trials, such as the HEAL-CHF Trial based 
on hPSC-CMs[40], have been carried out, providing novel insights into regenerative medicine [Table 3]. The 
possibility of cardiomyocyte transplantation has been proved in rodent[41-43], pig[44], and macaque[45,46] models 
of CVD. However, a low cell retention rate remains a key challenge of cell injection strategies[47]. 
Alternatively, the transplantation of ECT results in improved cell retention [48] without the appearance of 
arrhythmia[49,50]. Therefore, the decline in heart function and heart failure caused by aging may be reversed 
by the transplantation of engineered cardiovascular tissues.

For effective clinical translation, experience could be gained from preclinical studies. The retention and 
function of ECT engraftment have been demonstrated in rodent transplantation experiments[50,51], and 
electromechanical integration has been shown in host and graft tissues[52,53]. The electromechanical 
synchronization of transplanted ECT has also been demonstrated in vivo[50,51,54,55]. However, some reports 
indicate that the electromechanical synchronization of grafts is variable or absent[41,56]. Therefore, further 
studies are required to confirm the electromechanical integration of ECT grafts. With the development of 
ECT transplantation and the initiation of clinical trials[57-59], these outcomes will provide essential 
information on the safety and efficacy of ECT transplantation.

Considering the increased average life span of our population, there is an urgent demand for state-of-the-art 
engineered tissue concepts that maintain function throughout life to avoid reoperation[60]. Recent studies 
show that growth factors can enhance the function of a biodegradable patch seeded with MSCs from old 
donors, and this functionally enhanced ECT could restore cardiac function after surgery[30]. After 
transplantation, the old cells were revitalized, suggesting this growth factor-enriched MSC patch system 
serves as a rejuvenating and repairing platform for aged patients with heart failure. Tissue-engineered 
vascular grafts (TEVGs) with the ability to regenerate may overcome the growth barriers of non-living 
artificial tissues. However, the generation of living TEVGs requires multiple steps of in vitro culture, which 
may lead to accelerated cell aging and telomere shortening. This may result in adverse effects on the long-
term function of the TEVGs in vivo. Interestingly, although TEVGs appear to be older than their native 
counterparts, their growth ability and long-term function were not compromised[61]. TEVG appears to 
rejuvenate due to endogenous cellular renewal, but the molecular mechanism remains unclear. A deeper 
understanding of the molecular mechanisms of TEVG rejuvenation in vivo could facilitate the development 
of renewable engineered cardiovascular tissues.

Although the technical development of engineered cardiovascular tissue has advanced the recovery of CVDs 
in the aging population, many limitations hinder the clinical application of this technology. For example, 
the immunogenicity of allogeneic cell transplantation can trigger a host immune response, necessitating 
patients to receive immunosuppressive drugs[40]. Patient-specific iPSC-derived cardiac cells may be a safer 
resource for autologous transplantation; however, this strategy requires establishing an iPS cell line for each 
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Table 3. Clinical trials

No. Study title Conditions Interventions Sponsor Collaborator Sample 
size End point Preliminary result Reference

NCT04396899 Safety and efficacy of 
induced pluripotent stem 
cell-derived engineered 
human myocardium as 
biological ventricular assist 
tissue in terminal heart 
failure (BioVAT-HF)

Heart failure Biological: EHM 
implantation

University 
Medical Center 
Goettingen

Deutsches Zentrum 
für Herz-Kreislauf-
Forschung (DZHK), 
University Medical 
Center Freiburg

53 2024/10/1 / /

NCT04945018 A study of iPS cell-derived 
cardiomyocyte spheroids 
(HS-001) in patients with 
heart failure (LAPiS study) 
(LAPiS)

Heart failure/ischemic 
heart disease

Biological: HS-001 
CSDevice: HS-001-D 
needle, HS-001-D 
adaptor

Heartseed Inc. / 10 2026/1/31 / /

NCT02057900 Transplantation of human 
embryonic stem cell-
derived progenitors in 
severe heart failure 
(ESCORT)

Ischemic heart disease Biological: human 
embryonic stem cell-
derived CD15 + Isl-1 + 
progenitors

Assistance 
Publique-
Hôpitaux de 
Paris

/ 6 2018/3/22 None of the patients presented 
with arrhythmias or tumors during 
follow-up. All patients were 
symptomatically improved with an 
increased systolic motion. One 
patient died early post surgery from 
comorbidities. One patient died of 
heart failure after 22 months

[58]

UMIN000003273 Development of new 
strategy for severe heart 
failure using autologous 
myoblast sheets

Ischemic 
cardiomyopathy, 
dilated 
cardiomyopathy

Culture of autologous 
skeletal myoblasts and 
engineering myoblast 
sheets. Transplantation 
of the myoblast sheets 
to the heart

Osaka 
University 
Graduate 
School of 
Medicine

/ 27 2018/9/18 None of the patients presented 
with procedure-related major 
complications during follow-up. 
The majority of the ischemic 
cardiomyopathy patients showed 
significant symptomatic 
improvement

[64,65]

NCT03763136 Treating heart failure with 
hPSC-CMs (HEAL-CHF)

Heart failure Biological: hPSC-CM 
therapy

Help 
Therapeutics

The Affiliated 
Nanjing Drum 
Tower Hospital of 
Nanjing University 
Medical School

20 2024/10/30 / [40]

NCT05223894 Treating heart failure with 
hiPSC-CMs

Heart failure Biological: hiPSC-CM 
therapy

Help 
Therapeutics

Shanghai East 
Hospital

20 2025/12/30 / /

NCT05566600 Allogeneic iPSC-derived 
cardiomyocyte therapy in 
patients with worsening 
ischemic heart failure

Ischemic heart failure, 
chronic heart failure

Biological: human 
(allogeneic) iPS-cell-
derived cardiomyocyte

Help 
Therapeutics

Central South 
University

32 2025/7/31 / /

NCT04982081 Treating congestive HF 
with hiPSC-CMs through 
endocardial injection

Cardiovascular 
diseases, congestive 
heart failure, dilated 
cardiomyopathy

Biological: hiPSC-CM 
therapy

Help 
Therapeutics

Xijing Hospital 20 2023/7/31 / /
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NCT05647213 Autologous induced 
pluripotent stem cells of 
cardiac lineage for 
congenital heart disease

Univentricular heart, 
congenital heart 
disease, heart failure, 
NYHA class III heart 
failure, NYHA Class IV

Biological: iPSC-CL HeartWorks, 
Inc.

/ 50 2029/2/1 / /

iPSC: Induced pluripotent stem cell.

patient, which is time-consuming and costly. Additionally, clinical applications require a large number of cells (approximately 108) and larger sizes of ECT, 
presenting further challenges to cell culture and ECT construction systems. A low retention rate is a major challenge of cell transplantation. Recent studies 
demonstrate enhanced cell retention through tissue engineering[62]. However, some researchers have observed a lack of electrical integration of tissue-
engineered patches in the host[41], which may lead to arrhythmia in patients after transplantation. Furthermore, the transplantation of tissue-engineered 
patches requires thoracotomy, potentially prolonging the recovery process of patients. Therefore, the development of tissue-engineered patches suitable for 
minimally invasive surgery will significantly promote the clinical application of tissue engineering for cardiovascular rejuvenation and repair.

CONCLUSIONS
The development of age-matched ECT is still in its infancy, with a lack of ready-to-use models. Existing prolonged-culture models are time-consuming and 
costly. Therefore, it is necessary to accelerate aging through genetic or non-genetic approaches for model construction. Once a new model is established, a 
comprehensive assessment of the aging features using various measurements is needed. For assessing the rejuvenating efficiency of drugs, insights can be 
obtained from aged animal models due to the limited knowledge of the assessment of regenerative efficiency on aged ECT models. Young ECM and enhanced 
mitochondrial function have been demonstrated to play essential roles in rejuvenation and may provide novel drug targets for regenerative therapy. 
Additionally, drug-loaded nanoparticles and exosomes loaded with miRNAs have also shown rejuvenating effects in cellular models in vitro.

The development of next-generation ECT for transplantation holds significant applicational value. Genetically engineered ECT with improved regenerative 
ability could enhance ECT function and service life after transplantation. Electrical coupling of ECT with host tissue is crucial to avoid potential arrhythmia. 
Moreover, developing ECT suitable for minimally invasive surgery is a valuable research direction. In summary, with the advancement of ECT construction, 
insights from preclinical studies and clinical trials will largely inspire basic and translational research. Optimized and combined therapeutic approaches will be 
developed to effectively respond to age-matched strategies for CVD treatment and heart rejuvenation.
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